PROTEINURIA Y MICROALBUMINURIA.

  • Carlos Carvajal-Carvajal Microbiólogo, Especialista en Química Clínica. Laboratorio, Hospital de Guápiles
Palabras clave: albuminuria, barrera de filtración glomerular, proteinuria, microalbuminuria.

Resumen

La barrera de filtración glomerular está formada por tres capas: el endotelio fenestrado, la membrana basal glomerular y las células epiteliales especializadas, llamadas podocitos. El contenido de proteínas en la orina es muy bajo y consiste primariamente de albúmina y de otras proteínas. La alteración de los componentes de la barrera de filtración puede resultar en la proteinuria clínica. La proteinuria usualmente refleja un incremento de la permeabilidad glomerular para la albúmina y otras proteínas. Hay varios tipos de proteinuria. Las relaciones albumina/creatinina (RAC) y proteína/creatinina (RPC) en orina son marcadores importantes de daño renal. No obstante, varias guías de manejo recomiendan la identificación y cuantificación de la proteinuria usando RAC de preferencia a RPC. Además, algunas guías de manejo recomiendan repetir la medición de RAC en la identificación inicial de la albuminuria para evitar el sobrediagnóstico debido a cambios transitorios en la albuminuria.

Citas

1. Zhang, A. & Huang, S. (2012). Progress in Pathogenesis of Proteinuria. International Journal of Nephrology, 1-14.

2. Bello, A., Hemmelgarn, B. & Lloyd, A. (2011). Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes, Clinical Journal of the American Society of Nephrology, 6(6), 1418–1426.

3. Bahar, A., Makhlough, A., Yousefi, A., Kashi, Z. & Abediankenari, S. (2013). Correlation between prediabetes conditions and microalbuminuria. Nephro-Urology Monthly, 5(2), 741-745.

4. Vinge, L., Lees, G., Nielsen, R., Clifford, E., Bahr, A. & Christensen, E. (2010). The effect of progressive glomerular disease on megalin-mediated endocytosis in the kidney. Nephrol Dial Transplant, 25, 2458-2467.

5. Saito, A., Kaseda, R., Hosojim, M. & Sato, H. (2011). Proximal tubule cell hypothesis for cardiorenal syndrome in diabetes. Int J Nephrology, 1-9.

6. Cohen-Bucay, A. & Viswanathan, G. (2012). Urinary markers of glomerular injury in diabetic nephropathy. Intl J Nephrology, 7823-7834

7. Saito, A., Sato, H., Lino, N. & Takeda, T. (2010). Molecular mechanism of receptor-mediated endocitosis in the renal proximal tubular epithelium. J Biomedicine and Biotechnology, 4032-4041.

8. Mundel, P. & Reisert, J. (2010). Proteinuria: an enzymatic disease of the podocyte? Kidney Int, 7(7), 571-580.

9. Garg, P. & Rabelink, T. (2011). Glomerular proteinuria: a complex interplay between unique players. Adv Chronic Kidney, 18(4), 233-242.

10. Sekulic, M. & Sekulic, S. (2013). A compendium of urinary biomarkersindicative of glomerular podocytopathy. Patology Research International, 1-18.

11. Tojo, A. & Kinugasa, S. (2012). Mechanisms of glomerular albumin filtration and tubular reabsorption. Int J Nephrology, 4815-4824.

12. Toblli, J., Bevione, P., Madalena, L., Cao, G. & Angerosal, M. (2012). Understanding the mechanisms of proteinuria: therapeutic implications. International Journal of Nephrology, 1-13.

13. KDIGO. (2013). Definition and classification of CKD. Kidney International Supplements, 3, 19-62.

14. Fraser, S., Roderick, P., McIntyre, N., Harris, S., McIntyre, C., Fluck, R. & Taal, M. (2014). Assessment of proteinuria in patients with chronic kidney stage 3: albuminuria and non-albumin proteinuria. PLOS ONE, 9(5), 1-12.

15. Willemsen, S., Hartog, J., Heiner-Fokkema, R., Van Veldhuisen, D. & Voors, A. (2012). Advanced glycation end products, a pathophysiological pathway in the cardiorenal syndrome. Heart Fail Rev, 17, 221-228.

16. Chuang, P. Y., Yu, Q., Uribarri, J. & He, J. C. (2007). Advanced glycation endproducts induce podocyte apoptosis by activation of the FOX04 transcription factor. Kidney Int, 72(8), 965-976.

17. Frye, E. B., Degenhardt, T. P., Thorpe, S. R. & Baynes, J. W. (1998). Role of Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem, 273, 18714-18719.

18. Hegab, Z., Gibbons, S., Neyses, L. & Mamas, M. (2012). Role of advanced glycation end products in cardiovascular disease. World J Cardiology, 4(4), 90-102.

19. Piarulli, F., Sartore, G. & Lapolla, A. (2013). Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol, 50, 101-110.

20. Watkins, N. G., Thorpe, S. R. & Baynes, J. W. (1985). Glycation of amino groups in protein. J Biol Chem, 260, 10629-10636.

21. Schalkwijk, C. & Miyata, T. (2012). Early- and advanced non-enzimatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids, 42, 1193-1204.

22. Taguchi, A., Blood, D. C., Del Toro, G., Canet, A., Lee, D. C., Qu, W., et al. (2000). Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature, 405, 354-360.

23. Ramasamy, R., Yan, S. & Schmidt, A. (2012). Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids, 42(4), 1151-1161.

24. Brownlee, M. & Lecture, L. (1994). Glycation and diabetic complications. Diabetes, 43, 836-841.

25. Gella, A. & Durany, N. (2009). Oxidative stress in Alzheimer disease. Cell adhesion & migration, 3(1), 88-93.

26. Younessi, P. & Yoonessi, A. (2011). Advanced glycation end-products and products and their receptor-mediated roles: inflammation and oxidative stress. Iran J Med Sci, 36(3), 1-10.

27. Tabit, C. (2012). Endothelial dysfunction in diabetes mellitus: molecular mechanism and clinic implications. Rev Endocr Metab Disord, 11(1), 61-74.

28. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813-820.

29. Border, W. A. & Noble, N. A. (1994). Transforming growth factor beta in tissue fibrosis. N Engl J Med, 331, 1286- 1292.

30. Goldfarb, S. & Ziyadeh, F. (2001). TGF-β: a crucial component of the pathogenesis of diabetic nephropathy. Transac Am Clin Climatol Assoc, 112, 27-33.

31. Panee J. (2012). Monocyte chemoattractant protein (MCP-1) in obesity and diabetes. Cytokine, 60(1), 1-12.

32. Yamagashi, S. I. & Matsui, T. (2010). Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 3(2), 101-108.

33. Kolset, S., Reinholt, F. & Jenssen, T. (2012). Diabetic nephropathy and extracellular matrix. Journal Histochemistry & Cytochemistry, 60(12), 976-986.

34. Cravedi, P. & Remuzzi, G. (2013). Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. British J Clinica Pharmacology, 7(6), 516-523.

35. Stout, M., Scifres, C. & Stamilio, D. (2013). Diagnostic utility of urine protein-to-creatinine ratio for identifying proteinuria in pregnancy. J Matern Fetal Neonatal Med, 26(1), 66–70.

36. Dwyer, B., Gorman, M. & Druzin, M. (2008). Urinalysis vs urine protein–creatinine ratio to predict significant proteinuria in pregnancy. J Perinatol, 28(7), 461–467.

37. Yan, L., Ma, J., Guo, X., Tang, J., Zhang, J., Lu Z., et al. (2014). Urinary albumin excretion and prevalence of microalbuminuria in a general Chinese population: a cross-sectional study. BMC Nephrology, 15, 165-174.

38. Singh, A. & Satchell, S. (2011). Microalbuminuria: causes and implications. Pediatr Nephrol, 26, 1957-1965.

39. Chavan, V., Durgawalw, P., Sayyed, A., Sontakke, A., Attar, N., Patel, S., et al. (2011). A comparative study of clinical utility of spot urine samples with 24-h urine albumin excretion for screening of microalbuminuria in type 2 diabetic patients. Ind J Clin Biochem, 26(3), 283-289.

40. Sandilands, E., Dhaun, N., Dear, J. & Webb, D. (2013). Measurement of renal function in patients with chronic kidney disease. British Journal of Clinical Pharmacology, 76(4), 504-515.

41. Yamamoto, K., Yamamoto, H., Yoshida, K., Niwa, K. & Nishi, Y. (2014). The Total Urine Protein-to-Creatinine Ratio Can Predict the Presence of Microalbuminuria. PLOS ONE, 9(3), 1-7.

42. Viswanathan, G., Sarnak, M., Tighiouart, H., Muntner, P. & Inker, L. (2013). The association of chronic kidney complications by glomerular filtration rate and albuminuria: a cross-sectional analysis. Clin Nephrol, 80(1), 29-39.

43. Selvin, E., Juraschek, S., Eckfeldt, J., Levey, A., Inker, L. & Coresh, J. (2013). Within-person variability in kidney measures. Am J Kidney Dis, 61(5), 716-722.

44. Ritz, E., Vilberti, G., Ruilope, L., Rabelink, A., Izzo, J., Katayama, S., et al. (2010). Determinants of urinary albumin excretion within the normal range in patients with type 2 diabetes: the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study. Diabetologia, 53, 49-57.

45. Skupien, J., Warram, J., Smiles, A., Niewczas, M., Gohda, T., Pezzolesi, M., et al. (2012). The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end stage renal disease. Kidney Int, 82(5), 589–597.
Publicado
2020-11-12
Cómo citar
Carvajal-Carvajal, C. (2020). PROTEINURIA Y MICROALBUMINURIA. Medicina Legal De Costa Rica, 34(1). Recuperado a partir de //www.binasss.sa.cr/ojssalud/index.php/mlcr/article/view/43