THE TRIGLYCERIDES AND ATHEROGENESIS.

  • Carlos Carvajal Carvajal Microbiólogo, especialista en Química Clínica. Laboratorio Clínico, Hospital de Guápiles.
Keywords: Triglycerides, atherosclerosis, triglyceride-rich lipoprotein, dyslipidemia, apo C-III.

Abstract

Triglyceride-rich lipoproteins (TRL) comprise chylomicrons, VLDL and their remnants. TRL are highly heterogeneous, differing in size, density, composition, and associated cardiovascular risk. Accumulating evidence demonstrates a strong correlationbetween the risk of cardiovascular disease (CVD) and both non-fasting (postprandial) and fasting plasma TAG level. Two mechanisms by which TRL might increase atherosclerosis are proposed: TRL remnants and VLDL are able to penetrate the arterial intima, can be internalized by macrophages and convert these cells into foam cells. Second: during lipolysis of TRL a number of inflammatory lipids are released that alter endothelial biology. TAG are not directly atherogenic but represent an important biomarker of CVD because of their association with a high concentration of small dense LDL particles, reduced HDL cholesterol levels, and with apo C-III, a proinflammatory and proatherogenic protein.

References

1. Bornfeldt, k. & Tabas, I. (2011). Insulin resistance, hyperglycemia and atherosclerosis. Cell Metab, 14(5), 575-585.

2. Millán, J., Pintó, X., Muñoz, A., Zúñiga, M., Rubiés-Prat, J., Pallardo, L., et al. (2009). Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular Prevention. Vasc Health Risk Prevent, 5, 757-765.

3. Toth, P. (2016). Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vascular Health and Risk Management, 12, 171-183.

4. Mascarenhas-Melo, F., Palabra, F., Marado, D., Sereno, J., Texeira-Lemos, E., Freitas, I., et al. (2013). Emergent biomarkers of residual cardiovascular risk in patients with low HDL-c and/or high triglycerides and average LDL-c concentrations: focus on HDL subpopulations, oxidized LDL, adiponectin, and uric acid. The Scientific World J, 2013, 1-16.

5. Cohen, D. & Fisher, E. (2013). Lipoprotein metabolism, dyslipidemia and nonalcoholic fatty liver disease. Sem Liver Dis, 33(4), 380-388.

6. Díaz, J. & Liem, A. (2005). Utilidad de la medición de la apolipoproteína B en la práctica clínica. Clin Invest Arterioscl, 7(3), 142-146.

7. Chapman, M., Ginsberg, H., Amarenco, P., Andreotti, F., Borén, J., Catapano, A., et al. (2011). Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guiadance for management. European Heart J, 32, 1345-1361.

8. Choi, S. & Ginsberg, H. (2011). Increased Very Low Density Lipoprotein secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab, 22(9), 353-363.

9. Klop, B., Willem, J. & Castro-Cabezas, M. (2013). Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 5, 1218-1240.

10. Welty, F. (2013). How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr Cardiol Rep, 15(9), 378-400.

11. Vergés, B. (2015). Pathophysiology of diabetic dyslipidaemia: where are we? Diabetología, 58, 886-899.

12. Daniels, T., Killinger, K., Michal, J., Wright, R. & Jiang, Z. (2009). Lipoproteins, cholesterol homeostasis and cardiac health. Int J Biol Sciences, 5(5), 474-488.

13. Nakajima, K., Nakano, T., Tokita, Y., Nagamine, T., Inazu, A., Kobayashi, J., et al. (2011). Postprandial lipoprotein metabolism; VLDL vs chylomicrons. Clin Chem Acta, 412(15-16), 1306-1318.

14. Enkhmaa, B., Ozturk, Z., Anuurad, E. & Berglund, L. (2010). Postprandial lipoproteins and cardiovascular disease risk in diabetes mellitus. Curr Diab Rep, 10, 61-69.

15. Carey, V., Bishop, L., Laranjo, N., Harshfield, B., Kwiat, C. & Sacks, F. (2010). Controbution of high plasma triglycerides and low High-Density Lipoprotein cholesterol to residual risk of coronary heart disease after establishment of Low-Density Lipoprotein cholesterol control. Am J Cardiol, 106(6), 757-763.

16. Wan, K., Zhao, J., Huang, H., Zhang, Q., Chen, X., Zeng, Z., et al. (2015). The association between Triglyceride/High Density Lipoprotein cholesterol ratio and all-cause mortality in acute coronary syndrome after coronary revascularization. PLoS ONE, 10(4), 1-11.

17. Talayero, B. & Sacks, F. (2011). The role of triglycerides in atherosclerosis. Curr Cardiol Rep, 13(6), 544-552.

18. Bitzur, R., Cohen, H., Kamari, Y., Shaish, A. & Harats, D. (2009). Triglycerides an HDL cholesterol. Diabetes Care, 32, Supplement 2, S373-S377.

19. Kannel, W. & Vasan, R. (2009). Triglycerides as vascular risk factors: new epidemiologic insights for current opinion in cardiology. Curr Opin Cardiol, 24(4), 345-350.

20. Luo, M. & Peng, D. (2016). The emerging role of apolipoprotein C-III: beyond effects on triglyceride metabolism. Lipids in Health and Disease, 15, 1-7.

21. Han, S. H., Nicholls, S., Sakuma, I., Zhao, D. & Koh, K. K. (2016). Hipertriglyceridemia and cardiovascular diseases: revisited. Korean Circulation J, 46(2), 135-144.

22. katsanos, C. (2014). Clinical considerations and mechanistic Determinants of posprandial lipemia in older adults. Adv Nutrition, 5, 226-234.

23. Dallinga-Thie, G., Kroon, J., Borén, J. & Chapman, M. (2016). Triglyceride-rich lipoproteins and remnants: targets for therapy. Curr Cardiol Rep, 18, 1-9.

24. Golberg, I., Eckel, R. & McPherson, R. (2011). Triglycerides and heart disease, still a hypothesis? Arterioscler Thromb Vasc Biol, 31(8), 1716-1725.

25. Boren, J., Matikainen, N., Adiels, M. & Taskinen, M. R. (2014). Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta, 431, 31–42.

26. Rapp, J. H., Lespine, A., Hamilton, R. L., Colyvas, N., Chaumeton, A. H., Tweedie-Hardman, J., et al. (1994). Triglyceriderich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb Vasc Biol, 14, 1767–1774.

27. Daugherty, A., Lange, L. G., Sobel, B. E. & Schonfeld, G (1985). Aortic accumulation and plasma clearance of b-VLDL and HDL: effects of diet-induced hypercholesterolemia in rabbits. J Lipid Res, 26, 955–963.

28. Proctor, S. D. & Mamo, J. C. L. (1998). Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall—evidence that plaque cholesterol may be derived from post-prandial lipoproteins. Eur J Clin Invest, 28, 497–504.

29. Wang, L., Gill, R., Pedersen, T., Higgins, L., Newman, J. & Rutledge, J. C. (2009). Triglyceride-rich lipprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Research, 50, 204-213.

30. den Hartigh, L., Altman, R., Norman, J. & Rutledge, J. C. (2013). Posprandial VLDL lipolysis products increase monocyte adhesion and lipid droplet formation via activation of ERK2 and NFkB. Am J Physiol Heart Circ Physiol, 306, H109-H120.

31. Qamar, A., Khetarpal, S., Khera, A., Qasim, A., Rader, D. & Reilly, M. (2015). Plasma Apo C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics. Arterioscler Thromb Vasc Biol, 35(8), 1880-1888.

32. Sacks, F. (2015). The crucial roles of Apolipoproteins E and C-III in ApoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol, 26(1), 56-63.

33. Zheng, C., Khoo, C., Furtado, J. & Sacks, F. (2010). Apolipoprotein Hypertriglyceridemia and the dense Low-Density Lipoprotein phenotype. Circulation, 121(5), 1722-1734.

34. Gordts, P., Nock, R., Son, N. H., Ramms, B., Lew, I., Gonzales, J., et al. (2016). ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest, 126(8), 2855-2866.

35. Tran-Dinh, A., Diallo, D., Delbosc, S., Varela-Pérez, M., Dang, Q. B., Lapergue, B., et al. (2013). HDL and endothelial Protection. British J Pharmacology, 169, 493-511.

36. Norata, G. & Catapano, A. (2005). Molecular mechanisms responsible for the antiinflammatory and protective effect of HDL on the endothelium. Vasc Health and Risk Management, 1(2), 119-129.

37. Yuhanna, I. S., Zhu, B. E., Cox, L., Hahner, S., Osborne-Lawrence, P., Lu, Y. L., et al. (2001). High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med, 7, 853-857.

38. Athyros, V., Tziomalos, K., Karangiannis, A. & Mikhailidis, D. (2011). Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: the case for residual risk reduction after statin treatment. Open Cardiovasc Med J, 5, 24-34.

39. Shinkai, H. (2012). Cholesterol ester transfer-protein modulator and inhibitors and their potential for the treatment of cardiovascular diseases. Vascular health and risk management, 8, 323-331.

40. Jung, U. J. & Choi, M. S. (2014). Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, nonalcoholic fatty liver disease. Int J Mol Sci, 15, 6184-6223.

41. Magkos, F., Mohammed, S. & Mittendorfer, B. (2008). Effect of obesity on the plasma lipoprotein subclass profile in normoglycemic and normolipidemic men and women. Int J Obes (Lond), 32(11), 1655-1664.

42. Liu, M., Chung, S., Shelness, G. & Parks, J. (2012). Hepatic ABCA1 and VLDL triglyceride production. Biochim Biophys Acta, 1821(5), 770-777.

43. Carmena, R., Duriez, P. & Fruchart, J. (2004). Atherogenic lipoprotein particles in atherosclerosis. Circulation, 15, III-2 – III-7.

44. Nikolic, D., Katsiki, N., Montalto, G., Isenovic, E., Mikhailidis, D. & Rizzo, M. (2013). Lipoprotein subfraction in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients, 5, 928-948.
Published
2020-11-13
How to Cite
Carvajal Carvajal, C. (2020). THE TRIGLYCERIDES AND ATHEROGENESIS. Medicina Legal De Costa Rica, 34(2). Retrieved from //www.binasss.sa.cr/ojssalud/index.php/mlcr/article/view/73