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boosted decision trees.
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CONCLUSIONS: The radiomics predictors from preoperative '®F-FDG PET/CT imaging
exhibited instructive predictive efficacy in the identification of MVI and PNI status preopera-
tively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions.

© 2023 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.

Introduction

Pancreatic cancer is a highly malignant tumour in the
digestive system. The 5-year overall survival rate is <6%,’
and the 5-year survival rate of advanced pancreatic cancer
patients is <1%.> The most common, pancreatic ductal
adenocarcinoma (PDAC), accounts for approximately 90% of
pancreatic cancer. Pancreatico-duodenectomy surgery re-
mains the best potential curative treatment; however, the
recurrence rate is as high as 25% after 1 year of pancreatico-
duodenectomy surgery.” It is crucial to find biomarkers that
can identify aggressive behaviour of PDAC. Studies have
shown that neurovascular invasion (NVI), meaning micro-
vascular invasion (MVI) or perineural invasion (PNI), is the
first independent factor affecting the prognosis of pancre-
atic cancer patients.*> NVI often indicates the invasiveness
of the tumour®’ and significantly associates with higher
risk of early recurrence and metastasis.>” Precise identifi-
cation of NVI before surgery in patients with PDAC is of
critical clinical relevance in arriving at accurate prognosti-
cation'® and guiding more appropriate resection margin to
achieve better survival outcomes. Unfortunately, the de-
terminations of MVI and PNI are still based on intra-
operative or postoperative pathological diagnosis.

Radiomics that has emerged in recent years brings hope
for the preoperative evaluation of MVI and PNI based on
medical imaging. Radiomics is a quantitative high-
throughput feature extraction method that mines medical
images into high-dimensional extractable data'' and aims to
reflect the biological characteristics of tumours. Radiomics
data analysis can provide clinical stratification to screen for
potential beneficiaries, for example, differentiating patients
with potentially resectable tumours from those that are not
appropriated for pancreatico-duodenectomy surgery,
providing precise diagnosis and treatment.'” Several radio-
mics features for the preoperative prediction of MVI and PNI
status have been introduced. Peng et al."® and Zhang et al.'*
showed that radiomics nomograms based on contrast-
enhanced computed tomography (CECT) images achieved
favourable accuracy for preoperative prediction of MVI in
patients with hepatocellular carcinoma (HCC). Similarly,
Chen et al.”” developed a magnetic resonance imaging (MRI)-
based radiomics nomogram for the assessment of PNI status
in patients with rectal cancer. The above radiomics features
were, however, only extracted from the intra-tumoural re-
gions without considering the information around the pe-
riphery of the tumour. This might cause missed diagnosis of
NVI due to the tumour edges associated with MVI and PNL'®
As an example, Xu et al'” used radiomics features from

multiscale volume of interest (VOI) of CECT to predict MVI in
HCC. They showed that the peritumoural area contains in-
formation related to MVI. Unfortunately, there is limited
radiomics research that investigates the relationship be-
tween the tumours with multiscale dilation and the predic-
tion for MVI and PNI status in PDAC.

Positron-emission tomography/computed tomography
(PET/CT) is a molecular imaging method that can non-
invasively reflect tumour metabolism and molecular level
changes in vivo. In recent years, many studies have demon-
strated that 2-['8F]-fluoro-2-deoxy-p-glucose (*®F-FDG) PET
imaging has a unique value in staging, re-staging, therapeutic
evaluation and prognosis prediction of multiple tumours such
as breast cancer and lung adenocarcinoma.'® ?° These studies
demonstrated that '8F-FDG PET/CT-based radiomics was
better at monitoring biological characteristics to reflect the
status of tumour metabolism compared to other imaging
methods such as CECT or MRI In PDAC, >90% of tumours at
PET/CT demonstrated foci of intense uptake.”’ Studies re-
ported that the diagnostic sensitivity and accuracy of PET/CT
for detecting PDAC are equivalent or superior to multidetector
CT (MDCT) and MRI,**~%* which could be attributed to the
low-enhancing lesions of PDAC on contrast-enhanced CT and
MRI; however, PET/CT takes advantage of increased glycolytic
uptake for the segmentation of the tumours. According to a
literature review, no study to date, has predicted the presence
of MVI and PNI in PDAC using a ®F-FDG PET/CT radiomics
signature.

The present study investigated the use of "®F-FDG PET/CT
radiomics features extracted from the whole tumour and
peritumoural region to detect the presence of MVI and PNI
preoperatively in PDAC, which could help to provide more
effective strategies for patients at high risk of NVI during the
preoperative evaluation. The aim of the present study was
to construct and validate a feasible prediction model from
the multi-region VOIs together with other clinicopatho-
logical characteristics to predict preoperative MVI and PNI
status in patients with PDAC.

Materials and methods
Patients

Preoperative '®F-FDG PET/CT data was collected from 170
patients with PDAC between January 2013 and July 2018.
The present study was approved by the Ethics Committee of
Fudan University Shanghai Cancer Center (no. 1909207-14-
1910) and all the data were analysed anonymously. The
requirement for written informed consent was waived. The
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inclusion criteria were as follows: (1) primary pancreatic
lesions were surgically removed and histopathologically
confirmed to be PDAC; (2) patients underwent '8F-FDG PET/
CT within 1 week before surgery; (3) patients did not
receive any treatment related to tumours before '8F-FDG
PET/CT; (4) complete medical records and clinical charac-
teristics were available. The exclusion criteria were as fol-
lows: (1) invalid '®F-FDG PET/CT images; (2) lack of MVI and
PNI results in the postoperative pathological reports; (3)
presence of other malignant tumours; (4) incomplete clin-
ical data. A total of 170 patients were included in the study.

Assessment of MVI and PNI status

The presence of MVI and PNI were determined by two
pathologists, and the diagnoses were confirmed by another
senior pathologist. MVI was defined by identifying a cluster
of intravascular cancer cells away from the primary tumour
that was visible only on microscopy.® The presence of PNI
refers to the infiltration of tumour cells along the perineural
space or into the perineural space from the weak part of the
perineural space.””

Acquisition of "®F-FDG PET/CT imaging

18E_FDG PET/CT imaging was acquired on a whole-body
PET/CT scanner (Biogragh 16 HR, Siemens Medical Sys-
tems, Erlangen, Germany). Before ®F-FDG administration
(3.7 MBq/kg), the blood glucose levels of all the patients
were <10 mmol/l. All patients fasted for at least 6 h prior to
the injection and rested in a dimly lit room for 1 h after 8F-
FDG injection. Spiral CT was first performed with the range
from the proximal thighs to calvarium. Parameters used in
this study were as follows: 120 kV, 140 mA, pitch of 3.6, 0.5
seconds rotation time, and 5 mm section thickness). PET
was then conducted immediately over the same extent. The
acquisition time was 2~3 minutes per bed position. The
acquired PET and CT images were reconstructed with a
Gaussian-filter iterative method (iteration 4, subsets 8) and
analysed on a workstation.

Acquisition of clinicopathological indicators

Ten clinicopathological indicators of significance were
collected for pancreatic cancer to explore whether they
have an auxiliary effect on the prediction of MVI and PNI
status. The indicators include gender, age, tumour size
(based on the longest diameter), location (Caput pancreatis,
pancreatic body, pancreatic tail, multi-region (two or more
sub-regions)), tumour differentiation (well-differentiated,
moderately differentiated, poorly differentiated), mean
standard uptake value (SUVmean), maximum standard
uptake value (SUVmax), metabolic tumour volume (MTV),
total lesion glycolysis (TLG) and preoperative CA19-9. MTV
was measured using an absolute SUV threshold value of 2.5.
TLG was calculated according to the formula:
TLG = MTV x SUVmean. Details of these parameters are
listed in Table 1.

Radiomics analysis

The overview of the radiomics analysis is shown in Fig 1.
Different sets of quantitative features that are related to MVI
and PNI were extracted separately as biomarkers through
radiomics analysis of PET/CT images and clinicopathological
indicators, making it possible to predict invasion in a non-
invasive manner.

VOI segmentation

Tumour volume was delineated manually and indepen-
dently using the ITK-SNAP 3.8.0 (http://www.itksnap.org)
by two nuclear medicine specialists, and the results were
reviewed by another nuclear medicine specialist. Three
experts were blinded to the clinical and pathological results.
Disagreements were discussed until a consensus was
reached. The original tumour volume (VOI°" &) mainly
reflects intra-tumoural heterogeneity. To extract informa-
tion related to microvascular and nerve involvement in the
periphery of the tumour appropriately, the delineated
tumour was expanded by multiscale (3, 5, and 10 mm)
through the dilation operation in binary mathematical
morphology to obtain the dilated VOIs (vordilated-i j — 3 5
10). An example of the tumour segmentation and
morphological dilation is shown in Fig 2. More information
about data preprocessing is recorded in Electronic Supple-
mentary Material Part L.

Feature extraction

Radiomics features were extracted from the vOI°risinal
and the vordilated-i senarately. The entire process was con-
ducted using the PyRadiomics (https://github.com/AIM-
Harvard/pyradiomics), which is an open-source Python
package for the extraction of radiomics features from
medical imaging.”® This has been shown in the literature to
extract various and complex radiomics features effec-
tively.'®?7?8 Three types of features were extracted: shape,
intensity, and texture. The shape features include elonga-
tion, flatness, etc. The extracted intensity features mainly
include energy, entropy, etc. The second order and higher-
order texture features were obtained from different grey-
level matrices, including grey-level co-occurrence matrix
(GLCM), grey-level run length matrix (GLRLM), grey-level
size zone matrix (GLSZM), neighbouring grey-tone differ-
ence matrix (NGTDM) and grey-level dependence matrix
(GLDM). Finally, 1,023 CT image features and 107 PET image
features were extracted from each VOI. Reasons for the large
difference in the number of PET and CT features and details
of these characteristics (see Electronic Supplementary Ma-
terial Table S1) are shown in Electronic Supplementary
Material Part II

Feature selection

Feature selection removes redundant and irrelevant in-
formation to obtain a smaller subset of features without
significantly compromising the classification distribution
and accuracy. For this work, a fast feature selection
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Table 1
The clinicopathological characteristics of the patients.
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Variables MVI (—) MVI (+) p-Value (MVI) PNI (—) PNI (+) p-Value (PNI)
(n=120) (n=50) (n=24) (n=146)
Gender 0.952 0.941
Female 51 (30%) 21 (12.4%) 10 (5.9%) 62 (36.5%)
Male 69 (40.6%) 29 (17%) 14 (8.2%) 84 (49.4%)
Age (years) 62 (31-83) 60 (31-77) <0.05* 62 (31-79) 61 (31-83) 0.506
Tumour size (cm) 3.2 (0.5-9) 3.5 (0.6—6.5) 0.655 3.5(1.2-9) 3.2 (0.5-8.2) 0.741
Location 0.981 0.868
Caput pancreatis 65 (38.2%) 27 (15.9%) 12 (7.1%) 80 (47.1%)
Pancreatic body 9(11.2%) 7 (4.1%) 5(2.9%) 21 (12.4%)
Pancreatic tail 19 (11.2%) 9 (5.3%) 4 (2.4%) 24 (14.1%)
Multi-region 7 (10.0%) 7 (4.1%) 3(1.8%) 21 (12.4%)
Tumour differentiation 1.000 0.176
Well-differentiated 18 (10.6%) 8 (4.7%) 6 (3.5%) 20 (11.8%)
Moderately differentiated 93 (54.7%) 39 (22.9%) 18 (10.6%) 114 (67.1%)
Poorly differentiated 9 (5.3%) 3(1.8%) 0 12 (7.1%)
SUVmean 3.415 (2.61-9.35) 3.43(2.23—-10.64) 0.897 3.465 (2.8—5.54) 3.42 (2.23—-10.64) 0.360
SUVmax 5.68 (2.76—29.44) 5.63 (2.23—26.76) 0.874 5.93 (3.31-14.17) 5.605 (2.23—29.44) 0.347
MTV 14.15 (0.13—152.68) 7.9 (0.08—157.79) 0.065 12.13 (1.49—-48.61) 12.725 (0.08—157.79) 0.971
TLG 48.195 (0.4—688.83)  28.835(0.18—1561.77) 0.108 47.275 (4.17-215.6) 45.04 (0.18—1561.77) 0.858

Preoperative CA19-9

174.95 (<0.6~>1000) 292.35 (10.05~>1000) 0.159

206.55 (<0.6~>1000) 232.25 (<0.6~>1000) 0.746

For categorical variables, the number of samples and their percentages in all samples are provided; for continuous variables, the median and range are given.
MVI, microvascular invasion; PNI, perineural invasion; SUV, standardised uptake value; MTV, metabolic tumour volume; TLG, total lesion glycolysis; CA19-9,

carbohydrate antigen 19-9.
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Figure 1 Overview of the radiomics analysis for MVI and PNI using PET/CT images of PDAC patients.

algorithm was employed named BoostARoota (https://
github.com/chasedehan/BoostARoota) utilising eXtreme
Gradient Boosting (XGBoost)? as the base model to select
the features of PET, CT and clinicopathological parameters
most relevant to MVI and PNI, respectively. BoostARoota has
been adopted successfully as a feature-selection tool for the

task of prediction of heart diseases®’ and sepsis.’! The
illustration and flowchart of BoostARoota are shown in
Electronic Supplementary Material Part Il and Fig. S1.
Before performing feature selection, the problem of data
imbalance was resolved through sampling, and the details
were given in Electronic Supplementary Material Part IV.
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dilated 3 mm
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Figure 2 Schematic diagram of a tumour segmentation and morphological dilation. The black/red, blue, yellow, and green lines represent
original mask delineation, 3 mm dilation, 5 mm dilation, and 10 mm dilation, respectively.

Development of the prediction model

1.32 l.,33

Consistent with the work of Jiang et al.”< and Chen et a
we also employed XGBoost as a classifier to explore the pre-
dictive power of the representative features of PET, CT, clini-
copathological signatures, and their fusion for MVI and PNI.
XGBoost is an implementation of gradient-boosted decision
trees. In the experiment, a stratified fivefold cross-validation
approach was adopted. In each cross-validation fold, the
XGBoost was trained on 80% of samples and tested on an
unseen subset of 20% of samples. The performance of the
predictive models was evaluated by receiver operating char-
acteristic (ROC) curves and area under the curve (AUC). Other
evaluation indicators including accuracy, recall, precision, and
F1 score were also calculated and presented in the results fora
more comprehensive analysis. Details of the TRIPOD criteria
are shown in Electronic Supplementary Material Table S4.

Statistical analysis

All statistical tests were performed using SPSS 25.0
(https://www.ibm.com/products/spss-statistics). The 10
clinicopathological characteristics were assessed to inves-
tigate their association with MVI and PNI separately. For
categorical variables, Pearson’s chi-square test or Fisher’s
exact test was performed where appropriate; for contin-
uous variables, the Mann—Whitney U-test was performed
as the data does not conform to normal distribution. All
tests were two-sided, and p-values of <0.05 with a 95%
confidence interval were considered statistically significant.

RESULTS
Patient characteristics

The clinicopathological characteristics of the patients are
summarised in Table 1. MVI was present in 50 (29.41%) and

PNI was present in 146 (85.88%) of 170 PDAC patients. The
mean age of patients was 61.10 + 8.77 years, ranging from
31 to 83 years. The age is significantly correlated to MVI
status. In the following research, when the feature subset
was filtered by the feature-selection algorithm, age was
excluded. There were no significant differences correlated
with MVI and PNI among all the other evaluated
parameters.

Selected features

The radiomics characteristics from VOI°8nal and
vordilated-i were analysed separately. The prediction results
of AUC showed that features from VOI42©¢d-3 haye stronger
predictive ability (see Fig 3), so the radiomics features
selected were all from vo[dilated-3,

For MVI prediction, four PET, four CT, and two clinico-
pathological features were selected. Among them, the fea-
tures of PET images include two shape features (elongation
and least axis length) and two intensity features (10th
percentile and kurtosis). The features derived from CT im-
ages include two intensity features (10th percentile and
Wavelet-HHL_firstorder_Range) and two texture features
(Log-sigma-3-0-mm-3D_glcm_Imcl and Log-sigma-3-0-
mm-3D_glcm_MaximumProbability). Moreover, clinico-
pathological parameters including preoperative CA19-9 and
MTV were selected. Detailed explanations and classification
statistics of these features are shown in Electronic Supple-
mentary Material Table S2 and Fig 4a, respectively. Feature
importance analysis of selected features (see Fig 5a) showed
that all PET/CT radiomics features and clinicopathological
parameters were significant for MVI prediction. Wave-
let_HHL firstorder_Range was the most important feature
with a value of 0.1684.

For PNI prediction, three PET and five CT features were
selected and there was no contributing clinicopathological
signatures. The PET image features included two shape
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Figure 3 Comparison of ROC and AUC for MVI prediction and PNI prediction. (a) ROC curve of MVI prediction based on original VOI. (b) ROC
curve of MVI prediction based on 3 mm-dilated VOI. (c) ROC curve of PNI prediction based on original VOI. (d) ROC curve of PNI prediction based

on 3 mm-dilated VOI.
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Figure 4 (a) Features of different modalities selected for MVI prediction. (b) Features of different modalities selected for PNI prediction.
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Figure 5 (a) Feature importance of MVI prediction based on 3 mm-dilated VOI. (b) Feature importance of PNI prediction based on 3 mm-dilated

VOL

features (elongation and flatness) and one intensity feature
(mean). The valuable CT image features included two in-
tensity features (10th percentile and Wavelet LLH_
firstorder_RootMeanSquared) and three texture features
(gldm_DependenceVariance, wavelet_ LHH_glcm_Imc1 and
wavelet_LHH_glszm_ZoneVariance). Electronic Supplemen-
tary Material Table S3 and Fig 4b display the explanations and
classification statistics of these features, respectively. Both the
PET features and CT features are helpful for PNI prediction and
wavelet_LHH_glszm_ZoneVariance is the most important
feature with a value of 0.1697 (see Fig 5b).

Prediction results

The XGBoost model was trained on each monomodal
feature subset and their fusion datasets. The complete nu-
merical results were recorded in Tables 2 and 3. For MVI
prediction, the maximum values of AUC derived from the
model established on the dilated VOI of different scales
were arranged in descending order: voIdiated-3: g3 0g8% -

Table 2
The microvascular invasion (MVI) prediction performance of different
feature subsets.

Modality AUC Accuracy Recall Precision F1-score
MVI prediction based on VOI°riginal

PET 75.83% 76.47% 75.17% 72.68% 73.41%
CT 77.10% 77.50% 70.67% 73.08% 71.39%
Clinical 73.30% 73.33% 66.05% 68.37% 66.62%
PET + CT 79.14% 80.50% 70.36% 80.84% 72.29%
PET + CT + clinical 79.81% 76.88% 72.42% 72.30% 72.08%
MVI prediction based on vopdilated-3

PET 70.25% 68.82% 59.25% 61.29% 59.04%
CT 77.42% 79.41% 74.33% 75.73% 74.24%
PET + CT 75.75% 72.35% 68.17% 68.82% 67.50%
PET + CT + clinical 83.08% 78.82% 75.08% 75.50% 74.59%
MVI prediction based on vopdilated-5

PET 68.25% 67.06% 63.25% 62.15% 61.95%
CT 73.08% 71.18% 63.83% 65.97% 64.29%
PET + CT 77.75% 78.24% 72.33% 74.28% 72.81%
PET + CT + clinical 76.25% 75.29% 71.42% 71.25% 70.88%
MVI prediction based on vOpdilated-10

PET 81.50% 77.65% 72.50% 76.03% 72.69%
CT 73.92% 75.29% 70.25% 69.65% 69.55%
PET + CT 77.67% 78.24% 75.83% 74.84% 74.76%
PET + CT + clinical 78.08% 77.65% 73.67% 74.24% 73.02%

yopdilated-10. - g1 59~ vyorerenadl: 7981% > vopdilated-5.
77.75%. For PNI prediction, the order is: yordilated-3. g9
vororiginal: g0 679 > voldilated-5. g5 gy - yQjdilated-10.
85.2%. The model based on vordilated-3 showed better pre-
diction performance than that based on voreriginal | and in
most cases, the dilation of 5/10 mm made the prediction
result worse (excessive volume may induce noise). There-
fore, the ROC curve (see Fig 3) and the box plot of the
comparison results of AUC were drawn based on the strat-
ified fivefold cross-validation (see Electronic Supplemen-
tary Material Fig. S2) using on the VOI°#i" and yojdilated -3,
Moreover, the ability to stratify MVI and PNI of the pre-
dictive models based on VvOI41td-3 \yere illustrated by
representative cases (see Electronic Supplementary Mate-
rial Fig. S3).

For MVI prediction, models based on the feature subset
of only CT images performed better than those based on PET
images or clinicopathological parameters for VOI®'8a! (the
AUCs of CT, PET, clinicopathological were 77.1% versus
75.83% versus 73.3%) and voI4ilatd-3 (the AUCs of CT, PET,
clinicopathological were 77.42% versus 70.25% versus
73.3%). When combined the PET/CT radiomics features with
clinicopathological parameters, the prediction result of AUC
based on VOI912t€d-3 a5 3.27% higher than that based on

Table 3
The perineural invasion (PNI) prediction performance of different feature
subsets.

Modality AUC Accuracy Recall Precision F1-score
PNI prediction based on VOI°Tiginal

PET 79.33% 74.29% 70.22% 73.32% 70.60%
CT 88.89% 87.14% 85.56% 86.49% 85.26%
PET + CT 90.67% 88.57% 88.44% 87.97% 87.76%
PNI prediction based on vopdilated-3

PET 91.60% 88% 89% 86.62% 87.01%
CT 89.60% 88% 88% 87.12% 86.89%
PET + CT 94% 89.33% 90% 87.81% 88.35%
PNI prediction based on vopdilated-5

PET 85.80% 78.67% 79% 76.68% 76.74%
CT 82.20% 73.33% 71% 72.64% 70.31%
PET + CT 84.80% 77.33% 73% 74.85% 73.42%
PNI prediction based on vVOpdilated-10

PET 75.20% 76% 72% 72.15% 71.76%
CT 85.20% 78.67% 78% 78.19% 76.62%
PET + CT 78% 76% 75% 74.76% 73.47%

AUC, area under the curve; VOI, volume of interest; PET, positron-emission
tomography; CT, computed tomography.

AUC, area under the curve; VOI, volume of interest; PET, positron-emission
tomography; CT, computed tomography.
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voI°riginal and reached the optimal performance (see Fig 3a
and b, Electronic Supplementary Material Fig. S2a and
Table 2).

For PNI prediction, the feature subset extracted from the
vordilated-3 hag stronger predictive ability than the feature
subset extracted from the VOI°"8i"! whether it is from PET
(AUCs were 91.6% versus 79.33%), CT (AUCs were 89.6%
versus 88.89%) or multimodal PET/CT (AUCs were 94%
versus 90.67%). Moreover, the model based on the feature
subset of multimodal PET/CT outperformed the others (see
Fig 3c and d, Electronic Supplementary Material Fig. S2b
and Table 3).

Discussion

The present study developed a radiomics predictive
model using PET/CT images and clinicopathological pa-
rameters for preoperative prediction of MVI and PNI status
in PDAC. The present results demonstrated that the radio-
mics predictive model using preoperative ®F-FDG PET and
CT features coupled with clinical factors to identify MVI
status achieved an AUC of 79.81% and 83.08% from the
voreriginal 3pd yordilated-3 respectively. Additionally, PET and
CT radiomics features from VOI412€d-3 3ls50 provided the
best prediction results than the other three strategies for
PNI prediction. The present findings indicate that the
capability of the '®F-FDG PET/CT radiomics model can be
used as a dependable marker to predict the status of MVI
and PNI in patients with PDAC before surgery.

MVI is not uncommon in PDAC as it was identified in 29%
of patients in the present study with higher rates in the
retrospective analysis reported by Yamada et al.,° reflecting
the rapid progress and poorer prognosis of the disease.
Accurate preoperative estimation of MVI status plays a vital
role in guiding perioperative therapeutic decisions for pa-
tients with PDAC.>* Increasingly, studies have focused on
the relationships between radiomics features and MVI sta-
tus,>>>° but the prediction model for MVI in PDAC based on
PET/CT radiomics features had not been well established. In
the present study, one texture feature, one intensity feature,
and MTV were the most important components for pre-
dicting MVI. This finding was partially coincident with the
result of Yang et al.>® suggesting that the texture features
and the discrete degree of grey level in tumours were
important for MVI prediction. Previous studies'’*’ have
shown that shape features, such as tumour capsule or
margin, were significantly related to the diagnosis of MVI
status based on CECT or CEMRI images; however, in the
present study, shape features only accounts for 17.33%
amongst the feature contributions. The reason for this dif-
ference may be that the CT images are unenhanced and the
resolution of PET images is relatively low in PET/CT, which
can only depict limited shape information.

The incidence of PNI has been reported to be extremely
high, with up to 80%—100%.>® Patients with PNI have a higher
recurrence rate and mortality of PDAC after surgery than that
of patients without PNI>**? Therefore, evaluating the PNI
status of PDAC and intervening as early as possible to reduce

the risk of recurrence and metastasis is necessary. The pre-
sent risk model, comprising of three PET features and five CT
features to predict PNI of PDAC, resulted in an AUC of 90.67%
and 94% in the vOI°"iginal apd vordilated-3 group, respectively.
Both PET and CT radiomics predictors have positive impor-
tance to increase the model accuracy. Thus, the combination
of CT and PET of '®F-FDG metabolism can improve the pre-
diction efficiency more than any single modality model,
however, clinicopathological characteristics in the present
study had no contribution to the model. Texture features of
CT and intensity features of PET were the most valuable in-
dicators in the model predictions, indicating that the average
grey-level intensity and the distribution, as well as local
tumour heterogeneity in the image are closely related with
PNL.  Wavelet_LHH_glszm_ZoneVariance and  wave-
let_LHH_glcm_Imc1 were the features selected from the CT
images. These are consistent with the selected features of
SZM GL non-uniformity and CM dissimilarity in the work of
Li et al,*" all of which express the non-uniformity of the
image grey area.

The aggressive behaviours of the target tumour cannot
be observed directly from both intra-tumoural and peri-
tumoural regions. In addition, the main challenge of the
current imaging methods or radiomics analysis to predict
NVI is the precise determination of the tumour boundary.
The voOI14i2ted-3 radiomics predictors achieved the highest
value of the AUC both for MVI and PNI prediction and was
superior to features derived from voI°riginal yopdilated_5
vordilaed-10 gimilarly, Xu et al.'’ reported that MVI-related
radiomics scores at the VOIPE"U™bra (yO[ at 5 mm distance
from the tumour surface) were different from scores at the
VoI (same as our VOI°8M) but were not superior.
This is not consistent with the present research, finding that
3 mm dilation was the most appropriate boundary poten-
tially associated to tumour MVI and PNI information in
PDAC. The reason may be that the research of Xu et al
focused on predicting the MVI status of HCC based on CECT
and there are differences between the tumour-related
feature information extracted from the CECT images and
the PET/CT images. The present approach provides new
insights into the contribution of ®F-FDG PET/CT radiomics
to overcome the negative affect on the prediction caused by
single VOI features and subjective visual assessment.

The present study has some limitations. First, the study
was a single-centred, retrospective study with limited
samples. Second, only patients who underwent surgery
and had histopathologically confirmed PDAC were
included. There is a selection bias against those patients
with high-risk features that would not undergo surgery,
such as the patients who underwent neoadjuvant treat-
ment. There is certainly room to improve the study of
preoperative invasion prediction based on multiscale
dilation tumours derived from PET/CT imaging. In future
studies, multicentre data will be obtained, and radiomics
will be combined with deep learning to realise fully
automated analysis of the entire process from tumour
segmentation to invasion prediction and obtain stronger
evidence of the significance of '®F-FDG PET/CT radiomics in
patients with PDAC.
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In conclusion, the BF-FDG PET/CT-derived radiomics
features combined with clinicopathological indicators could
be used as a non-invasive biomarker and exhibited
instructive value for preoperative prediction of MVI and PNI
status in patients with PDAC. The present approach using
peritumoural radiomics features from the 3 mm dilation of
VOI in the 'F-FDG PET/CT images achieved the highest
performance in the prediction of MVI and PNI preopera-
tively. This prediction model can inspire more research
related to NVI prediction for the treatment of PDAC patients.
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