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Introduction: Necrotizing Enterocolitis (NEC) is a serious intestinal disease that affects premature 

neonates, causing high mortality, despite the technological development in neonatal intensive care, with 

antibiotics, parenteral nutrition, surgery, and advanced life support. The correction of dysbiosis with fecal 

microbiome transplantation (FMT) has shown beneficial effects in experimental models of the disease. 

The different forms of administration and conservation of FMT and mixed results depending on several 

factors lead to questions about the mechanism of action of FMT. This study aimed to compare the effec- 

tiveness of fresh, sterile FMT and probiotic treatment under parameters of inflammation, oxidative stress, 

and tissue damage in a neonatal model of NEC. 

Methods: One-day-old Wistar rats were used to induce NEC model. Animals were divided in five groups: 

Control + saline; NEC + saline; NEC + fresh FMT; NEC + sterile FMT and NEC + probiotics. Parameters 

of inflammatory response and oxidative damage were measured in the gut, brain, and serum. It was also 

determined gut histopathological alterations. 

Results: Proinflammatory cytokines were increased in the NEC group, and IL-10 levels decreased in the 

gut, brain, and serum. Fresh and sterile FMT decreased inflammation when compared to the use of pro- 

biotics. Oxidative and histological damage to the intestine was apparent in the NEC group, and both FMT 

treatments had a protective effect. 

Conclusion: Fresh and sterile FMT effectively reduced the inflammatory response, oxidative damage, and 

histological alterations in the gut and brain compared to an experimental NEC model. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Necrotizing Enterocolitis (NEC) is a multifactorial disease that

affects the gastrointestinal tract of newborns, causing partial or

complete necrosis [ 1 , 2 ]. It is a pathology mainly of the premature,

reaching 10% of newborns weighing less than 1500 gs, from which

20 to 30% do not survive [3–6] . The overall incidence of NEC is

approximately 1 in 10 0 0 live births, and its incidence is inversely

related to birth weight and gestational age. It affects up to 10% of

infants weighing less than 1500 g [7] . Additionally, at school age,

the motor functions and intelligence of many children with NEC

were borderline or abnormal. Specifically, attention and visual per-

ception were impaired, suggesting that the gut and the brain could

be indirectly affected [8] . 
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Dysbiosis is related to NEC development [9–12] . Other fac-

tors can contribute to it: episodes of ischemia-reperfusion due to

hemodynamic instability of the newborn, bacterial colonization,

and exposure to artificial formulas [1] . Inflammatory mediators

play a critical role in the development of NEC, increasing the per-

meability of the intestinal membrane, allowing the translocation of

bacteria and toxins, leading to the collapse of the integrity of the

intestinal mucosa [13] . The rupture of the epithelial barrier results

in apoptosis, increased production of cytokines, toxins, and bacte-

rial products [4] . 

The microbiota has the function of producing metabolites that

positively affect the host, including anti-inflammatory and antiox-

idant activity, regulation of intestinal barrier function, and partici-

pating in the development and maintenance of the gut’s immune,

sensory, and motor functions [14] . The normal microbiota confers

health benefits, and a disruption of this balance (unbalanced diet,

infection, illness, and use of antibiotics) can cause dysbiosis that

confers susceptibility to diseases [15] . 
lth and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
ción. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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Fecal microbiota transplantation (FMT), a strategy in which fe-

ces are transferred from healthy patients to patients with dysbio-

sis to balance the intestinal flora, has been used to treat recurrent

pseudomembranous colitis [9] . Furthermore, FMT has been stud-

ied in multiple diseases, from inflammatory diseases or intestinal

motility [16] , obesity [17] , non-alcoholic liver steatosis [18] , type

2 diabetes [19] , and NEC [ 20 , 21 ]. The changes in the microbiome

proposed by the transplant are not permanent if no interactions

with the host perpetuate them. In this context, the FMT may have

an adjuvant role in the therapeutic proposals understudy for these

pathologies [22] . 

Although already recognized as the second line of treatment

for pseudomembranous colitis, FMT still lacks standardization in

performing the technique [ 9 , 23 ]. Some studies show that FMT has

more beneficial effects than probiotics already used in the clinic.

They decrease the inflammatory response in necrotizing enterocol-

itis, both locally and at the systemic level [ 18 , 22 ]. Data in the lit-

erature suggest that the transplantation mechanism is related to

other products of bacterial metabolism and substances present in

feces, such as short-chain fatty acids, and not exclusively by the

microbiome’s interaction with the intestinal mucosa [24] . 

Therefore, based on the importance of this therapeutic strategy,

a simple methodology for FMT sterilization by ultraviolet radia-

tion was proposed to ensure safer administration but preserving

its protective effects in an experimental model of NEC. We hypoth-

esized that FMT sterilization was not inferior to fresh FMT protect-

ing different aspects of NEC pathology in an animal model. 

2. Methods 

The experimental procedures involving animals were performed

following the National Institutes of Health (Bethesda, MD, USA)

Guide for Care and Use of Laboratory Animals and with the

approval of our institutional ethics committee (protocol num-

ber:68/2020). 

2.1. FMT sterilization method standard 

Feces from five healthy 2-month-old male rats were removed

from the cecum and used for FMT standardization. Using adult fe-

ces aims to provide a mature microbiota, differently from the ob-

tained from newborn animals. For standardization, 1 g of fecal ma-

terial was homogenized in 10 ml of sterile PBS, filtered, and cen-

trifuged for 30 s at 30 0 0 r.p.m. An equivalent of 3 × 10 8 cells (Op-

tical density of 0,5) in 100 μL solution was used for the procedure

described previously [24] . 

2.1.1. Standardization of the sterilization process 

Feces homogenized in sterile PBS (1 g/10 ml) were placed in

different Petri dishes and subjected to varying times of ultravio-

let light (U.V.) 245 nm - 280 nm: 30 min, 1, 1.5, 2, 3, and 4 h.

At the end of the U.V. exposition, fecal content was seeded in

Mueller Hinton (aerobic) (KASVI - Brazil) or Macconkey (anaero-

bic) medium, and bacterial growth was evaluated for up to 48 h

under these conditions. Samples were incubated in duplicate with

n = 5. 

Bacterial multiplication reaches its peak of proliferation in 48 h,

and the accumulation of bacteria in a single locus of the plaque

makes the colony visible. Colony counting was performed, and re-

sults were expressed in colony-forming units (CFU)/plate. After a

calculation was based on the formula below and the result was

expressed in CFU/ml. 

Mean ( duplicate ) x 
1 × 1 
dil ution l e v el v ol ume al iquot  

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of 
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2.2. Animal model 

Ninety newborns (one-day-old) Wistar rats from our breeding

colony were used. Of the 90 newborn Wistar rats, 80 were sepa-

rated from their progenitors on the first day of life and submitted

to NEC (see below). Another ten animals were breastfed naturally

and were used as a control group. 

2.3. NEC induction 

NEC induction was described by Barlow et al. [25] and Besner

et al. [2] and included different stimuli (f eeding with artificial hy-

perosmolar formula, hypoxia, hypothermia, and endotoxin exposi-

tion). First, LPS was administered (a single 2 mg/kg dose by gav-

age) 24 h after birth. The animals were then submitted twice a day

to hypoxia and hypothermia. Briefly, animals were exposed to hy-

poxia in a plexiglass chamber infused with 100% nitrogen for 60 s,

followed immediately to the exposition to 4 °C for 10 min. During

the protocol, animals were fed exclusively with artificial formula

(Similac 15 g diluted in 75 ml of Max Milk from Total Food), with

200 Kcal/kg/day divided into six doses/day. The rats were fed with

0.4 ml of the formula every 4 h until the third day of life. After

NEC induction, animals were killed and organs isolated for subse-

quent analyses. 

2.4. Fecal microbiota transplant (FMT) 

For the FMT, 1 g of fecal material from the cecum of a healthy

adult rat was homogenized in 10 ml of sterile PBS, filtered, and

centrifuged for 30 s at 30 0 0 r.p.m. An equivalent of 3 × 10 8 cells

(Optical density of 0.5) in a 100 μL solution was given to each

neonatal as a single dose by gavage on the first day. Li et al. and

Seekatz et al. [ 23 , 26 ] developed this method adapted to be used

in the NEC model in our laboratory [24] . Sterile FMT used feces

exposed to UV for 4 h. 

2.5. Experimental procedure 

Neonates were grouped as follows: 

1) Control group (breastfed and maintained with progenitor); 

2) NEC + saline; 

3) NEC + fresh FMT 

4) NEC + sterile FMT 

5) NEC + probiotics Lactobacillus acidophilus (THT SA- Bel-

gium) + Bifidobacterium bifidum (THT SA - Belgium) 10 9 UFC

each [30] . 

All animals received their respective treatments on the first day

of life and were fed every 4 h with the formula previously de-

scribed. On day 2, NEC was induced. Seventy-two hours after it

was collected serum, brain, and terminal ileum for analysis of local

and peripheral inflammation, in addition to oxidative, nitrosative

damage, and tissue damage. It was used n = 5 for each of the

above-described analyses and was all performed in duplicate. 

2.6. Analyses 

2.6.1. Survival rate 

Animals were followed for up to three days to determine mor-

tality after NEC induction 

2.6.2. Histology 

Samples of the gut were washed with saline solution and

immediately immersed in 4% paraformaldehyde, where they re-

mained for 48 h. After that period, the tissues were removed,

placed in 70% ethanol, and stored for further histological analysis.
Health and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
rización. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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Table 1 

Colony forming unit counting. 

Aerobic conditions Anaerobic conditions 

U.V Exposure time Number CFU/ml Number CFU/ml 

30 min > 200 2 × 10 6 > 200 2 × 10 6 

1 h > 200 2 × 10 6 > 200 2 × 10 6 

1.5 h > 200 2 × 10 6 > 200 2 × 10 6 

2 h 12 ± 2 1.2 × 10 7 > 200 2 × 10 6 

3 h 5 ± 1 0.5 × 10 7 4 ± 1 0.4 × 10 7 

4 h 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tissues were stained with hematoxylin-eosin for subsequent eval-

uation of tissue damage. The lesion was graded by a score devel-

oped by Caplan et al. [27] . In this system, Grade 0 is considered

normal, without injury; Grade 1 when there is separation or ele-

vation of the mucosa; Grade 2 when there is edema and lesion of

the mucosa up to the level of half of the intestinal villus; Grade

3 when there is necrosis of all intestinal villi and Grade 4 when

there is transmural necrosis. All analyses were performed by one

of the authors (C.P.) blinded to the group. 

2.6.3. Oxidative damage 

The formation of thiobarbituric acid reactive substances (TBARS)

during an acid-heating reaction was measured in the brain and gut

as an oxidative stress index as described previously [28] . The sam-

ples were mixed with 1 ml of trichloroacetic acid 10% and 1 ml

of thiobarbituric acid 0.67% (Sigma-Aldrich) and then heated in

a boiling water bath for 15 min. Malondialdehyde (MDA) equiva-

lents were determined by measuring the absorbance at 535 nm in

SpectraMax Molecular Devices M2 (San José, Califórnia, EUA) using

1,1,3,3- tetramethoxypropane (Sigma-Aldrich) as an external stan-

dard. Results were expressed as MDA equivalents per mg of protein

[28] . 

2.6.4. Myeloperoxidase activity 

The tissue was homogenized (50 mg/ml) in 0.5% of hexade-

cyltrimethylammonium bromide (Sigma-Aldrich) and centrifuged

(8765 x g) for 10 min. The suspension was sonicated, and

an aliquot of the supernatant was mixed with a solution of

1.6 mmol/L 3,3 ′ ,5,5 ′ -tetramethylbenzidine (TMB) and one mmol/L

H2O2. The MPO activity was measured spectrophotometrically at

650 nm at 37 °C. The results were expressed as mU/mg protein

[29] . 

2.6.5. Levels of cytokines 

Concentrations of IL-1 β , IL-10, and IL-6 were determined in

serum, brain, and gut by enzyme-linked immunosorbent assay

(ELISA) on a microplate reader (Molecular Devices SpectraMAX M2,

San José, Califórnia, EUA) using commercial kits (R & D System,

Mineápolis, Minnesota, EUA). Briefly, 96-well plates were sensi-

tized with a specific monoclonal antibody incubated overnight. The

plates were blocked with 1% albumin, and samples were added

to the plate. Specific detection antibodies were added and incu-

bated for two hours. Then, streptavidin peroxidase was added to

the plate, and tetramethylbenzidine (TMB) substrate solution was

added. The reaction was stopped with the addition of 2 N hy-

drochloric acid solution (stop solution). At each stage, the plates

were washed with a wash buffer. Average detection (pg/ml): IL-1

(0.62 - 4.0 0 0); IL-10 (0.62 - 4.0 0 0), and IL-6 (1,25–14.0 0 0). 

2.7. Statistical analysis 

The Shapiro Wilk test evaluated the normality of data. Kaplan

Meier curve was constructed, and a log-rank test was performed

for survival analysis. Data collected were analyzed using one-way

analysis of variance (ANOVA), followed by the Tukey post-hoc

method and expressed as mean ± standard deviation in Statisti-

cal Package for the Social Sciences (SPSS Inc., Chicago, IL, USA) ver-

sion 21. Graphs were obtained using GraphPad Prism (San Diego,

California, USA) version 7. For all comparisons, p < 0.05 indicates

statistical significance. 

3. Results 

3.1. Stool sterilization protocol 

Fig. 1 shows representative images of stool sterilization in U.V.

light for 30 min (A); 1 h (B); 1,5 h (C); 2 h (D); 3 h (E) and 4 h (F).
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Hea
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Bacterial growth in aerobic conditions remained observable until

1.5 h of exposure to U.V ( Table 1 ). From two to three hours, there

was a major decrease in CFU counting, but only after four hours

there was no more CFU in growth plates ( Table 1 ) 

Fig. 2 shows representative images of FMT after U.V. radiation

cultivated in anaerobic conditions. Bacterial growth remained ob-

servable until two hours of exposure to U.V ( Table 1 ). After three

hours, there was a decrease, but only after four hours, there was

no more colony growth ( Table 1 ). 

3.2. NEC doesn’t change the survival rate of animals 

The survival rate was 60% in the NEC group, which was lower

when compared to the control group ( p = 0.014). There is no dif-

ference between the other groups that received the treatments

( Fig. 3 ). 

3.3. Inflammatory response in serum and tissue from animals 

submitted to NEC 

Systemic inflammation was measured in the serum of neonates

submitted to NEC and treated with fresh or sterile FMT or pro-

biotics ( Fig. 4 ). Pro-inflammatory cytokines are increased in the

NEC + saline group (IL1:2.17 ±0.72 pg/ml; IL6:13.4 ± 3.28 pg/ml)

and in the group treated with fresh FMT ( Fig. 4 A and 4 B) (IL1:

2.16 ±0.69 pg/ml [ p = 0.006]; IL6:10.5 ± 2.66 pg/ml [ p < 0.0 0 01]).

In the sterile ECN + FMT group, the increase in IL-6 was also

significant (9.01 ±1.43 pg/ml). There was a decrease in IL-10 lev-

els in the NEC group (0.51 ±0.16 pg/ml). On the other hand, there

is a considerable increase in all treated groups ( Fig. 3 C) (fresh

FMT:1.9 ± 0.86 pg/ml; sterile FMT: 0.99 ±0.52 pg/ml; and probi-

otic: 1.16 ±0.41 pg/ml [ p = 0.0013]). 

MPO activity was measured in the brain of neonates submit-

ted to NEC and treated with fresh or sterile FMT or probiotics. NEC

induction increased MPO activity in the brain tissue (0.0 09 ±0.0 04

mU/mg protein) and all treatments reduced it ( Fig. 5 A) (fresh FMT

0.0 03 ±0,0 02 mU/mg protein; sterile FMT 0.0 04 ±0.0 01 mU/mg

protein; and probiotic 0.0 03 ±0.0 01 mU/mg protein [ p < 0.0 0 01]).

Furthermore, pro (IL-1 and IL-6) and anti-inflammatory (IL-10) cy-

tokines were measured. Fig. 5 B and 45C demonstrated a significant

increase in IL-1 (3.84 ±1.2 pg/ml) and IL-6 (13.25 ± 2.29 pg/ml)

in neonates submitted to NEC. IL-1 levels were decreased by

both fresh FMT (2.47 ±1.19 pg/ml) and probiotics (2.55 ±0.71 pg/ml

[ p = 0.0 0 01]). Furthermore, IL-6 levels decreased after both fresh

(7.05 ±2.5 pg/ml) and sterile FMT (8.38 ±2.54 pg/ml [ p < 0.0 0 01]).

IL-10 was decreased in NEC group (1.00 ±0.41), and an increase

was observed only in NEC + sterile FMT group (2.26 ±0.49 pg/ml

[ p = 0.0013]). 

In the gut, MPO activity was increased in NEC group

(0.0 09 ±0.0 03 mU/mg protein), and this was only reversed by

fresh FMT ( Fig. 6 A) (0.0 05 ±0.0 02 mU/mg protein [ p = 0.004]). IL1

(7.74 ±1.47 pg/ml) and IL6 (32.69 ±4.23 pg/ml) increased in NEC

group. However, both fresh and sterile FMT were able to decrease

IL-1 (fresh FMT: 4.68 ±1.05 pg/ml; sterile FMT:5.46 ±0.72 pg/ml
lth and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
ción. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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Fig. 1. Representative images of FMT in aerobic conditions. Fecal contents of the gut were removed from a healthy adult rat, the feces were homogenized in sterile PBS. One 

ml of supernatant was placed in petri dishes and subjected to different times under U.V. At the end of the incubation each sample was plated in Mueller Hinton medium 

and bacterial growth was evaluated up to 48 h after. 30 min (A); 1 hour (B); 1: 30 min (C); 2 h (D), 3 h (E) and 4 h (F). Samples were incubated in duplicate with n = 5. 

Fig. 2. Representative images of FMT in anaerobiosis conditions. Fecal contents of the gut were removed from a healthy adult rat, the feces were homogenized in sterile 

PBS. One ml of supernatant was placed in petri dishes and subjected to different times under U.V. At the end of the incubation each sample was plated in Mueller Hinton 

medium and bacterial growth was evaluated up to 48 h after. 30 min (A); 1 hour (B); 1: 30 min (C); 2 h (D), 3 h (E) and 4 h (F). Samples were incubated in duplicate with 

n = 5. 

 

 

 

 

 

 

 

 

 

[ p < 0.0 0 01]) and IL-6 (fresh FMT: 18 ±2.27 pg/ml; sterile FMT:

24.17 ±3.98 pg/ml [ p < 0.0 0 01] ±) gut levels ( Fig. 6 B and 6 C). IL-10

levels didn’t change in any group in the gut ( Fig. 6 D) ( p = 0.064). 

3.4. Oxidative stress in tissue from animals submitted to NEC 

Oxidative damage and inflammation are simultaneous events,

so brain and gut levels of TBARS were measured. There was no
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of 
2022. Para uso personal exclusivamente. No se permiten otros usos sin auto
change in TBARS levels in the brain after NEC induction of FMT

( Fig. 7 A) ( p = 0.67). However, in the gut ( Fig. 7 B), there was an

increase in TBARS levels in NEC group (0.071 ±0.017 nmol/mg pro-

tein), and only in NEC + fresh FMT group (0.034 ±0.008 nmol/mg

protein [ p < 0.0 0 01]) was observed protection against oxidative

damage. 
Health and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
rización. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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Fig. 3. Interleukin levels IL-1 (A); IL-6 (B) and IL-10 (C) in serum of neonates submitted to NEC and treated with fresh or sterile FMT or probiotics. Samples were analyzed 

by ELISA and quantified as pg/ml. Data are presented as mean ± SD. n = 12 per group. ∗ different from control; # different from NEC. p-value < 0.05. 

Table 2 

Score developed by Caplan et al. (1994). 

Lesion Grade 

Control NEC NEC + fresh FMT NEC + sterile FMT NEC + probiotic 

0 3 2 0 2 

0 2 1 1 2 

0 3 0 0 2 

0 3 0 0 1 

0 3 0 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Histological analysis in tissue from animals submitted to NEC 

Fig. 8 A exhibits representative histological images of the gut

from the animals. In the control group, immature and preserved

villi were noted, while the villi were shortened and damaged after

NEC. Fig. 8 B and Table 2 show that the grade of the gut lesion and

fresh FMT and sterile FMT effectively reduced histological damage.

4. Discussion 

NEC is an inflammatory disease of the gastrointestinal tract

characterized by ischemic necrosis of the intestinal mucosa, pri-

marily affecting premature neonates. It is the most common life-

threatening emergency involving the gastrointestinal tract of in-

fants in the neonatal intensive care unit. Microbiota transplant is

becoming a popular process to restore “healthy” gut microbiota,

but its safety and efficacy are not well known in this context. In
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Hea
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a recent review, Liu et al., (2020)[30] suggest that the current ap-

proaches of microbiota transplant can introduce significant health

risk factors to the recipients, and the newborns are especially sus-

ceptible. Thus, we demonstrate that sterile FMT was as effective as

fresh FMT in an animal model of NEC. 

Ultraviolet radiation is a physical process that can be used for

the sterilization of different materials. Ultraviolet radiation treat-

ment has a long and efficient history in microbiological control

[31] . If used with sufficient intensity and exposure time, ultra-

violet irradiation has a microbiocidal effect, finding diverse ap-

plications such as air sterilization, equipment surfaces, packaging,

and materials. U.V. decontamination exploits different wavelength

bands where UVC (200–280 nm) is superior to UVB (280–300 nm)

and UVA (320–400 nm). Optimum irreversible molecular dam-

age occurs around the 260 nm wavelength. Wavelengths less than

200 nm are inefficient for sterilization, as the waves are rapidly

absorbed by oxygen and water. Ultraviolet irradiations in the 240

to 330 nm range are more efficient as germicide because they are

absorbed by proteins and nucleic acids, causing chromosome dis-

ruption, genetic mutations, enzyme inactivation, and, consequently,

cell death [32] . Theoretically, if sterile FMT did not lose effective-

ness, it could be safer for a more widespread clinical application. 

FMT is a current therapy that has shown promising results.

Studies with FMT are mainly focused on specific gastrointestinal

diseases. Few studies have been published on the effect of FMT on

NEC, most are still experimental, and recently our group demon-

strated the impact of fresh FMT on gut inflammation and oxida-

tive stress [24] . Thus, we tried to determine if these protective ef-
lth and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
ción. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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Fig. 4. MPO activity (A) and interleukin levels IL-1 (B); IL-6 (C) and IL-10 (D) in brain of newborns submitted to NEC and tretated with fresh or sterile FMT or probiotics. 

Samples were analyzed by ELISA and quantified as pg/ml. Data are presented as mean ± SD. n = 12 per group. ∗ different from control; # different from NEC. p-value < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fects were not lost if feces were sterilized by U. V. light. The re-

sults presented here suggest that both fresh and sterile FMT have

similar protective effects in an animal model of NEC. Inflammation

and oxidative stress were measured in the serum, gut, and brain to

evaluate the impact of FMT on the gut-brain axis. It is known that

pathological alteration of the intestinal microbiota and impaired

function of the intestinal barrier, which occurs in NEC, can influ-

ence immunity and initiate an inflammatory response and, there-

fore, reflect on the health and behavior of the host [33] . Both treat-

ments decreased gut and brain inflammatory response and were

superior to probiotics, a different approach to modulate microbiota

[34] . These results open the perspective to further explore FMT

on the treatment or prevention of NEC and other diseases of the

neonatal period (for example, neonatal sepsis) and serve as a basis

to the proposal of clinical studies in the field. 

NEC directly impacts the gut structure, and this is consistent

with our results. Histological lesions were detected in the small

intestine of neonates with NEC. Although we have not reported

here, the number and diversity of the microbiota are also al-

tered in NEC [20] , which can trigger a severe inflammatory con-

dition. It has been described those changes in microbiota colo-

nization have a strong relationship with inflammatory bowel [35] .

Studies have also shown that the proinflammatory response in

the intestinal mucosa is associated with the production of oxida-

tive stress, followed by mucosal permeability and, consequently,

bacterial translocation [ 36 , 37 ]. An inflammatory condition gener-

ates free radicals since inflammatory cells produce nitric oxide

(NO) and hypochlorous acid (HOCL) that can interact and form

the hydroxyl radical (OH). Free radicals produced in the tissue

generate lipoperoxidation, the formation of aldehydes, and other
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highly cytotoxic products, which induces an increase in the per-

meability of cell membrane, leading to tissue damage in the gut

and brain. In addition to lipid peroxidation, free radicals can ox-

idize amino acids, resulting in the formation of oxidized thiol

groups, among other changes that alter the function and stan-

dard structure of the protein [38] . According to the results, the

levels of proinflammatory cytokines are elevated in the context

of NEC, suggesting that dysbiosis alter inflammatory response in

neonates. 

At the phylum level, changes in the microbiota in neonates with

NEC are characterized by decreased Firmicutes and Bacteroidetes

and increased Proteobacteria , and at the gender level by decreased

Lactobacillus and Bifidobacterium and increased Gammaproteobacte-

ria [ 39 , 40 ]. Correcting intestinal dysbiosis can be a strategy to con-

tribute to the recovery of intestinal damage in NEC. The proposed

methods of using the FMT promote the restoration of the intestinal

microbiota and microbial diversity [18] . Although probiotics of Lac-

tobacillus strains protect from infection by preventing colonization

and virulence of pathogens [35] , the non-consistent role was ob-

served for common probiotic species of Lactobacillus and Bifidobac-

terium in NEC [37] . In our results, probiotics had a protective effect

on some of the inflammatory parameters measured but had no im-

pact on gut histopathology. However, FMT (fresh and sterile) was

generally more protective, at least in the evaluated parameters. Li

et al. [20] showed that the levels of Lactobacillus and Bifidobac-

terium decreased significantly in mice submitted to the NEC exper-

imental model and only recovered after treatment with FMT. This

can be justified because this group of probiotic bacteria is sensitive

to environmental changes in the inflammatory phase, but it recov-

ers after FMT administration. In addition, it has been reported that
Health and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
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Fig. 5. MPO activity (A) and interleukin levels IL-1 (B); IL-6 (C) and IL-10 (D) in gut of newborns submitted to NEC and tretated with fresh or sterile FMT or probiotics. 

Samples were analyzed by ELISA and quantified as pg/ml. Data are presented as mean ± SD. n = 12 per group. ∗ different from control; # different from NEC. p-value < 0.05. 

Fig. 6. Oxidative damage to lipids in brain (A) and gut (B) of newborns submitted to NEC and treated with fresh or sterile FMT or probiotics. Samples were analyzed by 

ELISA and quantified as pg/ml. Data are presented as mean ± SD. n = 12 per group. ∗ different from control; # different from NEC. p-value < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the level of E. coli increases after NEC but decreases significantly

after treatment with FMT [23] . In addition, FMT has been shown

to suppress intestinal apoptosis and bacterial translocation across

the intestinal barrier [ 20 , 40 ]. Recently Liu et al. [40] demonstrated

that treatment with FMT significantly decreases mRNA expression

of IL-6 and TNF-cytokines. In contrast, claudin-7 expression is in-

creased, indicating that FMT can alleviate the severity of NEC by

reducing intestinal inflammation and improving the function of the

intestinal barrier [40] . 
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Another objective was to evaluate the effect of FMT on brain

dysfunction. First, it could have a brain-gut-microbiota axis that

plays an essential role in homeostasis and, consequently, in health

and disease [ 41 , 42 ]. Second, brain damage could occur during NEC

development, which would impact the long-term performance of

survivors [8] . Recently, it was demonstrated that cognitive impair-

ments caused by NEC are secondary to activation of Toll-like re-

ceptors on brain microglia [43] . This study shows the beneficial ef-

fects of fresh and sterile FMT on brain inflammation, which opens
lth and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
ción. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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Fig. 7. Representative images of gut of neonates submitted to NEC and treated with fresh or sterile FMT or probiotics. Magnitude of 40x show submucosa, lumen and gut 

villi. Control group (A); NEC (B); NEC + fresh FMT (C); NEC + sterile FMT (D); NEC + probiotic (E). 

Fig. 8. Histological analysis of tissues from animals submitted to NEC. Representative histological images of the animals’ intestine at 40x magnitude. Control group (A); NEC 

(B); NEC + fresh FMT (C); NEC + sterile FMT (D); NEC + probiotic (E). 

 

 

 

 

 

 

 

 

 

 

the perspective to study FMT both to decrease mortality and mor-

bidity associated with NEC. 

Finally, it is worth mentioning that FMT is under investigation

by the FDA ( United States Food and Drug Administration ) due to

the complexity of the procedure and the insecurity it causes to

the patient. However, safety and tolerance of FMT have been re-
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ported in adults and children [ 44 , 45 ], including in a recent ran-

domized clinical trial [46] . The regulation remains controversial,

but two studies showed that patients reported being willing to re-

ceive FMT if it was a medical indication [ 47 , 48 ]. Thus, sterilization

of the FMT can be an exciting strategy to approach the patient who
Health and Social Security de ClinicalKey.es por Elsevier en septiembre 15, 
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needs use, bringing safety and maintaining the effectiveness of the

treatment. 

Some limitations should be taken into account when interpret-

ing our results. First, from a mechanistic point of view, it would be

essential to determine the impact of FMT on NEC microbiome (for

example, using 16 s rRNA sequencing) or measure some metabo-

lites (such as butyric acid) trying to understand better the effects

of fresh and sterile FMT on NEC. This should be addressed in fur-

ther studies. Second, our experimental design allowed us to sug-

gest the use of FMT as a prophylactic measure, and further studies

should be performed treating animals with FMT after NEC induc-

tion. 
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