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intrinsic subtypes, and histologic variants. To verify these effects in vivo, a patient-
derived cell xenograft model for urothelial carcinoma (UC) was used. Well-tolerated
doses of clofarabine induced complete remission in all treated animals (n = 12) suffering
from both early- and late-stage disease. We further took advantage of another patient-
derived cell xenograft model originating from the rare disease entity sarcomatoid carci-
noma (SaC). Similarly to UC xenograft mice, clofarabine induced subcomplete to com-
plete tumour remissions in all treated animals (n = 8).

Conclusions: The potent effects of clofarabine in vitro and in vivo suggest that our find-
ings may be of high clinical relevance. Clinical trials are needed to assess the value of clo-
farabine in improving BC patient care.

Patient summary: We used commercially available cell lines for the identification of
novel drugs for the treatment of bladder cancer. We confirmed the effects of one of these
drugs, clofarabine, in patient-derived cell lines and two different mouse models, thereby
demonstrating a potential clinical relevance of this substance in bladder cancer

treatment.

© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Bladder cancer (BC) is the tenth most common cancer
worldwide, with an estimated 549.000 new cases and
200.000 deaths annually [1]. BC has profound personal
and socioeconomic impact, representing one of the most
expensive malignancies per person [2]. There is a high,
unmet need for effective treatments that reduce the risk
of disease recurrence/progression/mortality, while main-
taining or even improving Health-Related Quality of Life
(HRQoL). Enriched understanding of the molecular under-
pinning of BC holds the promise of unravelling novel effec-
tive therapeutic strategies. For example, recent studies
showed that BC can be classified into various intrinsic sub-
types with variable sensitivities to currently available ther-
apies [3]. These discoveries also revealed the heterogeneous
and complex nature of BC, leading to frequent and early
resistances and high rates of treatment failure [4].

In this study, we aimed to establish a system for the
identification of novel and repurposed substances for the
treatment of various subtypes of BC. To this end, we
selected a panel of commercially available cell lines (n =
23), representing a wide spectrum of BC, on which we per-
formed a high-throughput drug screen, leading to the iden-
tification of >470 substances with cytotoxic/cytostatic
effects. We then selected the purine analogue clofarabine
to be studied in more depth, as it exhibited inhibitory
effects on cell lines of all intrinsic subtypes and due to its
clinical availability as an orphan drug for childhood acute
lymphoblastic leukaemia. Moreover, clofarabine belongs,
like many other identified active substances, to the class
of antimetabolites and was originally developed for haema-
tologic cancers. Beyond that, it was previously shown that
the drug is efficiently taken up by bladder tissue [5].

We confirmed concentration-dependent effects of clo-
farabine in both commercially available cell lines and
patient-derived cultures (PDCs). Furthermore, we observed
that it caused massive tumour shrinkage/complete remis-
sion in mouse xenograft models generated by implantation
of PDCs representing the urothelial and sarcomatoid carci-
noma variants. These findings validate our approach and

implicate a potential clinical value to repurpose this antil-
eukaemic drug for BC treatment.

2. Materials and methods

Commercially available cell lines either were bought at ATCC (Manassas,
VA, USA) or DMSZ (Braunschweig, Germany), or were a kind gift from the
Shariat Laboratory at the Cornell Medical School (New York, NY, USA).
These cell lines were authenticated (Supplementary Table 1). Patient-
derived cell lines were established from specimens obtained by surgical
interventions performed at the Vienna General Hospital as described
previously [6]. The epithelial origin of PDCs was verified by immunos-
taining (Supplementary Fig. 1). Expression profiles of commercially
available cell lines were established by RNA sequencing (RNA-seq) per-
formed on an Illumina HiSeq2000 sequencer (Illumina, San Diego, CA,
USA). Mutations in protein-coding genes were identified by RNA-seq
as described previously [7], and verified by Sanger sequencing. For the
drug screen, the sensitivity of BC cell lines (n = 23) to 1707 substances
included in six different drug libraries was tested. Cell viability was mea-
sured after 72 h; positive hits were defined as compounds giving >50%
inhibition. To determine half-maximal inhibitory clofarabine concentra-
tions (ICso), cell lines were treated with increasing concentrations (1
nM-10 uM) and cell viability was measured after 48 h. Urothelial carci-
noma (UC) and sarcomatoid carcinoma (SaC) xenograft models were
established by subcutaneous injection of the PDCs VUC38 or VUC48 in
the right flank of 8-12-wk-old male CB17/SCID mice. Clofarabine (50
mg/kg) was administered by oral gavage once daily for 5-10 d.

For a more detailed description of material and methods, see the
Supplementary material.

3. Results
3.1. Subtype classification of commercially available BC cell
lines

Thirty-two commercially available BC cell lines derived
from patients with non-muscle-invasive (NMIBC) or
muscle-invasive (MIBC) bladder cancer of various stages
were used for the study. These cell lines included well-
characterised (eg, 5637 and ]82) and less well-
characterised (eg, 97-1 and 94-10) BC models (Table 1)
[8-11].
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Table 1 - Origins of commercially available BC cell lines included in the study

Cell line  Origin Stage Grade Sex Cell line  Origin Stage Grade Sex
5637 UCc[8] NR G2 [9,10] M [9,10] JMSU1 UC [8,9] pT4 [9] G3 (9] M [9]
253] UC[89] pT4[8-10] G4 [8-10] F[10]/M [9] JON UC[810] NR NR M [9]
647V uc [8] pT2/3a [9] G2[8,9] M [9] KU1919  UC[8,9] pT3b [8,9] G3[8,9] M [9]
94-10 UC[8,9] pT3[89] G2/3 [8,9] M [9] RT112 UC [8,9] pTa [9] G2 [8-10] F [9]
96-1 UC[89] pT2 [8]/pT3 [9,10] G2/3 [8-10] M [9,10] RT4 UcC [8,9] pT1[9]/pT2 [8,10] G1[8,10]/G1-2 [9] M [9,10]
97-1 UC[89] pT2[8]/pT1-2[9,10] G1/2 [8-10] M [9,10] SCaBER  SCC[8-10] pT3[10] NR M [9,10]
97-18 UC[89] pT2[8-10] G3 [8-10] NR SD ucC [8,9] NR NR NR
97-24 UC[89] pT3[89] G3 [8-10] NR SW1710  UC [8,9] NR G1[9]/G3 [8] F [9,10]
97-7 UC[89] pT1[8-10] G2/3[8-10] NR SW780  UC[8,9] NR G11[9,10] F [9,10]
BC3C Uc[89] pT3[9] G4[89] M [9] T24 ucC [8,9] pTa [9] G3 [8-10] F [9,10]
BFTC905 UC [8,9] pT4[9] G3[8,9] F[9] TCCSUP  UC [8,9] NR G4 [8-10] F[9,10]
CAL29 UC[89] pT2[89] G4 [89] F[9] TSU-PR1  UC*® NR NR NR
DSH1 UC[89] pTla[89] G2 [8,9] M [9] UMUC3  UC[8,9] pT2-T4 9] NR M [9,10]
HT1197 UC[8,9] pT2[8-10] G4 [8-10] M [9,10] UMUC14 UC[9,10] NR G4 [9] M [9]
HT1376  UC[89] pT2[10]/>pT2 [9] G3 [8-10] F [9,10] VMCUB1  UC [89] NR G21[9,10] M [9,10]
182 UC[89] pT3[8-10] G3 [8-10] M [9,10] VMCUB2 UC [8,9] pT4 [10] NR M [9,10]
SV-HUC1  Uroepithelium immortalised by SV40 [11]

BC = bladder cancer; G = grade; F= female; M = male; MIBC = muscle-invasive BC; NMIBC = non-muscle-invasive BC; NR = not reported.

Thirty-two BC cell lines established from NMIBC and MIBC of different stages (Ta-T4) and grades (G1-G4) were included in the study. Except for SCaBER, which
originates from a squamous cell carcinoma (SCC), all cell lines derive from urothelial carcinoma (UC).

The cell line SV-HUC-1 originates from normal ureter tissue transformed by simian-virus SV40.

2 TSU-PR1 cells are derivatives of T24 [37].

We performed RNA-seq (Supplementary Table 2) and
selected, based on previous publications, expression mark-
ers to classify these cell lines into different intrinsic sub-
types [3,12,13]. Performing cluster analysis, we identified
three different expression types and assigned the cell lines
to the luminal (n = 6), basal (n = 18), or unspecific subtype
(“nontype”; n = 8; Fig. 1A). This was in accordance with
the findings of a previous study that assigned 20 of the cell
lines we used to the same intrinsic subtypes [12]. Gene set
enrichment analysis (GSEA) of RNA-seq data on BC cell lines
classified as luminal or basal revealed an overlap with gene
sets known to be differentially expressed between luminal
and basal breast cancer subtypes (Supplementary Fig. 2)
[14-16]. We also analysed the RNA-seq data on our cell line
collection employing the gene set predictor BASE47 and a
recently established single sample consensus classifier
(Fig. 1B and 1C, Supplementary Fig. 3, and Supplementary
Table 3) [17,18]. Both classification systems confirmed our
approach (Fig. 1A-C).

3.2. Assessing the genomic landscape of commercially
available BC cell lines

Taking advantage of our RNA-seq data, we detected nonsi-
lent point mutations in genes included in the Cancer Gene
Census as described previously [7,19]; 192 alterations
affecting 79 genes were verified by Sanger sequencing,
including 65 previously unreported mutations (Supplemen-
tary Table 4) [10,20-24]. Additionally, we extracted publicly
available mutational data, thereby obtaining a comprehen-
sive overview of the genomic landscape of our cell line col-
lection (Supplementary Table 4). Evaluating the loci most
frequently affected by alterations (three or more cell lines),
we identified 48 genes (Fig. 2). KEGG pathway analysis
showed enrichment of components involved in 59 sig-
nalling pathways, many of which were previously shown
to be involved in bladder tumourigenesis and progression
(Supplementary Table 5 and Supplementary Fig. 4) [25].

3.3. High-throughput drug screen in a representative panel
of BC cell lines

In order to identify novel agents with antineoplastic effects
against BC, we performed a high-throughput drug screen.
To cover a wide spectrum of BC, we selected cell lines con-
sistently classified as luminal (eg, RT4 and SW780) or basal
(eg, KU1919 and VMCUBI1) by all classification systems
(Fig. 1A-C), as well as cell lines classified as
neuroendocrine-like by the single sample consensus classi-
fier (UMUC3 and JMSU1; Fig. 1C). We also took the muta-
tional landscapes of the cell lines into consideration; for
instance, we chose luminal cell lines with (RT4, RT112,
and SW780) and without activating FGFR3 mutations
(JON; Fig. 2). Further, we selected cell lines previously
shown to be highly sensitive (eg, 253] and 647V) or resis-
tant (eg, HT1197 and RT4) to cisplatin, and excluded cell
lines with particularly low proliferation rates (eg, DSH1)
[26].

We assessed the sensitivity of these cell lines (n = 23) to
1707 chemical substances included in six drug libraries (an-
ticancer drug library; NIH clinical collection; libraries of
natural, epigenetic and toxic compounds; and CLOUD col-
lection); thereby, we identified 471 chemical agents with
inhibitory effects (Fig. 3A and Supplementary Table 6).
Neglecting pan-toxic substances (response in >95% of cell
lines), approved anticancer drugs such as romidepsin,
panobinostat, ponatinib, paclitaxel, and idarubicin were
amongst the most potent agents (Supplementary Table 6).
Several approved drugs for BC, for example, doxorubicin,
vinblastine, and methotrexate, all of which are components
of MVAC, were found to be effective (Supplementary
Table 6). We further identified antineoplastic effects of
numerous substances approved for maladies other than
cancer, including cholesterol-lowering medications, anthel-
mintics, antimalarial agents, and psychotropic substances
(Supplementary Table 6). Besides approved drugs, the
screen identified various natural compounds extracted from
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Fig. 1 - Subtype classification of a set of commercially available bladder cancer cell lines. (A) A cluster analysis including 35 expression markers identified
three different intrinsic subtypes. One cluster was defined by high expression levels of genes encoding for the uroplakins UPK1A, UPK3A, and UPK3B and the
low molecular weight keratin KRT20, representing luminal markers. A second cluster was characterised by elevated expression levels of KRT5 and KRT6A,
KRT6B, and KRT6C, which are basal markers for urothelial cells. Eight cell lines exhibited low expression levels of both types of expression markers and were,
thus, classified as “nontype”. (B) Classification of commercially available cell lines applying the BASE47 gene set predictor established to distinguish “luminal”
and “basal-like” subtypes of high-grade MIBC [17]. A cluster analysis identified two main expression types, of which one consisted of the six cell lines
previously classified as luminal. (C) Applying the single sample consensus classifier [18], commercially available cell lines were classified as LumP, Ba/Sq, or
NE-like. While all cell lines previously classified as luminal were categorised as LumP, all except one basal cell line were assigned to the Ba/Sq subtype. Cell
lines previously not assigned to a specific subtype, were either classified as NE-like or Ba/Sq. Ba/Sq = basal/squamous; LumP = luminal papillary; MIBC =

muscle-invasive bladder cancer; NE = neuroendocrine.

medicinal herbs and herbal supplements (Supplementary
Table 6). Inhibitory effects of many of these substances
(n = 101), including various non-oncology drugs (n = 27),
on BC cell lines were also observed in a previous drug repur-
posing screen (Supplementary Table 7) [27].

Assessing the molecular targets of these 471 substances,
we could classify 48% of them into different drug classes,
while the mechanism of action of the remaining 52% is
unknown or poorly investigated (Supplementary Table 6).
The largest fraction of classified active drugs comprised
kinase inhibitors (28%), including selective and nonselective
inhibitors of receptor tyrosine and nonreceptor tyrosine
kinases (Fig. 3B). Epigenetic compounds such as inhibitors

of histone deacetylases (HDACs), histone methyltrans-
ferases, and histone lysine demethylases accounted for
11%, 4%, and 3% of the identified active drugs (n = 225),
respectively (Fig. 3B). Other strongly represented drug
classes were antimetabolites (8%), intercalating drugs and/
or topoisomerase inhibitors (6%), mitotic inhibitors (5%),
as well as modulators of ion channels, neurotransmitter
receptors, and hormonal receptors (4%; Fig. 3B).

In agreement with the literature, we found that cell lines
classified as luminal, most of which derived from low-grade
tumours (eg, RT4 and SW780), had lower general sensitivity
than those belonging to the basal cluster (Fig. 3A) [28].
However, the least sensitive cell lines (response to <5% of
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all tested substances) were RT4 and HT1197, of which the
latter is classified within the basal subtype (Fig. 3A). These
cell lines were previously shown to be highly resistant to
cisplatin [26]. HT1197 and RT4 responded almost exclu-
sively to epigenetic drugs, intercalating agents/topoiso-
merase inhibitors and ion channel inhibitors, of which the
latter are known to be involved in the development of mul-
tidrug resistance (Supplementary Fig. 5) [29].

34. In vitro validation of one highly active compound
identified by drug screening

Most anticancer drugs exhibiting inhibitory effects on more
than one luminal cell line (n = 4) accounted for HDAC inhi-

bitors and intercalating drugs (Supplementary Table 6).
Many of these substances are already used in the clinics
(eg, epirubicin and doxorubicin) or their antineoplastic
effects on BC were reported previously (eg, belinostat and
panobinostat; Supplementary Table 6) [30]. Clofarabine,
which has not been studied extensively in the context of
BC so far, was amongst the agents with inhibitory effects
on all intrinsic subtypes (Supplementary Table 6). Retesting
the drug in various concentrations, we found decreased via-
bility of both luminal and basal cell lines with ICsy values
ranging from 0.53 to 4.4 uM (Fig. 4A). However, HT1197
and HT1367 showed only decreases in viability of 21% and
19% in response to the highest tested concentration, respec-
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Fig. 3 - Chemical compounds with antineoplastic effects identified by drug screening. (A) A total of 471 chemical compounds exhibited antineoplastic effects
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line (bottom). Overall, most luminal cell lines had a lower general sensitivity than those belonging to the basal cluster. The least sensitive cell lines were RT4
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tively (Fig. 4A). It has previously been shown that the ABC
transporter ABCG2 can induce resistance to clofarabine
[31]. In congruence, we found that HT1197 and HT1367
had the highest ABCG2 expression of our commercially
available cell line collection (Supplementary Fig. 6A).

We further tested the effects of clofarabine on PDCs at
low passage number, representing various tumour stages/
histologic variants, all of which showed a concentration-
dependent decrease of cell viability (Table 2 and Fig. 4B).
Assessing ABCG2 expression, we found that VUC71 and
VUC85, which are least sensitive to clofarabine, had
significantly elevated levels compared with the other PDCs
(Supplementary Fig. 6B).

To test potential interactions with other drugs, we per-
formed single and double treatments with cisplatin and/or
the HDAC inhibitor romidepsin in HT1197. Clofarabine in
concentrations of >1 pM caused a reduction of cell viability,
an effect that was significantly increased by combining it

with cisplatin, romidepsin, or both drugs (Supplementary
Fig. 7A). Studying the interactions between clofarabine
and cisplatin or romidepsin in more detail, we found syner-
gistic effects with both agents (Supplementary Fig. 7B).

3.5. In vivo validation of the antineoplastic effects of
clofarabine

To verify the effects of clofarabine in vivo, we generated a
subcutaneous mouse xenograft model using patient-
derived VUC48 cells, which originate from a conventional
UC, and started treatment when all animals (n = 16) har-
boured palpable tumours (Table 2). After receiving seven
dosages of clofarabine without showing obvious side
effects, all treated mice (n = 8) underwent complete remis-
sion (Fig. 5A, left). To assess the effects of clofarabine on
more advanced disease stages, we allowed VUC48
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Fig. 4 - Response of commercially available and patient-derived BC cell lines to varying concentrations of clofarabine. (A) Commercially available cell lines
representing different intrinsic BC subtypes were treated with variable concentrations of clofarabine for 48 h. Apart from HT1367 and HT1197, all tested BC
lines showed a concentration-dependent decrease of cell viability, with ICs, values ranging from 0.53 to 4.4 pM. The viability of HT1367 and HT1197 was
decreased by <50% in response to the highest tested concentration of 10 pM. (B) Patient-derived cell lines originating from tumours of different stages and
histologic variants were treated with variable concentrations of clofarabine for 48 h. Similar to the commercially available cell lines, clofarabine caused a

concentration-dependent decrease of viability in all patient-derived cultures. BC = bladder cancer; IC5o = half-maximal inhibitory concentration; n.d. = not
defined.

Table 2 - Origins of patient-derived cell lines included in the study

Name Sex Stage Grade Intervention Histologic type

vuC14 Male pT2a HG TURB UC with sarcomatoid differentiation
vuc3s Female pT2a HG RC Pure SaC

VUC40 Male pT3a HG RC Pure UC

VUC41 Male pT3a HG RC Pure UC

vuc4s Male pT3b HG RC Pure UC

VUC71 Male pTa HG TURB Pure UC

VucCs5 Male pTla HG TURB Pure UC

VvUuC99 Male pTla HG TURB UC with squamous differentiation

HG = high grade; PDC = patient-derived culture; RC = radical cystectomy; SaC = sarcomatoid carcinoma; TURB = transurethral resection of bladder tumour; UC =
urothelial carcinoma.

Patient-derived cell lines were established from tumour samples obtained during radical cystectomies or transurethral resections of bladder tumours. Seven
male and one female patients suffering from bladder tumours of different tumour stages (pT1a-pT3b) were included in the study. While most PDCs derived from
pure urothelial carcinoma, VUC38 originated from a pure sarcomatoid carcinoma. VUC14 and VUC99 derived from urothelial carcinoma with sarcomatoid and
squamous differentiation, respectively.

xenografts to develop for 16 d before starting the treatment. No tumour recurrences were observed, and all animals were
Similarly to our previous approach, all animals receiving alive and well throughout an observation period of >10 wk
therapy (n = 4) underwent complete remission (Fig. 5B, left). (Fig. 5A and 5B, right).
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Fig. 5 - Response of mouse xenograft models to clofarabine. (A) Left: The patient-derived cell line VUC48 representing a UC was xenografted in CB17/SCID mice
and clofarabine treatment was started when all animals (n = 16) had palpable tumours. After receiving seven dosages of clofarabine, all animals (n = 8) were in
complete remission, lacking any palpable tumour remnants. Right: All control animals (n = 8) had to be sacrificed within 43 d after tumour implantation,
while all animals of the clofarabine group (n = 8) were alive and well throughout an observation period of >10 wk. (B) Left: The patient-derived cell line VUC48
was xenografted in CB17/SCID mice, and clofarabine treatment was started when the animals (n = 8) were in advanced disease stages. Three animals of the
clofarabine group (n = 4) showed complete response by day 10 and the fourth mouse by day 22. Right: All control animals (n = 4) had to be sacrificed within 28
d after tumour implantation, while all animals receiving treatment were alive and well throughout an observation period of >10 wk. (C) Left: The patient-
derived cell line VUC38, representing a SaC, was xenografted in CB17/SCID mice and clofarabine treatment was started when all animals (n = 16) had palpable
tumours. Similarly to UC xenograft mice, all animals of the clofarabine group (n = 8) underwent complete or subcomplete remissions with tumour remnants
too small for accurate measurement. Right: One mouse of the clofarabine group (n = 8) died due to reasons unrelated to the implanted xenograft or the
treatment, and was therefore excluded from the survival analysis. Control animals (n = 8) had to be sacrificed within 41 d after xenografting; the seven
remaining mice of the clofarabine group were alive and well throughout the observation period of >8 wk. SaC = sarcomatoid carcinoma; UC = urothelial
carcinoma. ** p < 0.01. **** p < 0.0001.

We further generated a subcutaneous SaC mouse xeno- one animal that died on day 41 after tumour implantation

graft model using the PDC VUC38 (Table 2). Clofarabine
treatment was started when all animals (n = 16) had devel-
oped palpable tumours. After 5 d of treatment, all animals
underwent (sub)complete remission with three animals in
complete remission, while five still harboured palpable
tumour remnants too small for accurate measurement
(Fig. 5C, left). As after 16 d of treatment pause, tumours
started to regrow in five animals, another cycle of clofara-
bine was applied for 10 d, leading again to remission of
tumours in all treated animals (Fig. 5C, left). Except for

(in complete remission) due to reasons obviously unrelated
to the implanted xenograft (spontaneous thymoma), all ani-
mals of the clofarabine group (n = 7) were alive and well
throughout the observation period of 8 wk (Fig. 5C, right).

4. Discussion

BC is a highly heterogeneous disease comprising tumours of
different intrinsic and histologic subtypes with varying
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sensitivities to available drugs [3,12,17,32]. This biological
and clinical variability is a major hindrance to the develop-
ment of effective and safe therapies. With the goals of over-
coming this challenge and identifying novel drugs for BC,
we established a panel of commercially available BC cell
lines (n = 23) serving as a model system. We took advantage
of expression markers, most of which had originally been
used to subclassify breast cancers, and assigned all cell lines
to different intrinsic subtypes. Our classification was in con-
gruence with a previous study, suggesting high robustness
of the expression profiles of commercially available cell
lines, independent from the batch, number of passages,
and other external factors [12]. We also analysed our
RNA-seq data employing the gene set predictor BASE47
and a recently established consensus classifier, obtaining
congruent results [17,18]. Notably, despite being originally
developed for MIBC, both systems consistently identified
all luminal cell lines including those deriving from NMIBC.

We further utilised our RNA-seq data to identify muta-
tions in protein-coding genes. This approach is certainly a
limitation of our study, since it was previously reported that
only 46-49% of pathogenic variants detected by whole
exome sequencing were identified by RNA-Seq [7]. This bias
is caused by the fact that genes expressed at low levels are
hardly detectable, and that allelic imbalance and nonsense-
mediated decay hinder the identification of heterozygote
alterations and nonsense mutations [7]. However, despite
the limited comprehensiveness of our approach, it led to
the identification of >60 previously unreported alterations,
all of which were verified by Sanger sequencing. Moreover,
to obtain a more comprehensive characterisation of the
genomic landscape of our cell lines, we complemented our
own with publicly available data [10,20-24].

Taking mutation and expression data into consideration,
we selected cell lines representing the widest spectrum of
BC (n = 23) for drug screening, thereby identifying 471
chemical compounds with inhibitory effects. Apart from
kinase inhibitors, epigenetic compounds and antimetabo-
lites were the most strongly represented drug classes [33].
Many of these substances were approved anticancer drugs,
often developed for the treatment of haematologic malig-
nancies [33]. However, we also identified agents approved
for other diseases (eg, fungicides, antipsychotics/antidepres-
sants, and antirejection drugs), as well as dietary supple-
ments and components isolated from medical herbs [33].

Limitations of our approach included that available sub-
stance libraries were not specifically designed for BC, but
aiming to cover a wide spectrum of approved drugs/bioac-
tive compounds. Additionally, all tested components were
routinely dissolved in dimethyl sulfoxide (DMSO). Conse-
quently, several agents approved for BC either were not
included (eg, erdafitinib and gemcitabine) or gave inconclu-
sive data due to DMSO interaction (eg, cisplatin) [34]. More-
over, the drug screen was performed in a single technical
replicate, to obtain an overall impression concerning active
drug classes and feasible targets. This emphasises the
importance of the detailed follow-up and confirmation
experiments.

Exemplarily, we selected the antimetabolite clofarabine
for further investigation. Besides commercially available

cell lines, we retested the drug in PDCs cultured for a lim-
ited number of passages, thus closely mimicking their
tumours of origin. In accordance with the drug screen, we
observed concentration-dependent effects on cell lines rep-
resenting various intrinsic/histologic subtypes. The fact that
most cultures with low sensitivity had exceptionally high
ABCG2 expression implicates that this gene/protein may
represent a biomarker for clofarabine resistance, as sug-
gested previously [31].

These in vitro results were validated using a conventional
UC mouse xenograft model generated by the implantation
of a PDC. Independently from the disease stage, clofarabine
induced complete remission in all mice without causing
obvious side effects. Notably, during the observation period
of >10 wk, none of the animals suffered relapse. We further
observed massive antineoplastic effects of clofarabine in a
xenograft model representing the rare and highly aggres-
sive histologic BC variant SaC. This finding is of special
interest, since two recent studies demonstrated that neither
currently available adjuvant nor neoadjuvant chemothera-
pies have a significant survival benefit for this disease entity
[35,36].

5. Conclusions

The potent effects of clofarabine in vivo suggest that our
findings may be of high clinical relevance. We, thus, intend
to further evaluate the effects of clofarabine on additional
xenograft models. We will also assess biomarkers for the
selection of BC patients potentially benefiting from clofara-
bine treatment. Finally, clinical trials are needed to assess
the value of clofarabine in improving BC patient care sus-
tainably and safely.
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