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Abstract
Earlier epidemiological studies have shown an inverse correlation between high-density lipoprotein cholesterol (HDLc) and 
coronary heart disease (CHD). This observation along with the finding that reverse cholesterol transport is mediated by HDL, 
supported the hypothesis that the HDL molecule has a cardioprotective role. More recently, epidemiological data suggest a 
U-shaped curve correlating HDLc and CHD. In addition, randomized clinical trials of drugs that significantly increase plasma 
HDLc levels, such as nicotinic acid and cholesterol ester transfer protein (CETP) inhibitors failed to show a reduction in 
major adverse cardiovascular events. These observations challenge the hypothesis that HDL has a cardioprotective role. It is 
possible that HDL quality and function is optimal only when de novo synthesis of apo A-I occurs. Inhibition of turnover of 
HDL with currently available agents yields HDL molecules that are ineffective in reverse cholesterol transport. To test this 
hypothesis, newer therapeutic drugs that increase de novo production of HDL and apo A-I should be tested in clinical trials.

Key Points 

The hypothesis that the high-density lipoprotein (HDL) 
and its main apolipoprotein apo A-I prevent coronary 
atherosclerosis is supported by earlier epidemiological 
studies and by experimental data in laboratory animals.

However, randomized clinical trials of drugs that sig-
nificantly increase plasma HDL levels failed to show a 
reduction in major adverse cardiovascular events.

It is possible that HDL quality and function is optimal 
only when de novo synthesis of apo A-I occurs. Inhibi-
tion of turnover yields dysfunctional HDL that is ineffec-
tive in reverse cholesterol transport.

1  Introduction

Cardiovascular mortality remains the leading cause of death 
in industrialized countries despite recent advancements and 
greater insight into the prevention of cardiovascular disease 
(CVD). Statin-based therapies have contributed an important 
role in the evolution of the management of CVD, reducing 
the risk of major coronary events by 31% and all-cause mor-
tality by 21% [1]. Yet, these favorable outcomes remain short 
of expectations as substantial residual risk of cardiovascu-
lar deaths persists. This has led to the pursuit of alternative 
pathways and therapeutic targets for further reduction of 
CVD. One such therapeutic target is high-density lipopro-
tein (HDL). This lipoprotein along with its main apoprotein, 
the apolipoprotein A-I (apo A-I), have many coronary anti-
atherosclerotic properties, most notably its role in mediat-
ing the reverse cholesterol transport pathway that facilitates 
the clearing of cholesterol deposits in coronary arteries [2]. 
Additional cardioprotective properties of HDL and apo A-I 
include antioxidant [3] and anti-inflammatory effects [4], 
inhibition of adhesion molecule expression [5], prostacy-
cline stabilization [6], promotion of nitric oxide production 
[7], and decreasing platelet activation and coronary throm-
bus formation [8]. Hence, the hypothesis that increasing 
the HDL levels or improving its functionality would have 
favorable effects on CVD has strong biological plausibil-
ity. This manuscript aims to review the empirical evidence 
supporting or opposing a role of HDL and apo A-I in the 
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pathogenesis of cardiovascular disease and review current 
and future directions in studying the role of HDL.

2 � Evidence for Cardioprotective Effects 
of HDL/apo A‑I

The first association of HDL and CVD dates back to 1977 
when the Framingham study found an inverse relationship 
between the HDL cholesterol (HDLc) level and coronary 
heart disease (CHD), and identified HDLc as an independent 
negative predictor of CHD even in people with low plasma 
levels of low-density lipoprotein cholesterol (LDLc) [9, 10]. 
In addition, HDLc remains inversely associated with cardio-
vascular risk in patients on statin therapies with low LDLc 
levels [11]. However, several classical CVD risk factors such 
as obesity [12–14], insulin resistance [15–19], diabetes [15], 
chronic inflammatory disorders [20–25], and smoking [26] 
have been associated with low plasma levels of HDLc. These 
observations lead to the question whether HDL is truly car-
dioprotective or is simply a marker of CHD [27].

Subsequent to these early observations, some studies 
reported an association of higher HDLc levels with longev-
ity [28, 29]. The Long Life Family Study (LLFS) revealed 
probands and offspring who had higher HDLc levels and 
were healthier in terms of cardiovascular risk [28]. Simi-
larly, higher HDLc levels were associated with survival 
to 85 years of age in a prospective cohort of aging male 
veterans [29]. Conversely, the Cardiovascular Health Study 
found that HDLc along with other cardiovascular lipid risk 
factors had minimal effects on CVD risk in the elderly [30], 
while CVD risk was associated with glomerular filtration 
rate, diabetes, C-reactive protein, and N-terminal pro-B-type 
natriuretic peptide levels [30].

The major protein component of HDL, apo A-I, is like-
wise inversely associated with cardiovascular risk [31]. 
Genetically determined variation in plasma HDLc levels 
is attributed to specific changes in hepatic lipase and AI/
CIII/AIV gene loci [32], with certain mutations accounting 
for lower total cholesterol and HDLc levels and higher fre-
quency of angina and myocardial infarction [33]. Amongst 
15 loci related to plasma HDLc, six loci (LPL, TRIB1, 
APOA1-APOC3-APOA4-APOA5 cluster, CETP, ANGPTL4, 
GALNT2) have had allele associations with an elevated 
plasma HDLc level, reduced risk of myocardial infarction, 
and reduced LDLc and triglyceride levels [34].

It is noteworthy that most epidemiological studies have 
used HDLc as a surrogate measure of HDL. In general, the 
levels of HDLc correlate well with HDL and apo A-I levels 
as the turnover rate of HDL and apo A-I is modulated by the 
cholesterol content of HDL [35]. Thus, plasma clearance of 
HDL and apo A-I is increased when cholesterol content of 
the molecule is decreased while cholesterol-rich HDL has 

a prolonged plasma half-life [35]. However, plasma HDLc 
measurements do not always reflect the biologic activity of 
HDL as a key protein in the reverse cholesterol transport 
process [35]. The amount of HDL and apo A-I molecules, 
HDL function or composition are important determinants of 
HDL cardioprotective potential.

Experiments in animal models of atherosclerosis have 
also supported an antiatherosclerotic role of HDL and apo 
A-I. In apo E-deficient mice, vector-mediated expression of 
human apo A-I resulted in a reduction of the development 
of atherosclerosis [36]. Similarly, infusions of apo A-I in 
the lipid-free form or as a constituent of discoidal recon-
stituted high-density lipoproteins, (A-I)rHDL, inhibit acute 
vascular inflammation in normocholesterolemic New Zea-
land White (NZW) rabbits [37]. This effect was partly attrib-
uted to increased arterial 3β-hydroxysteroid-Δ24 reductase 
expression [37].

Animal experiments were followed by a promising human 
pilot study, which used a recombinant apo A-I Milano/phos-
pholipid complex infusion to demonstrate significant coro-
nary atherosclerosis regression, as measured with an intra-
vascular ultrasound (IVUS) [38]. HDL therapy using apo 
A-I Milano/phospholipid complex infusion at a rate of 1.2 g 
weekly for 5 weeks decreased the total atheroma volume 
by 4.2% [38]. This remarkable outcome was deemed highly 
significant when compared to the 0.4% atheroma volume 
reduction observed after 2–3 years of 40- to 80-mg atorvas-
tatin therapy [39].

Overall, these older studies support the hypothesis that 
HDL/apo A-I has a protective role in CVD. However, con-
temporary studies so far do not support this hypothesis.

3 � Evidence Against Cardioprotective Effects 
of HDL

In recent years, accumulating evidence suggests that sub-
groups of people with high plasma HDLc levels are at 
increased risk of CHD. Experiments in scavenger receptor 
BI (SR-BI) knockout mice and population-based studies 
have found that elevated plasma HDLc levels were para-
doxically correlated with an increased risk of atherosclero-
sis and CHD (odds ratio = 1.79; p = 0.018) [40]. In humans, 
SR-BI is the major hepatocellular receptor for HDLc uptake. 
Therefore, it is expected that any loss of function of SR-BI 
may interrupt hepatic cholesterol uptake and the HDLc level 
would increase. However, it is noteworthy that the signifi-
cance of SR-BI in human physiology is questionable as cho-
lesterol ester transfer protein (CETP)-mediated exchange to 
apo B-containing lipoproteins is the major mechanism by 
which HDLc is transported to the liver in humans [41].

Unlike older epidemiological studies, a recent observa-
tional study of 5291 adults with established CVD determined 
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that low (< 41 mg/dL) and very high (> 60 mg/dL) HDLc 
levels were associated with increased cardiovascular risk; 
as high as twofold for very high HDLc levels [42]. This 
observation suggests that there is a U-shaped curve corre-
lating HDLc and CVD. The U-shaped association is in line 
with many risk factors associated with disease states where 
the optimal outcome occurs when the variable is not at its 
extreme ends of the spectrum.

Mendelian randomization analyses, using single nucleo-
tide polymorphisms (SNPs) in the endothelial lipase gene 
associated with HDLc, failed to elicit an association with 
increased plasma HDLc levels and lower myocardial infarc-
tion risk [34]. A subsequent genetic analysis, as part of the 
Copenhagen City Heart Study, determined that the risk of 
myocardial infarction was higher in individuals with lower 
plasma HDLc levels. However, this was not the case in 
individuals with low HDLc levels attributed to the lecithin-
cholesterol acyltransferase (LCAT) gene, suggesting that 
genetically low plasma HDLc levels do not always increase 
the risk of myocardial infarction [43]. These observations 
do not support the hypothesis that raising plasma HDLc will 
necessarily translate to decreased cardiovascular events.

A more direct approach for testing the HDL hypothesis in 
humans requires interventions aimed at increasing plasma 
HDL and apo A-I levels and measuring the subsequent inci-
dence of major adverse cardiovascular events.

4 � Outcome of Studies Targeting HDL/apo A‑I

The clinical outcomes of studies using reconstituted HDL 
(rHDL) infusions containing human apo A-I and a phospho-
lipid have been inconsistent (Table 1). In one study rHDL 
infusions enhanced angiogenesis and wound healing by 
restoring hypoxia-inducible factor-1a stability and vascular 
endothelial growth factor signaling in patients with diabetes 
[44]. These favorable effects were attributed to rHDL initi-
ating a signaling cascade via an apo A-I scavenger recep-
tor class B type 1 interaction [44]. Additional favorable 
outcomes were observed when rHDL containing apo A-I 
Milano infusion resulted in reduced atheroma volume [38] 
and preparations with CSL-112 (human apo A-I and phos-
photidylcholine complex) increased in the capacity of serum 
to efflux cholesterol from macrophages [45, 46]. In contrast, 
studies with another rHDL preparation labelled CSL-111 did 
not result in any significant change in atheroma volume [47], 
while CER-001, an alternative rHDL preparation, has dem-
onstrated mixed results, both improving efflux of cholesterol 
and decreasing carotid wall area [48, 49], without altering 
the atheroma volume [50]. In the MILANO-PILOT trial, a 
randomized control trial using the rHDL MDCO-216 infu-
sion, regression of coronary atherosclerosis in statin-treated 
patients with an acute coronary syndrome was observed 

[51]. Similarly, there was no regression of atherosclerosis 
with CER-001 infusions in the CER-001 Atherosclerosis 
Regression Acute Coronary Syndrome Trial (CARAT) [52]. 
Another ongoing Phase 3 trial (AEGIS-II, NCT03473223) in 
~ 17,400 patients with acute coronary syndrome is evaluat-
ing the effect of CSL112 on clinical endpoints [53]. Over-
all, it appears that the data supporting the effectiveness of 
rHDL infusions in atherosclerosis regression is limited. In 
addition, infusions of rHDL preparations are not a practical 
solution to treating a chronic disease such as CVD. Hence, 
the importance of identifying easily administered HDL/apo 
A-I boosting agents.

Few medications can increase plasma HDL/apo A-I lev-
els [54, 55]. Examples of such drugs are the fibrates, nico-
tinic acid, and the experimental class of cholesterol ester 
transfer protein (CETP) inhibitors. Various studies have 
examined the utility of fibrates in patients with low plasma 
HDLc and high triglycerides. In the Veterans Administration 
HDL intervention trial (VA-HIT), gemfibrozil led to a 6% 
increase in the mean plasma HDLc levels with a statistically 
significant 22% reduction in cardiovascular events; however, 
this did not affect all-cause mortality and the external valid-
ity was limited as the study only included male veterans 
[56]. Although the major effect of fibrates is lowering of 
triglycerides, in the VA-HIT the reduction in cardiovascu-
lar events was attributed to the modest rise in HDLc rather 
than the reduction in triglyceride levels [56]. In the Helsinki 
Heart Study (HHS), randomization to gemfibrozil treatment 
was associated with a 14% increase in plasma HDLc and 
a 34% reduction in CHD without significant effect on all-
cause mortality [57]. Further trials examining bezafibrate 
and fenofibrate failed to achieve statistical significance 
with the primary endpoint of reduced cardiovascular events 
[58–60]. The Action to Control Cardiovascular Risk in Dia-
betes (ACCORD) study group failed to show a benefit of 
adding fenofibrate to simvastatin in reducing cardiovascular 
mortality [60]. The Fenofibrate Intervention and Event Low-
ering in Diabetes (FIELD) study did not significantly reduce 
the risk of the primary outcome of coronary events while 
improvements in secondary outcomes, such as a reduction 
in non-fatal myocardial infarctions and rate of revasculari-
zations, were observed [59]. Post hoc analysis of data from 
clinical trials suggest that fibrates may have some cardio-
protective effects in those with high plasma triglycerides 
and low HDLc levels [54]. It is possible that the neutral 
outcome of the FIELD trial may have been the consequence 
of a large “drop in” statin therapy [59]. In ACCORD, one 
possible reason for failure to demonstrate benefit of add-on 
fenofibrate therapy was that the treatment duration of 4.7 
years was not long enough to detect a treatment effect [61]. 
However, the extension of the latter study for an additional 
5 years did not show evidence of any legacy effect of fenofi-
brate therapy [61].
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The addition of niacin to the treatment of CVD in patients 
on statin therapy did not result in any clinical benefit, despite 
an improvement in plasma HDLc and triglyceride levels 
[62]. Similarly, the addition of a niacin–laropiprant combi-
nation in statin-treated patients not only failed to reduce the 
incidence of major vascular events but led to an increased 
incidence of serious adverse events [63].

Fatty acids are known to alter apo A-I expression and 
the use of pharmacologic doses of n-3 fatty acids can mod-
estly increase plasma HDLc level [64–66]. The role of n-3 
fatty acids in the management of hypertriglyceridemia is 
well established [67–69] and a recent trial with 4 g/day of 
an ethyl ester form of eicosapentanoic acid (EPA) found an 
approximately 25% relative risk reduction in major adverse 
cardiovascular events (p < 0.001) [70]. However, other 
preparations of n-3 fatty acids prescribed at a dose of 1 g/
day did not reduce the risk of cardiovascular events in three 
large randomized studies [71–73]. Preliminary results of the 
Phase 3 STRENGTH trial (NCT02104817; n = 13,086) [74] 
indicate that omega-3 carboxylic acids are unlikely to dem-
onstrate clinical benefit in patients with mixed dyslipidemia 
who are at high risk for CV disease and receiving optimal 
statin therapy [75].

Cholesterol ester transfer protein (CETP) inhibitors 
increase plasma levels of HDL and apo A-I through inter-
fering with the transport of cholesterol from HDL to other 
lipoproteins [35]. Yet four trials with CETP inhibitors have 
failed to prove the clinical usefulness of this class of agents 
(Table 2) [76–79]. Torcetrapib, in the Investigation of Lipid 
Level Management to Understand its Impact in Atheroscle-
rotic Events (ILLUMINATE) trial, increased plasma HDLc 
by 72.1% and decreased LDLc by 24.9%. However, the 
trial had to be discontinued early following an increase in 
all-cause mortality that was partly attributed to increased 
blood pressure [76]. Another CETP inhibitor, dalcetrapib, 
appeared to lack some of the undesirable neurohormonal 
and hemodynamic effects of torcetrapib. Yet in the dal-
OUTCOMES trial, dalcetrapib failed to show a reduction 
in cardiovascular risk and the trial was stopped early due 
to futility [77]. Subanalysis of the dal-OUTCOMES trial 
did hint at potential benefit in selected patients, and this is 
currently being evaluated in the ongoing phase-3 dal-GenE 
trial (NCT02525939) [80]. The latter is a double-blind, ran-
domized, placebo-controlled study to evaluate the effects of 
dalcetrapib on cardiovascular risk in a genetically defined 
population with a recent acute coronary syndrome. 

Lack of clinical benefit with CETP inhibitors was also 
observed in the Assessment of Clinical Effects of Choles-
teryl Ester Transfer Protein Inhibition with Evacetrapib in 
Patients at a High Risk for Vascular Outcomes (ACCELER-
ATE) trial [78]. In the Randomized Evaluation of the Effects 
of Anacetrapib through Lipid Modification (REVEAL) trial, 
anacetrapib decreased the incidence of major coronary Ta
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events in patients with established CVD who were on inten-
sive statin therapy but did not affect cardiovascular or all-
cause mortality [79]. The apparent reduction in the incidence 
of major coronary events was attributed to the concomitant 
reduction in plasma LDLc levels especially in patients with 
baseline higher LDLc levels [79].

The failure of CETP inhibitors and niacin in reducing 
cardiovascular events despite the increase in plasma HDLc 
level could have been secondary to off-target effects of these 
agents or related to accumulation of dysfunctional HDL 
when HDL turnover is reduced along with reduced reverse 
cholesterol transferring function [35].

5 � Future Directions

It is apparent that the available clinical trials using interven-
tions to increase plasma HDL/apo A-I levels have failed to 
establish the clinical utility of increasing the HDL/apo A-I. 
However, most of these trials have either used rHDL made 
of recombinant apo A-I along with a phospholipid moiety or 
used agents that interfere with the plasma half-life of HDL/
apo A-I. It is possible that these interventions have interfered 
with the functional quality of the HDL/apo A-I particles. 

Prior to abandoning the HDL hypothesis, it is important to 
test the clinical effectiveness of increasing endogenous de 
novo production of HDL/apo A-I, which tends to have more 
efficient reverse cholesterol transport capacity. In pursuing 
agents that can increase apo A-I transcription and produc-
tion, structure function analysis of the apo A-I gene pro-
moter has yielded invaluable clues for potential therapeutic 
agents to increase HDL/apo A-I levels [81]. The insulin-
responsive core element (IRCE) modulates the apo A-I 
gene promoter activity via insulin, growth factors, protein 
kinase A, and protein kinase C [81]. A second site, site A, 
is regulated via thyroid hormone, retinoids, and peroxisome 
proliferator activated receptor-α and -γ (PPARα/γ) agonists, 
tumor necrosis factor-α, vitamins C, D, and E, and endo-
cannabinoids [81]. Site B is regulated by estradiol, gluco-
corticoids, and bile acids, while additional sites are regu-
lated via liver receptor-homologue-1 (LRH-1) and a thyroid 
hormone-responsive element that has inhibitory (negative) 
effects on promoter activity (nTRE) [81]. Through these pro-
moter sites, various drugs regulate apo A-I synthesis [82], 
such as histamine (H1)-receptor antagonists including aze-
lastine, fexofenadine, cetirizine, and diphenhydramine [83]. 
This outcome is attributed to antagonizing the inhibitory 
action of histamine on apo A-I gene expression that occurs 

Table 3   HDL/apo A-I augmenting effects of contemporary and experimental drugs

Data from Mooradian et al. [35] and The HPS3/TIMI55–REVEAL Collaborative Group [79]
↑ indicates an increase, ↓ indicates a decrease, BET bromodomain and extra-terminal domain, CETP cholesterol ester transfer protein, HMG-
CoA β-hydroxy β-methylglutaryl-CoA, PCSK9 proprotein convertase subtilisin/kexin type 9, PPAR peroxisome proliferator-activated receptors, 
rHDL reconstituted high-density lipoprotein

Drug class Effect on HDLc Mechanism of HDL increase

Contemporary drugs
 Nicotinic acid (niacin) ↑ 15–35% Mostly reduced HDL turnover and uptake by the liver; Minor 

effect of increased apo A-I gene promoter activity
 Fibrates (fibric acid derivatives) ↑ 10–35% Increased apo A-I gene promoter activity
 PPAR gamma agonists ↑ 5–28% Increased apo A-I gene promoter activity
 HMG-CoA reductase inhibitors (statins) ↑ 5–15% Increased apo A-I gene promoter activity
 PCSK9 inhibitors ↑ 5% Unknown

Experimental drugs
 rHDL infusions
  ETC-216 Not evaluated Increasing plasma levels of rHDL
  CSL-111 Not evaluated Increasing plasma levels of rHDL
  CSL-112 ↑ 81–300% Increasing plasma levels of rHDL
  CER-001 ↑ 2–17% Increasing plasma levels of rHDL
  MDC0-216 ↓ 8% Unknown

 CETP inhibitors
  Torcetrapib ↑ 72% Reduced HDL clearance
  Dalcetrapib ↑ 31–40% Reduced HDL clearance
  Evacetrapib ↑ 133% Reduced HDL clearance
  Anacetrapib ↑ 112% Reduced HDL clearance

 BET inhibitors
  Apabetalone ↑ 11% Increased apo A-I gene promoter activity, changing the epigenetics
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through H1-receptor-mediated increase in NF-κB expres-
sion, a known suppressor of apo A-I promoter activity [84].

Another relevant therapeutic target is the bromodomain 
and extra-terminal domain (BET) inhibitors. The leading 
agent in this category is the small molecule apabetalone 
(RVX-208), a selective BET inhibitor [85]. This agent 
has been shown to activate apo A-I gene transcription and 
increase HDLc in cell cultures and in vivo [85]. The Study 
of Quantitative Serial Trends in Lipids with Apolipoprotein 
A-I Stimulation (SUSTAIN) trial confirmed the safety of 
RVX-208 in patients and observed an increase in plasma 
apo A-I and HDLc levels [86]. This was in concurrence 
with the results of the Apo A-I Synthesis Stimulation and 
Intravascular Ultrasound for Coronary Atheroma Regres-
sion Evaluation (ASSURE) trial in high-risk CVD patients 
[87]. The latter trial demonstrated a significant increase in 
plasma apo A-I and HDLc levels alongside a statistically 
insignificant (0.6%) regression in coronary artery plaque as 
measured by IVUS [87]. The extension of the ASSURE trial 
did not show incremental change in plasma HDLc, LDLc, 
or plaque regression [87, 88]. However, the BET inhibitors 
have favorable biochemical effects that extend beyond their 
effects on apo A-I production [89]. Nevertheless, apabetal-
one did not meet its primary endpoint of reduction in major 
adverse cardiovascular events (MACE) in the randomized, 
double-blind, placebo-controlled phase-3 BEToneMACE 
trial (NTC02586155) [90]. Table 3 summarizes the HDL/
apo A-I increasing effects of some of the cotemporary and 
experimental drugs. An ongoing Phase 3 dal-GenE trial is 
evaluating dalcetrapib in a genetically defined population 
with a recent acute coronary syndrome [80]. The results of 
this study are expected to be available in the first quarter of 
2021.

6 � Conclusions

Although epidemiological and biochemical studies provide 
strong support for the plausibility of the HDL hypothesis, 
interventional clinical trials have shown that currently avail-
able HDL-targeting drugs are not effective in cardioprotec-
tion and at times are unsafe. It is tempting to speculate that 
the failure of current therapeutic agents that increase HDL 
levels are ineffective in cardioprotection because of poor 
quality and functionality of HDL produced. It is possible 
that HDL quality and function is optimal only when de novo 
synthesis of apo A-I occurs. Inhibition of turnover of apo A-I 
or HDL with currently available agents yields HDL mole-
cules that are ineffective in reverse cholesterol transport [35, 
81]. Newer therapeutic drugs that increase de novo produc-
tion of HDL and apo A-I should be tested in clinical trials 
to establish their clinical safety and efficacy.
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