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Original Article

Pediatricians rarely encounter chronic kidney disease 
(CKD) and, in general, may think of CKD as a problem 
for internists and nephrologists. However, many chil-
dren and adolescents are at increased risk of developing 
adult CKD, secondary to conditions commonly cared 
for by pediatric health professionals. Kidney-related 
conditions such as congenital abnormalities of the kid-
ney or ureter (CAKUT), a history of resolved glomeru-
lonephritis or hemolytic uremic syndrome or repeated 
upper urinary tract infections are well-recognized CKD 
risk factors,1,2 even if kidney function appears to be nor-
mal in adolescence.3 This report examines nonprimary 
kidney diagnoses commonly managed by pediatric pro-
fessionals, which may increase the risk of subsequent 
CKD, including those systemic events that may lead to 
acute kidney injury (AKI). The increased awareness of 
the potential for kidney damage will allow pediatric 
practitioners to appropriately screen, counsel, and treat 
those patients at risk.

Chronic kidney disease is common, often underdiag-
nosed, and expensive. In the United States, CKD is the 
ninth most common cause of death4 and, in 2017, cost 
Medicare more than $120 billion.4 From 2009 to 2010, 
CKD cost the British National Health Service (NHS) an 
estimated £1.45 billion representing about 1.3% of NHS 
spending, and an estimated 19 000 CKD-related cardio-
vascular (CV) complications cost about £175 million.5 

Hypertension and diabetes, both of which can begin in 
childhood, are the most common causes of adult CKD.6 
The United States Renal Data System (USRDS) esti-
mates that about 15% of the adult population in the 
United States has some degree of CKD, but only 10% of 
those are aware of their disease and/or its implications.6 
The NHS estimates that 6% to 8% of the English popu-
lation have CKD stages 3 to 5.5 In an effort to address 
this problem in the United States, a Presidential 
Executive Order issued July 2019 states in part: “It is the 
policy of the United States to: (a) prevent kidney failure 
whenever possible through better diagnosis, treatment, 
and incentives for preventive care.”7 Similarly, a multi-
country European position paper stresses the importance 
of prevention and early detection of CKD.8 Pediatricians 
and family practitioners have important roles to meet 
this objective, as they are likely to have patients in their 
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Abstract
Chronic kidney disease (CKD) is an underrecognized and often undiagnosed cause of morbidity and mortality. Many 
children and adolescents are at increased risk of developing CKD as they mature and age, secondary to conditions 
commonly cared for by pediatric health professionals. Prematurity, diabetes mellitus, hypertension, congenital heart 
disease, sickle cell disease and trait, severe obesity, cancer chemotherapy, other drug toxicities, and systemic 
situations that may cause acute kidney injury such as sepsis or extracorporeal membrane oxygenation therapy 
predispose to potential CKD. Clinicians should be aware of these conditions in order to screen for CKD, choose 
non-nephrotoxic treatments for these children whenever possible, and treat or refer those who have early signs 
of CKD.
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practice at risk of CKD from the clinical situations 
described in this report.

Barker and colleagues stimulated intense interest in 
the pediatric origins of adult disease with their seminal 
demonstrations in the 1980s of the inverse relationships 
between low birth weight, coronary heart disease, hyper-
tension, and type 2 diabetes.9 Similarly, we now know 
that nephron endowment, or the number of functional 
nephrons an individual possesses at birth, affects later 
risk of CKD.10-14 Nephron development is negatively 
affected by genetic, epigenetic, and environmental fac-
tors, including gestational age, maternal nutrition, and 
ureteroplacental insufficiency.1,10,11,15 As humans cannot 
regenerate nephrons, a limited number at birth or 
destruction by disease provides the basis for develop-
ment of CKD. Nephrons compensate by hypertrophy 
and hyperfiltration, often marked by development of 
microalbuminuria (MA) and later proteinuria, leading to 
renal tubular damage and glomerulosclerosis with even-
tual functional loss.16-19 A urine dipstick of ≥1+ diag-
noses proteinuria, if confirmed by a carefully collected 
first morning urine protein/creatinine (mg/mg) >0.2.20,21 
MA is defined as a first morning urine >30 mg albumin/
mg creatinine.20 The antihypertensive drugs, angioten-
sin converting enzyme inhibitors (ACEIs), and angio-
tensin receptor blockers (ARBs) are hypothesized to 
limit intraglomerular hyperfiltration by altering hemo-
dynamics and are well recognized to decrease protein-
uria and retard the development of CKD in adults and 
children.17,22,23

Children and adolescents born prematurely constitute 
the most commonly encountered patients at risk for CKD 
and its consequences cared for by pediatric clinicians. 
Human nephronogenesis continues until 34 to 36 weeks 
gestation with about 60% of nephrons developing during 
the third trimester. Consequently, the earlier in gestation a 
premature infant is born, the more likely they are to have 
fewer functional nephrons, and consequently are at 
increased risk of developing CKD later in life.10,11,13,15,24 A 
national cohort study of 4.2 million live births in Sweden 
shows a 3-fold increased incidence of CKD in adults aged 
20 to 43 years born <28 weeks gestation, and a 2-fold 
increase in those born 28 to 36 weeks gestation compared 
with full-term infants.14 Using low birth weight as a sur-
rogate for lower nephron number, multiple studies have 
shown associations between low nephron number and 
higher risk of proteinuria, hypertension, cardiovascular 
disease (CVD), and CKD.13,14,25,26 A nationwide survey in 
Japan of infants born <2500 g showed a relative risk of 
CKD in children <15 years of age of 4.73 (95% confi-
dence interval = 3.91-5.73) after correction for children 
with CAKUT.27 As discussed in detail below, the risk of 
later CKD in premature and low-birth-weight infants is 

compounded by the high incidence of AKI during neona-
tal intensive care unit (NICU) care.

Search Strategy

References for this review were identified through 
searches of PubMed and the authors’ personal files with 
the search terms of the 7 clinical scenarios that the 
authors agree are the most common non-primary kidney 
or urological conditions that may lead to CKD. These 
clinical situations are prematurity, diabetes mellitus, 
hypertension, AKI, severe obesity, sickle cell disease 
(SCD), congenital heart disease (CHD), sepsis, and s/p 
exposure to nephrotoxins as in s/p cancer chemotherapy. 
They were identified by discussions with colleagues and 
personal experiences and are all well supported by cited 
references, with emphasis on most recent or “classical” 
articles. Only articles published in English or with 
English language abstracts were reviewed.

Results

Acute kidney injury occurs if renal oxygenation is com-
promised by decreased perfusion, interruptions in meta-
bolic pathways, or systemic disease and may lead to 
CKD.28-31 AKI is a frequent problem in hospitalized chil-
dren and increases the mortality rate in children who 
develop AKI in the critical care setting.32 The AWARE 
study reported that 26.9% of 4683 critically ill children 
developed AKI by 28 days after admission using Kidney 
Diseases Improving Global Outcomes (KDIGO) criteria 
for AKI.33 Repeated episodes of AKI, as frequently occurs 
in an ICU or NICU setting, markedly increase the risk of 
irreversible renal damage from nephron loss leading to 
CKD.34,35 Multiple disordered repair mechanisms lead to 
fibrosis of the renal interstitium and eventual nephron 
loss.34,35 Mammen et al found that 1 to 3 years following 
AKI in 126 children without preexisting kidney disease, 
despite all having return of serum creatinine to normal, 
9.5% had MA or proteinuria, 38% had decreased esti-
mated glomerular filtration rate (eGFR), and 3.2% had 
hypertension.36 Similarly, 18-year-old Israeli army 
recruits with a remote history of AKI, such as postinfec-
tious glomerulonephritis, have an increased incidence of 
hypertension and proteinuria indicating CKD.3 About 
10% of children between 6 months and 18 years of age 
admitted for treatment of severe sepsis had AKI and 6% 
were left with CKD.37 Thus, AKI can lead to CKD in 
many different settings in neonates and children.

Premature and very-low-birth-weight infants are 
especially at risk for AKI while undergoing NICU care, 
including hypoxia, sepsis, and exposure to nephrotoxic 
medications. The multicenter observational AWAKEN 
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study of 2022 NICU babies showed that AKI was diag-
nosed in 48% born at 22 to 28 weeks and 18% born at 29 
to 35 weeks gestation.38 An autopsy study of 56 prema-
ture infants found fewer nephrons in premature as com-
pared with term infants due to interruption of 
glomerulogenesis, with this difference more striking in 
those infants with a history of AKI.39 Recent studies 
have confirmed that infants who survive episodes of 
AKI and recover kidney function are at risk for long-
term sequelae including CKD, hypertension, and 
CVD.13,36,38,40,41 As a result, more emphasis has been 
placed on early recognition and prevention of AKI in 
this vulnerable population.10,11,13,42,43

Hypertension is the leading cause of CKD in adults.6 
Pediatric guidelines are well established for screening, 
diagnosis, and evaluation of the estimated 4% of chil-
dren worldwide who are hypertensive.44-47 Longitudinal 
data support a strong tendency for hypertension to 
track from the pediatric age group into adulthood.48 
Hypertension in teenagers has been shown to increase 
the risk of end-stage renal disease (ESRD) in middle-
aged adults in large studies in Sweden and Israel.3,45

Persistent hypertension has been associated with CV 
target organ damage in both adults and children.49 CVD 
causes significant morbidity and mortality in patients 
with CKD.6 Given the adverse effects of hypertension 
and those of CKD on CV health including ventricular 
hypertrophy, vascular calcification, and arterial stiff-
ness, it is imperative to identify and intervene. Effective 
treatment to decrease proteinuria from hypertension-
related hyperfiltration limits CVD risk50,51 and retards 
the rate of decline of renal function in pediatric patients 
with CKD.52 The association of hypertension, renal 
injury, and albuminuria has been somewhat inconsistent 
in several small pediatric studies, and so, monitoring 
MA cannot currently be recommended for serial assess-
ment of patients with hypertension as it is in the adult 
population.53

Diabetes is the second most common cause of CKD in 
the United States after hypertension.6 Between 2003 and 
2012, the incidence of type 1 diabetes mellitus (T1DM) 
increased from 19.5 in 2003 to 21.7 cases/100 000 youth/
year and type 2 diabetes mellitus (T2DM) from 9.0 in 
2003 to 12.5 cases/100 000 youth/year.54 The Centers for 
Disease Control and Prevention estimates that about 5000 
new pediatric cases of T2DM develop annually in the 
United States.4 In diabetes, MA and hypertension are 
independent but additive risks of CKD. The multicenter 
Treatment Options for T2DM in Adolescents and Youth 
(TODAY) study reported that 33.8% had hypertension 
and 16.6% had MA at 3.9 years of follow-up.55 Another 
study of youth with T1DM found that 16.1% had albu-
minuria and 12.3% had hypertension.56 The American 

Diabetes Association guidelines recommend annual 
screening for MA in children with T1DM after 5 years of 
disease or age 10, whichever comes first, and recom-
mends screening for MA at diagnosis of T2DM and annu-
ally thereafter.57 Treatment of hypertension and/or MA 
with an ACEI or an ARB is recommended to decrease 
risks of progression of CKD and CVD.57 Bariatric surgi-
cal treatment of obesity in severely obese T2DM adoles-
cents compared with medical therapy decreases the 
likelihood of CKD.58 In adult diabetic patients, the anti-
glycemic sodium-glucose co-transporter-2 (SGLT-2) 
inhibitors lower blood pressure and retard progression of 
CKD.59,60 Clinical trials of SGLT-2 inhibitors in adoles-
cents with T2DM are underway.

Obesity is the third most common predictor leading to 
ESRD in adults with odds ratios of 7.72 for proteinuria, 
3.97 for hypertension, and 3.53 for obesity.3,61 The 
National Health and Nutrition Examination Survey 
(NHANES) reports that in the United States, 13.9% of 2 to 
5 year olds, 18.4% of 6 to 11 year olds, and 20.6% of 12 to 
19 year olds are identified as obese.62 Childhood obesity 
tracks into adulthood with obese children and adolescents 
being 5 times as likely to be obese adults.63 Obesity often 
causes hypertension and/or T2DM, well-recognized ante-
cedents of CKD discussed elsewhere in this report.

Obesity is hypothesized to cause hyperfiltration 
resulting in focal segmental glomerulosclerosis,64 as 
well as renal metabolic disturbances due to the effects of 
altered adipokine levels associated with obesity.65 
Patients with preexisting decreased nephron mass who 
become obese have an even greater risk of progressive 
CKD.10,11,13,66 Weight loss interventions, including bar-
iatric surgery,58,67 have been shown to reduce albumin-
uria, the most common early manifestation of CKD in 
obesity-related nephropathies, and lessen the risk of 
ESRD in both adolescents and adults.68 As in other con-
ditions, the hemodynamic modulating ACEIs and ARBs 
are renoprotective in obese proteinuric patients.69

Children with congential heart disease (CHD)  are at 
increased risk for CKD to develop in childhood or later as 
adults.70,71 Risk increases based on the severity of the CHD 
with higher risks in those requiring surgery, having cya-
notic heart disease,71-74 requiring extracorporeal membrane 
oxygenation treatment,75 or acute renal replacement ther-
apy.76 In studies of adult patients with CHD, as many as 
50% had CKD measured by decreased eGFR.77 AKI is 
common following cardiac surgery and can occur in as 
many as 50% of children postoperatively.78 Following car-
diac surgery, 17% of CHD children experience hyperten-
sion, 8% proteinuria, and/or 13% decreased eGFR.71 The 
5-year cumulative incidence of CKD for pediatric patients 
with cardiac surgery–associated AKI was 12% compared 
with 3% of cardiac surgery children without AKI.71
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Studies in CHD patients suggest that findings of renal 
injury may be identified early in childhood by close 
monitoring for hypertension, proteinuria, and, possibly 
in the near future, biomarkers.79 Serum creatinine may 
underestimate renal decline depending on height, nutri-
tional status, and body mass index of the patient, as 
these parameters are occasionally diminished in patients 
with CHD.80

Sickle cell disease is universally associated with progres-
sive concentrating defects, and hematuria is common.81,82 
ESRD occurs in 4% to 7% of patients, most commonly in 
the third decade of life.82 Deterioration of renal function 
is nearly always associated with albuminuria. Multiple 
studies have demonstrated a prevalence of albuminuria 
of 18% or more occurring as early as the first decade of 
life.83-86 Elevated blood pressure and CKD were identi-
fied in 16.7% and 8.3%, respectively, in a cross-sectional 
study of children with SCD.87 As in other proteinuric 
renal diseases, ACEIs and ARBs reduce MA and protein-
uria in adults and children with SCD and retard loss of 
renal function.88-90 Hydroxyurea, which limits the fre-
quency of vaso-occlusive complications of SCD by redu-
cing intravascular sickling of red blood cells, reduces, at 
least in the short term, MA in both SCD children and 
adults.91

Sickle cell trait is well recognized as a risk factor 
for hematuria, renal papillary necrosis, concentration 
defects, and renal medullary carcinoma.92 A recent report 
suggests a 2-fold lifetime increase in the risk of ESRD 
over a comparable population without sickle cell trait.93

Many therapeutic medications and environmental 
exposures are potentially nephrotoxic, especially with 
high doses and/or long-term use.94,95 Cancer therapeutic 
agents may produce dose and/or duration-related kidney 
damage with a higher risk for CKD associated with high- 
dose cisplatin, carboplatin, and/or ifosfamide therapy.96,97 
Kidneys may inadvertently be exposed during radiation 
therapy for abdominal or retroperitoneal malignancy 
causing interstitial fibrosis and loss of renal function. 
Pediatric cancer survivors have high rates of subclinical 
renal dysfunction, and as many as 30% to 50% will 
develop CKD in their lifetime.97 In cancer survivors, 
MA is significantly more prevalent on urine screening 
than either hematuria or proteinuria.98

Aminoglycoside antibiotics and antifungals such as 
amphotericin can cause AKI.99 Toxic levels of the heavy 
metals lead, cadmium, uranium, and mercury damage 
the renal tubules, with resulting nephron loss.100 Some 
data suggest that chronic environmental exposure to low 
levels of heavy metals, especially cadmium, may predis-
pose to CKD.101,102 Nonsteroidal anti-inflammatory 
drugs can decrease renal blood flow resulting in AKI, 
especially in patients with preexisting renal damage or 

renovascular disease.103,104 Lithium at therapeutic levels 
causes polyuria due to loss of urine concentrating abil-
ity, and toxic levels may permanently damage the col-
lecting ducts leading to nephrogenic diabetes insipidus 
and potential nephron loss.105

Discussion

Exposure to childhood events that increase the risk of 
CKD are potentially additive.10,11,13 Thus, the former 
premature infant delivered at 26 weeks because of 
maternal eclampsia, who received several courses of 
aminoglycosides, and who as an adolescent becomes 
obese and develops T2DM is at high risk of developing 
CKD. Although many of these at-risk patients may not 
develop signs or symptoms of CKD until adulthood, it is 
incumbent on child health professionals to mitigate, 
whenever possible, the potential for adult morbidity.3,10 
Optimizing blood glucose levels in diabetes, controlling 
obesity, avoiding dangerous levels of nephrotoxic drugs, 
and controlling hypertension are obvious goals that may 
limit kidney damage.10

Microalbuminuria and proteinuria are early signs of 
CKD and are readily measured in a carefully collected 
first morning urine.20,21 Mitigating hyperfiltration with 
ACEIs or ARBs decreases the proteinuria and retards 
the progression of CKD.10,23 Since early diagnosis and 
appropriate therapy lessens the risks of progression of 
CKD, child health professionals should consider urinal-
yses during routine health maintenance visits for those 
patients at risk and treat or refer to nephrology if a posi-
tive result is confirmed. Biomarkers for early diagnosis 
of AKI and novel therapies such as SGLT-2 inhibitors in 
diabetes and hydroxyurea in SCD hold promise for ear-
lier diagnosis and more effective therapies to prevent or 
limit CKD in the near future.59,60,91
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