
© 2017. Asociación Costarricense de Medicina Legal y Disciplinas Afines
Medicina Legal de Costa Rica - Edición VirtualVol. 34 (1), Marzo 2017. ISSN 1409-0015
15. Willemsen, S., Hartog, J., Heiner-Fokkema, R., Van Veldhuisen, D. & Voors, A. (2012). Advanced glycation end
products, a pathophysiological pathway in the cardiorenal syndrome. Heart Fail Rev, 17, 221-228.
16. Chuang, P. Y., Yu, Q., Uribarri, J. & He, J. C. (2007). Advanced glycation endproducts induce podocyte apoptosis
by activation of the FOX04 transcription factor. Kidney Int, 72(8), 965-976.
17. Frye, E. B., Degenhardt, T. P., Thorpe, S. R. & Baynes, J. W. (1998). Role of Maillard reaction in aging of
tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens
proteins. J Biol Chem, 273, 18714-18719.
18. Hegab, Z., Gibbons, S., Neyses, L. & Mamas, M. (2012). Role of advanced glycation end products in
cardiovascular disease. World J Cardiology, 4(4), 90-102.
19. Piarulli, F., Sartore, G. & Lapolla, A. (2013). Glyco-oxidation and cardiovascular complications in type 2 diabetes:
a clinical update. Acta Diabetol, 50, 101-110.
20. Watkins, N. G., Thorpe, S. R. & Baynes, J. W. (1985). Glycation of amino groups in protein. J Biol Chem, 260,
10629-10636.
21. Schalkwijk, C. & Miyata, T. (2012). Early- and advanced non-enzimatic glycation in diabetic vascular complications:
the search for therapeutics. Amino Acids, 42, 1193-1204.
22. Taguchi, A., Blood, D. C., Del Toro, G., Canet, A., Lee, D. C., Qu, W., et al. (2000). Blockade of RAGE-amphoterin
signalling suppresses tumour growth and metastases. Nature, 405, 354-360.
23. Ramasamy, R., Yan, S. & Schmidt, A. (2012). Advanced glycation endproducts: from precursors to RAGE: round
and round we go. Amino Acids, 42(4), 1151-1161.
24. Brownlee, M. & Lecture, L. (1994). Glycation and diabetic complications. Diabetes, 43, 836-841.
25. Gella, A. & Durany, N. (2009). Oxidative stress in Alzheimer disease. Cell adhesion & migration, 3(1), 88-93.
26. Younessi, P. & Yoonessi, A. (2011). Advanced glycation end-products and products and their receptor-mediated
roles: inammation and oxidative stress. Iran J Med Sci, 36(3), 1-10.
27. Tabit, C. (2012). Endothelial dysfunction in diabetes mellitus: molecular mechanism and clinic implications. Rev
Endocr Metab Disord, 11(1), 61-74.
28. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813-820.
29. Border, W. A. & Noble, N. A. (1994). Transforming growth factor beta in tissue brosis. N Engl J Med, 331, 1286-
1292.
30. Goldfarb, S. & Ziyadeh, F. (2001). TGF-β: a crucial component of the pathogenesis of diabetic nephropathy.
Transac Am Clin Climatol Assoc, 112, 27-33.
31. Panee J. (2012). Monocyte chemoattractant protein (MCP-1) in obesity and diabetes. Cytokine, 60(1), 1-12.
32. Yamagashi, S. I. & Matsui, T. (2010). Advanced glycation end products, oxidative stress and diabetic nephropathy.
Oxidative Medicine and Cellular Longevity, 3(2), 101-108.
33. Kolset, S., Reinholt, F. & Jenssen, T. (2012). Diabetic nephropathy and extracellular matrix. Journal Histochemistry
& Cytochemistry, 60(12), 976-986.
34. Cravedi, P. & Remuzzi, G. (2013). Pathophysiology of proteinuria and its value as an outcome measure in
chronic kidney disease. British J Clinica Pharmacology, 7(6), 516-523.
35. Stout, M., Scifres, C. & Stamilio, D. (2013). Diagnostic utility of urine protein-to-creatinine ratio for identifying
proteinuria in pregnancy. J Matern Fetal Neonatal Med, 26(1), 66–70.
36. Dwyer, B., Gorman, M. & Druzin, M. (2008). Urinalysis vs urine protein–creatinine ratio to predict signicant
proteinuria in pregnancy. J Perinatol, 28(7), 461–467.
37. Yan, L., Ma, J., Guo, X., Tang, J., Zhang, J., Lu Z., et al. (2014). Urinary albumin excretion and prevalence of
microalbuminuria in a general Chinese population: a cross-sectional study. BMC Nephrology, 15, 165-174.