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Background:  The Super Learner is an ensemble learning method 
that has been widely used with doubly robust causal effect estimators. 
It is recommended to deploy the Super Learner with a diverse library 
of algorithms. To our knowledge, however, the magnitude of the 
improvements gained by including many algorithms has not yet been 
systematically evaluated in common epidemiologic research settings.
Methods:  We applied Super Learning with two doubly robust 
estimators, augmented inverse probability weighting (AIPW) and 
targeted minimum loss-based estimation (TMLE), to estimate the 
average treatment effect (ATE) of high periconceptional dietary 
fruit and vegetable density on the risk of preeclampsia among 7,923 
women from the nuMoM2b study. Using a reference ensemble with a 
diverse library of algorithms, we compared estimates under different 
sets of algorithms included in the Super Learner to evaluate whether 
ATE estimates were sensitive to library choices.
Results:  The doubly robust estimators fitted with the reference 
Super Learner ensemble suggested ≥2.5 cups/1,000 kcal of total fruit 
and vegetable density was associated with a lower risk of preeclamp-
sia. ATE estimated on the risk difference scale by AIPW was −0.019 
(95% confidence interval = −0.036, −0.003) and by TMLE was 
−0.023 (95% confidence interval = −0.039, −0.007). Excluding any 
individual algorithm from the reference ensemble had little impact 
on estimates from either AIPW or TMLE. However, relying on a 

single algorithm (e.g., extreme gradient boosting) yielded results that 
were much more variable.
Conclusion:  Our empirical findings support recommendations to 
build ensemble learners for doubly robust estimators using a diverse 
array of flexible machine learning algorithms.

Keywords: Average treatment effect; Dietary intake; Doubly robust 
estimator; Machine learning; Nutrition; Preeclampsia; Super 
Learning

(Epidemiology 2025;36: 760–768)

Doubly robust estimators, including augmented inverse 
probability weighting (AIPW) and targeted minimum 

loss-based estimation (TMLE), are increasingly being used to 
estimate average treatment effects (ATE) in a range of epide-
miologic contexts.1,2 In contrast to singly robust causal esti-
mators (e.g., marginal standardization or inverse probability 
weighting), doubly robust estimators can be deployed using 
machine learning algorithms and still retain optimal statistical 
properties, such as low bias, honest confidence interval (CI) 
coverage, and root-n convergence.3 Machine learning methods 
rely less on correct model specification assumptions, which 
often require knowledge of the true underlying functional 
form between the variables included in a parametric regres-
sion model. However, this knowledge does not usually exist in 
observational data.

The Super Learner has been widely used in fitting 
doubly robust estimators.4,5 Super Learner allows for a 
wide degree of flexibility in capturing the underlying 
but unknown functional forms via inclusion of a variety 
of algorithms and regression models into a single meta-
learner.6 The included algorithms are combined into 
the Super Learner via a cross-validated loss function.7 
Theoretical results (i.e., the oracle inequality) show that 
Super Learner can perform asymptotically as well as the 
best algorithm in the ensemble.8 This result suggests that 
researchers should deploy the Super Learner with a large 
and diverse library of algorithms, including parametric 
regression, penalized regression, spline-based algorithms, 
tree-based algorithms, and variations of these algorithms 
under different tuning parameter specifications.9 In many 
software environments,9–11 the number of algorithms that 
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can be included in any given Super Learner algorithm can 
be considerable.

However, including a large and diverse library of algo-
rithms in the Super Learner can be associated with important 
tradeoffs. Notably, in big datasets, including many algorithms 
in the Super Learner library, can lead to considerably long 
computing times. This often leads to questions about which 
algorithms should be prioritized in any given setting. Few 
empirical studies have evaluated the impact of algorithm 
inclusion on the variability of causal effect estimates obtained 
from doubly robust estimators. Additionally, algorithm selec-
tion for the Super Learner ensemble is mostly arbitrary. While 
a diverse library of algorithms is often recommended,9,12,13 the 
magnitude of the improvements that accrue from a given set 
of algorithms over another set has not yet been systematically 
evaluated in specific datasets commonly used in epidemio-
logic research settings.

Here, we use 7,923 observations from the Nulliparous 
Pregnancy Outcomes Study: Monitoring Mothers to Be 
(nuMoM2b) cohort to estimate the ATE of high dietary fruit 
and vegetable density on the risk of preeclampsia using 
AIPW and TMLE with the Super Learner. Specifically, 
we compare ATE estimates under different sets of algo-
rithms included in the Super Learner and evaluate whether 
they are sensitive to including different library sets in the 
ensemble.

METHODS

Study Population
We used data from the nuMoM2b, a large prospective 

pregnancy cohort study, which has been described previ-
ously.14 In brief, 10,037 women from eight medical centers 
in the United States were enrolled from 2010 to 2013 during 
their first trimester of pregnancy. Participants were eligi-
ble for inclusion if they were 6–13 weeks pregnant with a 
singleton gestation, had ≤3 prior miscarriages, and had no 
pregnancy history that lasted ≥20 weeks of gestation. At 
enrollment, trained research personnel collected and ascer-
tained baseline characteristics via physical examination and 
detailed interviews. Pregnancy outcomes were retrieved 
from medical records at least 30 days after delivery. The 
study protocol was approved by local institutional review 
boards at each study site, and all participants provided writ-
ten informed consent.

Usual dietary intake in the 3 months around conception 
was assessed using a self-administered modified Block 2005 
food frequency questionnaire (FFQ). The methodology for 
dietary assessment has been described in detail previously.15,16 
The FFQ food list included approximately 120 food and 
beverage items. We modified the FFQ to assess usual intake 
in the 3 months around conception and to add foods eaten 
commonly in Spanish-speaking populations. The FFQ has 
acceptable validity (most correlations range from 0.5 to 0.6 

for nutrients in comparison to 4-day food records), including 
in racially diverse samples.17–20

Block Dietary Data Systems (Berkeley, CA) performed 
scanning, nutrient and food group mapping, and summary 
analysis of the FFQ data using software developed at the 
National Cancer Institute.21 The food and beverage items were 
linked to the nutrient database, based on the USDA Food and 
Nutrient Database for Dietary Studies and the Food Patterns 
Equivalents Database,22,23 to generate nutrient and food group 
variables.

Our exposure of interest was total periconceptional fruit 
and vegetable density. We dichotomized the density of fruit 
and vegetable intake at 2.5 cups/1,000 kcal per day, reflect-
ing the 80th percentile of the distribution, and approximated 
the recommended intake as defined by the US Department of 
Agriculture Healthy US-Style Eating Pattern.24 We used the 
food and nutrient estimates to calculate the Healthy Eating 
Index-2015 (HEI-2015) components. Our outcome of interest 
was preeclampsia as defined by the 2013 American College 
of Obstetricians and Gynecologists diagnostic criteria and 
adapted for the nuMoM2b study.4,25

We identified confounders using causal diagrams and 
adjusted for them in all analytic models.26 Specifically, we 
accounted for demographic and reproductive health-related 
characteristics including maternal age, race–ethnicity, 
marital status, insurance status, education, acculturation, 
neighborhood walkability,27 neighborhood area deprivation 
index,28 percent of neighborhood with income below the 
federal poverty line, gravidity, prepregnancy body mass 
index, preconceptional smoking and alcohol consumption, 
preexisting hypertension and diabetes, sleep quality, health 
literacy level,29 planned pregnancy, usage of assisted repro-
ductive technologies, and symptoms of nausea/vomiting,30 
depressive,31 stress,32 and anxiety during the first trimes-
ter.33 In addition, we included the total HEI-2015 score that 
excluded the fruit and vegetable components to account for 
the residual influence of periconceptional diet quality.34 In 
total, 26 confounders (13 continuous, 13 categorical) were 
adjusted for in our analyses.

The original nuMoM2b cohort was n = 10,037. For 
the present analysis, we excluded participants without 
information on dietary intake (n = 1,786) and preeclamp-
sia diagnosis (n = 571). Participants with missingness in 
potential confounders were retained using median and 
mode imputation for continuous and categorical vari-
ables, respectively, and adjusted for missingness indica-
tors as covariates in all models.35 Our final analytic dataset 
included 7,923 participants.

Statistical Analysis
As an empirical exploration on the impact of Super 

Learner ensemble algorithm selection on causal effect esti-
mation, we estimated the ATE, which can be identified using 
our nuMoM2b data under exchangeability, counterfactual 
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consistency, positivity, and no interference.36 All estimation 
procedures were implemented in two steps.

First, we fit both outcome and propensity score 
models using the Super Learner with squared (L2) loss 
function, which is minimized via the non-negative least 
squares method. Our library included up to 10 algorithm 
sets: (1) random forests with 500 trees, at least 50 obser-
vations in each node, and 5, 6, or 7 predictor variables ran-
domly selected at each split; (2) extreme gradient boosting 
(XGBoost) with 500 trees, maximum tree depth of 4, 5, or 
6, and shrinkage parameters of 0.01, 0.1, or 0.3; (3) gen-
eralized linear models (GLM); (4) elastic-net regularized 
generalized linear models (GLMNET) with mixing param-
eter α = 0 (ridge regression), 0.25, 0.5, 0.75, or 1.0 (LASSO 
regression); (5) Bayesian generalized linear model with a 
t-distribution prior; (6) GLM with forward, backward, and 
stepwise variable selection by Akaike information cri-
terion (AIC); (7) multivariate adaptive regression spline 
(MARS) with a maximum allowable degree of interaction 
of 3, 4, or 5; (8) single-hidden-layer neural networks with 
logistic activation function, 5, 7, or 9 units in the hidden 
layer, weight decay parameter of 0.01 or 0.1, and with or 
without skip-layer connections; (9) the k-nearest neighbor 
algorithm with 5, 10, or 50 nearest neighbors; and (10) the 
simple mean. Overall, our library included up to 41 subal-
gorithms with distinctive tuning parameter specifications, 
representing tree-based, regression-based, and penalized 
modeling approaches covering a wide range of algorithm 
use cases.

We defined our reference Super Learner ensemble 
as the meta learner that included the entire set of candidate 
algorithms under all distinct tuning parameter specifications, 
which was expected to minimize misspecification for both 
nuisance models and provide us with “pseudo-unbiased” ATE 
estimates. We then explored the impact of two versions of 
subensembles built from the reference ensemble library. The 
first version consisted of a Super Learner ensemble created 
by excluding a single candidate algorithm from the refer-
ence library at a time. This led to a total of 10 different Super 
Learner ensembles, which we generically denote SL(−x). For 
example, SL(−xgboost) denotes the Super Learner ensemble fit 
with all algorithms listed above, except the extreme gradient 
boosting algorithms.

The second version consisted of a set of algorithm- 
specific ensembles that included only one candidate algorithm 
with associated hyperparameter specifications per ensemble. 
This led to 10 different Super Learner algorithms, which we 
generically denote SL(x). For example, SL(xgboost) denotes the 
Super Learner ensemble fit with only the extreme gradient 
boosting algorithms including all variations constructed via 
different tuning parameter specifications.

All Super Learner ensembles were fit using 10-fold 
internal cross-validation and were embedded in 
an outer 10-fold sample-splitting scheme to avoid the 

empirical process conditions for the doubly robust estima-
tors.3,37,38 For both propensity score and outcome models fitted 
with the reference ensemble, we computed the 10-fold aver-
ages of algorithmic coefficients (weights) and corresponding 
mean squared errors (MSEs) to evaluate what proportion of 
each model could be explained by each candidate algorithm, 
respectively. To leverage the full sample size in modeling, we 
fitted one outcome model for all subjects in the training sam-
ple of each sample-splitting fold.

In this work, our estimand was the ATE of high total 
fruit and vegetable density on preeclampsia risk:

ψ = E
(
Y a=1 − Y a=0

)

where Y a=1 denotes the preeclampsia outcome that would 
be observed if a pregnant woman consumed at least 2.5 
cups/1,000 kcal of fruits and vegetables before conception 
(Y a=0 otherwise). With the propensity score and outcome 
models fit using the referent and sub-Super Learner ensem-
bles, we constructed AIPW and TMLE estimators of the 
ATE of high fruit and vegetable density on preeclampsia 
risk. For any participant i, we let Yi denote the observed out-
come, and Ai and Wi  denote the treatment and confounder 
set received. Then, we can define ĝa (Wi) and Q̂ (Ai = a, Wi) 
as the estimated propensity score and outcome model pre-
diction for participant i, respectively. The AIPW estimator 
can thus be denoted as:39

ψ̂AIPW = Ê
[
Y a=1

]
− Ê

[
Y a=0

]

where the counterfactual mean E [Y a] is identified and com-
puted via:

Ê [Y a] =
1
n

n∑
i=1

{Q (Ai = a, Wi) +
I (Ai = a)

ga (Wi)
[Yi − Q (Ai = a, Wi)]}

under the causal identifiability assumptions. Alternatively, the 
TMLE estimator can be implemented as:40

ψ̂TMLE =
1
n

n∑
i=1

{Q∗ (Ai = 1, Wi)− Q∗ (Ai = 0, Wi)}

where the updated Q∗ can be obtained from a least favorable 
submodel, in our case defined as:

logit Q∗ (Ai = a, Wi) = logit Q (Ai = a, Wi) + εH (Ai, Wi)

and the clever covariate H (Ai, Wi) is defined as:

H (Ai, Wi) =
I (Ai = 1)

g1 (Wi)
− I (Ai = 0)

g0 (Wi)

The 95% CIs for the AIPW and TMLE estimates were cal-
culated using the standard error of the corresponding esti-
mated efficient influence function.40,41

To assess the impact of each sub-Super Learner ensem-
ble, we first computed the ATE estimates of AIPW and TMLE 
with the reference ensemble as our base comparators, denoted 
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as ψAIPW,SL  and ψTMLE,SL, respectively. Similarly, we let 
ψAIPW,SL(·) and ψTMLE,SL(·) denote the estimates of subensem-
bles (i.e., SL(x) and SL(−x)), then we define metrics as:

∆AIPW, SL(·) =
∣∣∣ψAIPW,SL(·) − ψAIPW,SL

∣∣∣

∆TMLE,SL(·) =
∣∣∣ψTMLE,SL(·) − ψTMLE,SL

∣∣∣

where ∆AIPW ,SL(·) and ∆TMLE,SL(·) denote the deviation in point 
estimates from the estimates of the reference for each suben-
semble under AIPW and TMLE applied. For example,

∆TMLE,SL(−xgboost)
=

∣∣∣ψTMLE,SL(�xgboost)
− ψTMLE,SL

∣∣∣

denotes the difference in ATE estimates from TMLE when 
the propensity score and outcome models were fit with all 
algorithms in the reference super learner ensemble except 
the extreme gradient boosting algorithms (ψTMLE,SL(−xgboost)

), compared with the ATE estimates from TMLE when the 
propensity score and outcome models were fit with all ten 
algorithms in the referent ensemble (ψTMLE,SL). To explore the 
potential setting of data with a smaller sample size and similar 
data-generating mechanism, we repeated our analysis under a 
10% subset randomly drawn from the analytic data (n = 792), 
details are provided in eAppendix 2; https://links.lww.com/
EDE/C266.

All analyses were conducted using R with version 
4.3.1,42 Super Learner ensembles were fit using R package 
SuperLearner with version 2.0-29.43

RESULTS
Most participants were aged 25–34 years, non-Hispanic 

White, married, normal weight, planned their pregnancies, 
and had private insurance, some college or higher education, 
no prepregnancy smoking, and no history of preexisting dia-
betes and chronic hypertension. About 17% of participants 
had a dietary fruit and vegetable density of ≥2.5 cups per 
1,000 kcal. Participants with higher density were more likely 
than their counterparts to be over the age of 25, non-Hispanic 
White, college or higher educated, married, privately insured, 
nonsmokers before pregnancy, and planned to be pregnant 
(Table 1).

Preeclampsia had occurred in 8.6% of the cohort. 
Women who consumed ≥2.5 cups of fruits and vegetables per 
1,000 kcal were less likely to develop preeclampsia compared 
with those whose intake was <2.5 cups per l000 kcal (6.7% vs. 
9.0%). Using doubly robust estimators with the reference Super 
Learner ensemble to adjust for covariates, we obtained the ATE 
estimates ψAIPW,SL = −0.019 (95% CI = −0.036, −0.003) and 
ψTMLE,SL = −0.023 (95% CI = −0.039, −0.007) (Table 2).

The distribution of algorithmic coefficients for the ref-
erence Super Learner ensemble differed in fitting the outcome 
and propensity score models. As shown in Tables 3 and 4, 

each coefficient represented the sum of the coefficients over 
the whole hyperparameter grid for a given algorithm. The pre-
dominant algorithms of the outcome model were GLM with 
stepwise selection by AIC, random forests, and GLMNET, 
while the propensity score model was weighted towards ran-
dom forests, MARS, GLM, and neural networks. Tables 3 
and 4 also summarized the subalgorithm performance (mea-
sured by MSE) for each algorithm included in our reference 
Super Learner ensemble, while the MSE for the entire refer-
ence ensemble was 0.077 for the outcome model and 0.120 
for the propensity score model. The best subalgorithm per-
formance (lowest MSE) was approximate for different algo-
rithms included. Different tuning parameter specifications for 
a given algorithm in the ensemble led to a wide range of esti-
mated MSEs within the same algorithm, especially for flexible 
machine learning algorithms that impose minimal functional 
form assumptions such as neural networks and k-nearest 
neighbors.

Figures 1 and 2 and eTables 1-1 and 1-2; https://links.lww.
com/EDE/C266 showed the doubly robust estimates via each sub 
Super Learner ensemble (i.e., ψAIPW,(·) and ψTMLE,(·)), accom-
panied by their deviation compared with the reference estimates 
(i.e., ∆AIPW,(·) and ∆TMLE,(·)). Seven of the 10 ensembles that 
included only one candidate algorithm (SLmean, SLGLMNET, 
SLGLM, SLBayesGLM, SLrandom forest, and SLneural network) esti-
mated a strong protective ATE when applying either of the esti-
mators, with estimates ranging from −0.035 to −0.016 via AIPW, 
and −0.025 to −0.017 via TMLE. Both AIPW and TMLE esti-
mates from SLrandom forest and the GLM-based SLx ensembles 
were close to the corresponding reference estimates, whereas 
both doubly robust estimates of SLxgboost  and SLKNN deviated 
away from the reference with relatively wide 95% CIs. The esti-
mates of SLMARS approximated the reference only when AIPW 
was used, while the estimates of the SLneural network approximated 
the reference only when TMLE was used (Figure 1, eTable 1-1; 
https://links.lww.com/EDE/C266).

All AIPW and TMLE estimates of the ensembles cre-
ated by excluding a single candidate algorithm from the refer-
ence library (i.e., SL−x) were nearly identical to the reference 
in both point estimates and 95% CIs. Excluding any individ-
ual algorithm from the reference ensemble had little impact 
on the ATE estimates, regardless of which doubly robust esti-
mator was used (Figure 2, eTable 1-2; https://links.lww.com/
EDE/C266). Our repeated analysis using the 10% randomly 
drawn subset yielded similar point effect estimates compared 
with the full-sample analysis (eAppendix 2; https://links.lww.
com/EDE/C266).

DISCUSSION
Doubly robust estimators and the Super Learner ensem-

ble method provide epidemiologists with a generalized frame-
work to implement flexible, data-adaptive methods into causal 
effect estimation. Here, we compared the performance of 
doubly robust estimators fitted with different Super Learner 

https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
https://links.lww.com/EDE/C266
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ensembles in estimating the ATE of high dietary fruit and veg-
etable density on the risk of preeclampsia.

Doubly robust estimators allow for consistent and efficient 
causal effect estimation when machine learning algorithms are 
used to estimate nuisance functions, such as the propensity score 
and outcome model. Here, “double robustness” is often used to 
refer to the property that the estimators would be asymptotically 
consistent if at least one of the nuisance models (i.e., outcome 
and propensity models) is correctly specified. In addition, dou-
bly robust estimators help to mitigate the influence of the curse 

of dimensionality for nonparametric machine learning algo-
rithms, which results in slow estimator convergence rates in high- 
dimensional settings and leads to imprecise and biased estimates 
in finite samples.44 By applying with sample-splitting or cross- 
fitting to avoid empirical process assumptions (e.g., the Donsker 
condition), doubly robust estimators can achieve a better conver-
gence than singly robust methods, especially when the estimators 
of each nuisance function converge at slower (e.g., n−1/4) rates. 
This facilitates obtaining valid inferences even when flexible 
machine learning methods are used to estimate effects.41

TABLE 1.  Selected Characteristics of 7,923 Pregnant Women in the Nulliparous Pregnancy Outcomes Study: Monitoring 
Mothers-to-be (nuMoM2b)

Total Fruit and Vegetable Density

Total
(N = 7,923)

<2.5 cups/1,000 kcal
(N = 6,612)

≥2.5 cups/1,000 kcal
(N = 1,311)

Maternal age (years)

 <25 2,598 (33%) 2,408 (36%) 190 (14%)

 25–34 4,557 (58%) 3,633 (55%) 924 (70%)

 ≥35 768 (10%) 571 (9%) 197 (15%)

Maternal race/ethnicity

 Hispanic 1,353 (17%) 1,172 (18%) 181 (14%)

 Non-Hispanic Black 892 (11%) 833 (13%) 59 (5%)

 Non-Hispanic White 5,023 (63%) 4,059 (61%) 964 (74%)

 Others 655 (8%) 548 (8%) 107 (8%)

Maternal education

 High school or less 1,397 (18%) 1,314 (20%) 83 (6%)

 Some college/associate 2,246 (28%) 2,017 (31%) 229 (17%)

 College graduate 2,337 (29%) 1,863 (28%) 474 (36%)

 Graduate degree 1,943 (25%) 1,418 (21%) 525 (40%)

Marital status

 Married 5,147 (65%) 4,052 (61%) 1,095 (84%)

 Not married 2,776 (35%) 2,560 (39%) 216 (16%)

Insurance

 Private 5,643 (71%) 4,510 (68%) 1,133 (86%)

 Public 2,146 (27%) 1,987 (30%) 159 (12%)

 Self-pay 134 (2%) 115 (2%) 19 (1%)

Prepregnancy body mass index

 Underweight 314 (4%) 272 (4%) 42 (3%)

 Normal weight 4,453 (56%) 3,633 (55%) 820 (63%)

 Overweight 1,702 (21%) 1,434 (22%) 268 (20%)

 Obese 1,448 (18%) 1,267 (19%) 181 (14%)

Prepregnancy smoking

 No 6,591 (83%) 5,381 (81%) 1,210 (92%)

 Yes 1,326 (17%) 1,225 (19%) 101 (8%)

Preexisting chronic hypertension

 No 7,692 (97%) 6,410 (97%) 1,282 (98%)

 Yes 231 (3%) 202 (3%) 29 (2%)

Preexisting diabetes

 No 7,813 (99%) 6,524 (99%) 1,289 (98%)

 Yes 110 (1%) 88 (1%) 22 (2%)

Planned pregnancy

 No 3,039 (38%) 2,744 (42%) 295 (23%)

 Yes 4,880 (62%) 3,864 (58%) 1,016 (77%)

Counts may not sum to the total due to missing data.
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Using both AIPW and TMLE estimators with our  
“pseudo-unbiased” reference Super Learner ensemble, we 
found ≥ 2.5 cups/1,000 kcal of total fruit and vegetable den-
sity was associated with approximately 2 reduced cases of 
preeclampsia per 100 pregnancies. This aligns with our pre-
vious findings,26 as we obtained roughly the same estimates 
of ATE but using an augmented ensemble with a more diverse 
library of candidate algorithms and an optimized coverage of 
tuning parameter specifications.

In our reference ensemble, we noted different algo-
rithmic coefficients (weights) between the propensity score 
and outcome models. This suggests the importance of the 
data-adaptive property of the Super Learning method: dif-
ferent algorithms are driving the overall fit of the propen-
sity score versus outcome model. Super Learning provides 
a generalized approach that can combine parametric, semi- 
parametric, and nonparametric algorithms together by lever-
aging multifold cross-validation to assign weights for each 
algorithm, yielding a convex combination to minimize the 
overall cross-validated risk.6,7,9 In this work, the MSE of the 
reference Super Learner ensemble for both outcome regres-
sion and the propensity score model was no greater than 
any candidate subalgorithms, indicating that the ensemble 

performed at least as well as the best-performing subalgo-
rithm in minimizing the L2 loss.

The Super Learner can be applied with a variety of 
loss functions, such as L2, cross-entropy, and AUC losses.7,13 
We restricted our Super Learners to the L2 loss minimized 
via non-negative least squares for two reasons. First, in our 
experience, this is the most commonly deployed optimiza-
tion approach when researchers use the Super Learner with 
AIPW or TMLE to estimate ATEs, and is supported by theo-
retical work in statistics.41,45 Additionally, a recent paper sug-
gests that, when nuisance functions are optimized via L2 loss, 
first-order ATE estimators such as AIPW and TMLE are not 
improvable (in a minimax sense) without additional structural 
assumptions.46

One fundamental motivation for applying flexible 
machine learning algorithms in causal inference is to over-
come the reliance on parametric assumptions and thus avoid 
model misspecification. However, when we applied each 
candidate algorithm with AIPW and TMLE estimators, the 
individual performance of all flexible machine learning algo-
rithms (except random forests) was inferior, with point esti-
mates deviating away from the reference and relatively wide 
95% CIs. In contrast, parametric GLM-based algorithms, 

TABLE 2.  Estimates of the Average Treatment Effect of ≥2.5 cups/1,000 kcal Total Fruit and Vegetable Density on the Risk of 
Preeclampsia Using the Reference Super Learner Ensemble

Fruit and Vegetable Intake Population at Risk Preeclampsia (%)

ATE Estimates (95% CI)

AIPW TMLE

<2.5 cups/1,000 kcal 6,612 594 (9.0%) Ref. Ref.

≥2.5 cups/1,000 kcal 1,311 88 (6.7%) −0.019 (−0.036, −0.003) −0.023 (−0.039, −0.007)

AIPW indicates augmented inverse probability weighting; ATE, average treatment effect; TMLE, targeted minimum loss-based estimation.

TABLE 3.  Coefficient and Subalgorithm MSE of Outcome Model Fitted With the Reference Super Learner Ensemble Using 
nuMoM2b Data (n = 7,923)

Algorithm

Outcome Model

Coefficient Na

Subalgorithm MSE

Min Max Geometric Mean

Stepwise by AIC 0.589 3 0.077 0.079 0.078

Random forests 0.163 3 0.078 0.078 0.078

GLMNET 0.123 5 0.077 0.077 0.077

Neural network 0.041 12 0.082 0.109 0.094

MARS 0.034 3 0.081 0.083 0.082

XGBoost 0.027 9 0.084 0.085 0.085

K Nearest 0.013 3 0.080 0.093 0.086

Mean 0.010 1 0.079 0.079 0.079

BayesGLM 0.000 1 0.078 0.078 0.078

GLM 0.000 1 0.078 0.078 0.078

aN, number of subalgorithms in each candidate subensemble.
AIC indicates Akaike information criterion; BayesGLM, Bayesian generalized linear model; GLM, generalized linear model; GLMNET, elastic-net regularized generalized linear 

models; MARS, multivariate adaptive regression spline; MSE, mean squared error; nuMoM2b, Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be; XGBoost, extreme 
gradient boosting.
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especially GLM with elastic net regularization, obtained 
estimates that approximated the reference. In this case, the 
improvement brought by using a Super Learner ensemble 
with a diverse library that includes flexible machine learning 
algorithms was limited compared with the conventional para-
metric modeling approach.

Our work revealed one advantage of incorporat-
ing a wide variety of algorithms into the Super Learner in 

epidemiologic practice, that is, to maximize the likelihood of 
capturing the underlying functional format of both nuisance 
models in the doubly robust estimator. In our analysis, the 
estimates remained unchanged for all SL(−x) subensembles, 
even when we removed the most dominant candidate algo-
rithm in the outcome and propensity score models from the 
reference ensemble (Figure 2). However, this result should be 
interpreted conditional on the arbitrarily selected reference 

TABLE 4.  Coefficient and Subalgorithm MSE of Propensity Score Model Fitted With the Reference Super Learner Ensemble 
Using nuMoM2b Data (n = 7,923)

Algorithm

Propensity Score Model

Coefficient Na

Subalgorithm MSE

Min Max Geometric Mean

Random forests 0.374 3 0.121 0.121 0.121

MARS 0.154 3 0.125 0.128 0.127

GLM 0.136 1 0.121 0.121 0.121

Neural network 0.112 12 0.125 0.153 0.137

BayesGLM 0.090 1 0.121 0.121 0.121

GLMNET 0.062 5 0.121 0.121 0.121

XGBoost 0.046 9 0.135 0.140 0.138

Stepwise by AIC 0.018 3 0.122 0.138 0.127

K Nearest 0.009 3 0.129 0.150 0.139

Mean 0.000 1 0.138 0.138 0.138

aN, number of subalgorithms in each candidate subensemble.
AIC, Akaike information criterion; BayesGLM, Bayesian generalized linear model; GLM, generalized linear model; GLMNET, elastic-net regularized generalized linear models; 

MARS, multivariate adaptive regression spline; MSE, mean squared error; nuMoM2b, Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be; XGBoost, extreme gradient 
boosting.

FIGURE 1.  Estimates of the average treatment effect of ≥2.5 cups/1,000 kcal total fruit and vegetable density on the risk of 
preeclampsia using algorithm-specific Super Learner ensembles in the Nulliparous Pregnancy Outcomes Study: monitoring  
mothers-to-be (nuMoM2b).
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Super Learner, as we included “mutually substitutable” can-
didate algorithms with significant overlap in strengths (e.g., 
GLM and GLMNET). The impact of excluding certain algo-
rithm from a Super Learner ensemble with such overlapped 
algorithms on the effect estimates would therefore be much 
smaller than the impact of excluding the same algorithm from 
an ensemble without overlapping. Overall, our result is sug-
gestive of the importance of using a wide array of diverse 
candidate algorithms in the Super Learner, despite the cost- 
effectiveness of this strategy may become another concern 
under limited computational resources.

Our findings should be considered with several key limita-
tions in mind. First, we estimated effects in empirical data, and 
thus do not know the true ATE. In our setting, we used the effects 
obtained under a full reference library as a comparator for all 
other candidate libraries. However, it is possible that our referent 
estimates were biased due to an inappropriately specified Super 
Learner algorithm. Second, our findings are specific to our data 
and may not be generalizable to other settings of different topics, 
especially those with smaller sample sizes and different under-
lying effect sizes. We partially addressed the concern on sample 
size by repeating the analysis using 10% subset (eAppendix 2; 
https://links.lww.com/EDE/C266). Additionally, our overall 
approach only consisted of including or excluding one candidate 
algorithm each time from the reference ensemble. For example, 
all GLMNET subalgorithms with different tuning parameter 
specifications were included or excluded at once. However, we 
did not evaluate the impact of including or excluding a set of dif-
ferent algorithms at a time.

Our findings suggest that when applying doubly robust 
estimators with the Super Learning ensemble method in large 
epidemiologic data, a good performance in estimation can be 
achieved by including finite algorithms. Building ensembles 
with an extremely large array of flexible machine learning 
algorithms may only yield minimal improvement in precision 
and accuracy of doubly robust estimation and is therefore not 
cost-effective under limited computational resources. Despite 
this, using a diverse Super Learner ensemble does benefit the 
doubly robust estimation in practice as consistent effect esti-
mates can be obtained with different algorithm choices.
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