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Algorithm Selection for Estimating Causal Effects
Nulliparous Pregnancy Outcomes Study: Monitoring Mothers to Be

Zhaohua Zeng,* Lisa M. Bodnar,* and ©Ashley I. Naimi¢

Background: The Super Learner is an ensemble learning method
that has been widely used with doubly robust causal effect estimators.
It is recommended to deploy the Super Learner with a diverse library
of algorithms. To our knowledge, however, the magnitude of the
improvements gained by including many algorithms has not yet been
systematically evaluated in common epidemiologic research settings.
Methods: We applied Super Learning with two doubly robust
estimators, augmented inverse probability weighting (AIPW) and
targeted minimum loss-based estimation (TMLE), to estimate the
average treatment effect (ATE) of high periconceptional dietary
fruit and vegetable density on the risk of preeclampsia among 7,923
women from the nuMoM2b study. Using a reference ensemble with a
diverse library of algorithms, we compared estimates under different
sets of algorithms included in the Super Learner to evaluate whether
ATE estimates were sensitive to library choices.

Results: The doubly robust estimators fitted with the reference
Super Learner ensemble suggested >2.5 cups/1,000 kcal of total fruit
and vegetable density was associated with a lower risk of preeclamp-
sia. ATE estimated on the risk difference scale by AIPW was —0.019
(95% confidence interval = —0.036, —0.003) and by TMLE was
—0.023 (95% confidence interval = —0.039, —0.007). Excluding any
individual algorithm from the reference ensemble had little impact
on estimates from either AIPW or TMLE. However, relying on a
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single algorithm (e.g., extreme gradient boosting) yielded results that
were much more variable.

Conclusion: Our empirical findings support recommendations to
build ensemble learners for doubly robust estimators using a diverse
array of flexible machine learning algorithms.

Keywords: Average treatment effect; Dietary intake; Doubly robust
estimator; Machine learning; Nutrition; Preeclampsia; Super
Learning
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Doubly robust estimators, including augmented inverse
probability weighting (AIPW) and targeted minimum
loss-based estimation (TMLE), are increasingly being used to
estimate average treatment effects (ATE) in a range of epide-
miologic contexts.!:2 In contrast to singly robust causal esti-
mators (e.g., marginal standardization or inverse probability
weighting), doubly robust estimators can be deployed using
machine learning algorithms and still retain optimal statistical
properties, such as low bias, honest confidence interval (CI)
coverage, and root-n convergence.> Machine learning methods
rely less on correct model specification assumptions, which
often require knowledge of the true underlying functional
form between the variables included in a parametric regres-
sion model. However, this knowledge does not usually exist in
observational data.

The Super Learner has been widely used in fitting
doubly robust estimators.*s Super Learner allows for a
wide degree of flexibility in capturing the underlying
but unknown functional forms via inclusion of a variety
of algorithms and regression models into a single meta-
learner. The included algorithms are combined into
the Super Learner via a cross-validated loss function.’
Theoretical results (i.e., the oracle inequality) show that
Super Learner can perform asymptotically as well as the
best algorithm in the ensemble.® This result suggests that
researchers should deploy the Super Learner with a large
and diverse library of algorithms, including parametric
regression, penalized regression, spline-based algorithms,
tree-based algorithms, and variations of these algorithms
under different tuning parameter specifications.® In many
software environments,’!! the number of algorithms that
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can be included in any given Super Learner algorithm can
be considerable.

However, including a large and diverse library of algo-
rithms in the Super Learner can be associated with important
tradeoffs. Notably, in big datasets, including many algorithms
in the Super Learner library, can lead to considerably long
computing times. This often leads to questions about which
algorithms should be prioritized in any given setting. Few
empirical studies have evaluated the impact of algorithm
inclusion on the variability of causal effect estimates obtained
from doubly robust estimators. Additionally, algorithm selec-
tion for the Super Learner ensemble is mostly arbitrary. While
a diverse library of algorithms is often recommended,”!2!? the
magnitude of the improvements that accrue from a given set
of algorithms over another set has not yet been systematically
evaluated in specific datasets commonly used in epidemio-
logic research settings.

Here, we use 7,923 observations from the Nulliparous
Pregnancy Outcomes Study: Monitoring Mothers to Be
(nuMoM2b) cohort to estimate the ATE of high dietary fruit
and vegetable density on the risk of preeclampsia using
AIPW and TMLE with the Super Learner. Specifically,
we compare ATE estimates under different sets of algo-
rithms included in the Super Learner and evaluate whether
they are sensitive to including different library sets in the
ensemble.

METHODS

Study Population

We used data from the nuMoM2b, a large prospective
pregnancy cohort study, which has been described previ-
ously." In brief, 10,037 women from eight medical centers
in the United States were enrolled from 2010 to 2013 during
their first trimester of pregnancy. Participants were eligi-
ble for inclusion if they were 6—13 weeks pregnant with a
singleton gestation, had <3 prior miscarriages, and had no
pregnancy history that lasted =20 weeks of gestation. At
enrollment, trained research personnel collected and ascer-
tained baseline characteristics via physical examination and
detailed interviews. Pregnancy outcomes were retrieved
from medical records at least 30 days after delivery. The
study protocol was approved by local institutional review
boards at each study site, and all participants provided writ-
ten informed consent.

Usual dietary intake in the 3 months around conception
was assessed using a self-administered modified Block 2005
food frequency questionnaire (FFQ). The methodology for
dietary assessment has been described in detail previously.!51¢
The FFQ food list included approximately 120 food and
beverage items. We modified the FFQ to assess usual intake
in the 3 months around conception and to add foods eaten
commonly in Spanish-speaking populations. The FFQ has
acceptable validity (most correlations range from 0.5 to 0.6
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for nutrients in comparison to 4-day food records), including
in racially diverse samples.!7-20

Block Dietary Data Systems (Berkeley, CA) performed
scanning, nutrient and food group mapping, and summary
analysis of the FFQ data using software developed at the
National Cancer Institute.?! The food and beverage items were
linked to the nutrient database, based on the USDA Food and
Nutrient Database for Dietary Studies and the Food Patterns
Equivalents Database,?2? to generate nutrient and food group
variables.

Our exposure of interest was total periconceptional fruit
and vegetable density. We dichotomized the density of fruit
and vegetable intake at 2.5 cups/1,000 kcal per day, reflect-
ing the 80th percentile of the distribution, and approximated
the recommended intake as defined by the US Department of
Agriculture Healthy US-Style Eating Pattern.* We used the
food and nutrient estimates to calculate the Healthy Eating
Index-2015 (HEI-2015) components. Our outcome of interest
was preeclampsia as defined by the 2013 American College
of Obstetricians and Gynecologists diagnostic criteria and
adapted for the nuMoM2b study.+25

We identified confounders using causal diagrams and
adjusted for them in all analytic models.2¢ Specifically, we
accounted for demographic and reproductive health-related
characteristics including maternal age, race—ethnicity,
marital status, insurance status, education, acculturation,
neighborhood walkability,?” neighborhood area deprivation
index,?® percent of neighborhood with income below the
federal poverty line, gravidity, prepregnancy body mass
index, preconceptional smoking and alcohol consumption,
preexisting hypertension and diabetes, sleep quality, health
literacy level,? planned pregnancy, usage of assisted repro-
ductive technologies, and symptoms of nausea/vomiting,°
depressive,’! stress,’? and anxiety during the first trimes-
ter.33 In addition, we included the total HEI-2015 score that
excluded the fruit and vegetable components to account for
the residual influence of periconceptional diet quality.>* In
total, 26 confounders (13 continuous, 13 categorical) were
adjusted for in our analyses.

The original nuMoM2b cohort was n = 10,037. For
the present analysis, we excluded participants without
information on dietary intake (n = 1,786) and preeclamp-
sia diagnosis (n = 571). Participants with missingness in
potential confounders were retained using median and
mode imputation for continuous and categorical vari-
ables, respectively, and adjusted for missingness indica-
tors as covariates in all models.3s Our final analytic dataset
included 7,923 participants.

Statistical Analysis

As an empirical exploration on the impact of Super
Learner ensemble algorithm selection on causal effect esti-
mation, we estimated the ATE, which can be identified using
our nuMoM2b data under exchangeability, counterfactual
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consistency, positivity, and no interference.’¢ All estimation
procedures were implemented in two steps.

First, we fit both outcome and propensity score
models using the Super Learner with squared (L2) loss
function, which is minimized via the non-negative least
squares method. Our library included up to 10 algorithm
sets: (1) random forests with 500 trees, at least 50 obser-
vations in each node, and 5, 6, or 7 predictor variables ran-
domly selected at each split; (2) extreme gradient boosting
(XGBoost) with 500 trees, maximum tree depth of 4, 5, or
6, and shrinkage parameters of 0.01, 0.1, or 0.3; (3) gen-
eralized linear models (GLM); (4) elastic-net regularized
generalized linear models (GLMNET) with mixing param-
eter o = 0 (ridge regression), 0.25, 0.5, 0.75, or 1.0 (LASSO
regression); (5) Bayesian generalized linear model with a
t-distribution prior; (6) GLM with forward, backward, and
stepwise variable selection by Akaike information cri-
terion (AIC); (7) multivariate adaptive regression spline
(MARS) with a maximum allowable degree of interaction
of 3, 4, or 5; (8) single-hidden-layer neural networks with
logistic activation function, 5, 7, or 9 units in the hidden
layer, weight decay parameter of 0.01 or 0.1, and with or
without skip-layer connections; (9) the k-nearest neighbor
algorithm with 5, 10, or 50 nearest neighbors; and (10) the
simple mean. Overall, our library included up to 41 subal-
gorithms with distinctive tuning parameter specifications,
representing tree-based, regression-based, and penalized
modeling approaches covering a wide range of algorithm
use cases.

We defined our reference Super Learner ensemble
as the meta learner that included the entire set of candidate
algorithms under all distinct tuning parameter specifications,
which was expected to minimize misspecification for both
nuisance models and provide us with “pseudo-unbiased” ATE
estimates. We then explored the impact of two versions of
subensembles built from the reference ensemble library. The
first version consisted of a Super Learner ensemble created
by excluding a single candidate algorithm from the refer-
ence library at a time. This led to a total of 10 different Super
Learner ensembles, which we generically denote SL(_,). For
example, SL(_gpoosr) denotes the Super Learner ensemble fit
with all algorithms listed above, except the extreme gradient
boosting algorithms.

The second version consisted of a set of algorithm-
specific ensembles that included only one candidate algorithm
with associated hyperparameter specifications per ensemble.
This led to 10 different Super Learner algorithms, which we
generically denote SL(y). For example, SL(xgp00sr) denotes the
Super Learner ensemble fit with only the extreme gradient
boosting algorithms including all variations constructed via
different tuning parameter specifications.

All Super Learner ensembles were fit using 10-fold
internal ~ cross-validation and ~ were  embedded in
an outer 10-fold sample-splitting scheme to avoid the
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empirical process conditions for the doubly robust estima-
tors.>37:38 For both propensity score and outcome models fitted
with the reference ensemble, we computed the 10-fold aver-
ages of algorithmic coefficients (weights) and corresponding
mean squared errors (MSEs) to evaluate what proportion of
each model could be explained by each candidate algorithm,
respectively. To leverage the full sample size in modeling, we
fitted one outcome model for all subjects in the training sam-
ple of each sample-splitting fold.

In this work, our estimand was the ATE of high total
fruit and vegetable density on preeclampsia risk:

’L/J _ E(ya:l _ Ya:O)

where Y“=! denotes the preeclampsia outcome that would
be observed if a pregnant woman consumed at least 2.5
cups/1,000 kceal of fruits and vegetables before conception
(Y*=0 otherwise). With the propensity score and outcome
models fit using the referent and sub-Super Learner ensem-
bles, we constructed AIPW and TMLE estimators of the
ATE of high fruit and vegetable density on preeclampsia
risk. For any participant i, we let ¥; denote the observed out-
come, and 4; and W; denote the treatment and confounder
set received. Then, we can define &, (W;) and Q (4; = a, W;)
as the estimated propensity score and outcome model pre-
diction for participant i, respectively. The AIPW estimator
can thus be denoted as:

baw = E [Y*='] — E [y~
where the counterfactual mean E [Y“]is identified and com-
puted via:

1 (Al = d)

I a_l - = a. W L =a W
E[Y}—n;{Q(AI W)+ — g W= Q (i = a )}

under the causal identifiability assumptions. Alternatively, the
TMLE estimator can be implemented as:*

R 1 <&
PIMLE = - ;{Q* Ai=1,W;)—0"(4; =0,W))}

where the updated Q* can be obtained from a least favorable
submodel, in our case defined as:

logit O* (4; = a, W;) = logit Q (4; = a, W;) + eH (4;, W;)

and the clever covariate H (4;, W;) is defined as:

H(A,»,W,»):I(A’_l) _I(A,_O)

g1 (") 8o (W)

The 95% Cls for the AIPW and TMLE estimates were cal-

culated using the standard error of the corresponding esti-
mated efficient influence function.*0:4!

To assess the impact of each sub-Super Learner ensem-

ble, we first computed the ATE estimates of AIPW and TMLE

with the reference ensemble as our base comparators, denoted
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as Yarpwst and YtMmLEsL, respectively. Similarly, we let
papw,sL., and PrmLE s, denote the estimates of subensem-
bles (i.e., SL(x) and SL(_y)), then we define metrics as:

Aapw, s, = ‘¢AIPW,SL(_) - dJAIPw,SL‘

AtMmLESL., = ‘dJTMLE,SL(,) - 1/1TMLE,SL‘

where A AIPW 5L, and Aryviest ., denote the deviation in point
estimates from the estimates of the reference for each suben-
semble under AIPW and TMLE applied. For example,

ATMLESL(_ygpoony = "QZ)TMLE,SL(,W;,W,) - wTMLE,SL‘

denotes the difference in ATE estimates from TMLE when
the propensity score and outcome models were fit with all
algorithms in the reference super learner ensemble except
the extreme gradient boosting algorithms (YTMLE,SL_ g
), compared with the ATE estimates from TMLE when the
propensity score and outcome models were fit with all ten
algorithms in the referent ensemble (¢tmiE,sL). To explore the
potential setting of data with a smaller sample size and similar
data-generating mechanism, we repeated our analysis under a
10% subset randomly drawn from the analytic data (n = 792),
details are provided in eAppendix 2; https://links.lww.com/
EDE/C266.

All analyses were conducted using R with version
4.3.1,2 Super Learner ensembles were fit using R package
SuperLearner with version 2.0-29.4

RESULTS

Most participants were aged 25—34 years, non-Hispanic
White, married, normal weight, planned their pregnancies,
and had private insurance, some college or higher education,
no prepregnancy smoking, and no history of preexisting dia-
betes and chronic hypertension. About 17% of participants
had a dietary fruit and vegetable density of >2.5 cups per
1,000 kcal. Participants with higher density were more likely
than their counterparts to be over the age of 25, non-Hispanic
White, college or higher educated, married, privately insured,
nonsmokers before pregnancy, and planned to be pregnant
(Table 1).

Preeclampsia had occurred in 8.6% of the cohort.
Women who consumed =2.5 cups of fruits and vegetables per
1,000 kcal were less likely to develop preeclampsia compared
with those whose intake was <2.5 cups per 1000 kcal (6.7% vs.
9.0%). Using doubly robust estimators with the reference Super
Learner ensemble to adjust for covariates, we obtained the ATE
estimates Yarpw.st. = —0.019 (95% CI = —0.036, —0.003) and
YrmeesL = —0.023 (95% CI=-0.039, —0.007) (Table 2).

The distribution of algorithmic coefficients for the ref-
erence Super Learner ensemble differed in fitting the outcome
and propensity score models. As shown in Tables 3 and 4,
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each coefficient represented the sum of the coefficients over
the whole hyperparameter grid for a given algorithm. The pre-
dominant algorithms of the outcome model were GLM with
stepwise selection by AIC, random forests, and GLMNET,
while the propensity score model was weighted towards ran-
dom forests, MARS, GLM, and neural networks. Tables 3
and 4 also summarized the subalgorithm performance (mea-
sured by MSE) for each algorithm included in our reference
Super Learner ensemble, while the MSE for the entire refer-
ence ensemble was 0.077 for the outcome model and 0.120
for the propensity score model. The best subalgorithm per-
formance (lowest MSE) was approximate for different algo-
rithms included. Different tuning parameter specifications for
a given algorithm in the ensemble led to a wide range of esti-
mated MSEs within the same algorithm, especially for flexible
machine learning algorithms that impose minimal functional
form assumptions such as neural networks and k-nearest
neighbors.

Figures 1 and 2 and eTables 1-1 and 1-2; https://links.lww.
com/EDE/C266 showed the doubly robust estimates via each sub
Super Learner ensemble (i.e., Yarpw,(-) and YTmLE,(.)), accom-
panied by their deviation compared with the reference estimates
(i.e., Aarpw,(.) and Armee,(.)). Seven of the 10 ensembles that
included only one candidate algorithm (SLmean, SLGLMNET,
SLLm, SLBayesGLM, SLandom forest> and SLneural network) esti-
mated a strong protective ATE when applying either of the esti-
mators, with estimates ranging from —0.035 to —0.016 via AIPW,
and —0.025 to —0.017 via TMLE. Both AIPW and TMLE esti-
mates from SLrandom  forest and the GLM-based SL, ensembles
were close to the corresponding reference estimates, whereas
both doubly robust estimates of SLygpoost and SLxnn deviated
away from the reference with relatively wide 95% ClIs. The esti-
mates of SLvars approximated the reference only when AIPW
was used, while the estimates of the SLneural network approximated
the reference only when TMLE was used (Figure 1, eTable 1-1;
https:/links.lww.com/EDE/C266).

All AIPW and TMLE estimates of the ensembles cre-
ated by excluding a single candidate algorithm from the refer-
ence library (i.e., SL—x) were nearly identical to the reference
in both point estimates and 95% ClIs. Excluding any individ-
ual algorithm from the reference ensemble had little impact
on the ATE estimates, regardless of which doubly robust esti-
mator was used (Figure 2, eTable 1-2; https://links.lww.com/
EDE/C266). Our repeated analysis using the 10% randomly
drawn subset yielded similar point effect estimates compared
with the full-sample analysis (eAppendix 2; https://links.lww.
com/EDE/C266).

DISCUSSION
Doubly robust estimators and the Super Learner ensem-
ble method provide epidemiologists with a generalized frame-
work to implement flexible, data-adaptive methods into causal
effect estimation. Here, we compared the performance of
doubly robust estimators fitted with different Super Learner
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TABLE 1. Selected Characteristics of 7,923 Pregnant Women in the Nulliparous Pregnancy Outcomes Study: Monitoring

Mothers-to-be (nuMoM2b)

Total Fruit and Vegetable Density

Total <2.5 cups/1,000 kcal 22.5 cups/1,000 kcal
(N=17,923) (N =6,612) (N=1,311)
Maternal age (years)
<25 2,598 (33%) 2,408 (36%) 190 (14%)
25-34 4,557 (58%) 3,633 (55%) 924 (70%)
=35 768 (10%) 571 (9%) 197 (15%)

Maternal race/ethnicity
Hispanic
Non-Hispanic Black
Non-Hispanic White
Others

Maternal education
High school or less
Some college/associate
College graduate
Graduate degree
Marital status

Married

Not married

Insurance

Private

Public

Self-pay
Prepregnancy body mass index
Underweight

Normal weight
Overweight

Obese

Prepregnancy smoking
No

Yes

Preexisting chronic hypertension
No

Yes

Preexisting diabetes
No

Yes

Planned pregnancy

No

Yes

1,353 (17%)
892 (11%)
5,023 (63%)
655 (8%)

1,397 (18%)
2,246 (28%)
2,337 (29%)
1,943 (25%)

5,147 (65%)
2,776 (35%)

5,643 (71%)
2,146 (27%)
134 (2%)

314 (4%)
4,453 (56%)
1,702 (21%)
1,448 (18%)

6,591 (83%)
1,326 (17%)

7,692 (97%)
231 (3%)

7,813 (99%)
110 (1%)

3,039 (38%)
4,880 (62%)

1,172 (18%)
833 (13%)
4,059 (61%)
548 (8%)

1,314 (20%)
2,017 (31%)
1,863 (28%)
1,418 (21%)

4,052 (61%)
2,560 (39%)

4,510 (68%)
1,987 (30%)
115 (2%)

272 (4%)
3,633 (55%)
1,434 (22%)
1,267 (19%)

5,381 (81%)
1,225 (19%)

6,410 (97%)
202 (3%)

6,524 (99%)
88 (1%)

2,744 (42%)
3,864 (58%)

181 (14%)
59 (5%)
964 (74%)
107 (8%)

83 (6%)
229 (17%)
474 (36%)
525 (40%)

1,095 (84%)
216 (16%)

1,133 (86%)
159 (12%)
19 (1%)

42 (3%)
820 (63%)
268 (20%)
181 (14%)

1,210 (92%)
101 (8%)

1,282 (98%)
29 (2%)

1,289 (98%)
22 (2%)

295 (23%)
1,016 (77%)

Counts may not sum to the total due to missing data.

ensembles in estimating the ATE of high dietary fruit and veg-
etable density on the risk of preeclampsia.

Doubly robust estimators allow for consistent and efficient
causal effect estimation when machine learning algorithms are
used to estimate nuisance functions, such as the propensity score
and outcome model. Here, “double robustness” is often used to
refer to the property that the estimators would be asymptotically
consistent if at least one of the nuisance models (i.e., outcome
and propensity models) is correctly specified. In addition, dou-
bly robust estimators help to mitigate the influence of the curse
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of dimensionality for nonparametric machine learning algo-
rithms, which results in slow estimator convergence rates in high-
dimensional settings and leads to imprecise and biased estimates
in finite samples.* By applying with sample-splitting or cross-
fitting to avoid empirical process assumptions (e.g., the Donsker
condition), doubly robust estimators can achieve a better conver-
gence than singly robust methods, especially when the estimators
of each nuisance function converge at slower (e.g., n—1/4) rates.
This facilitates obtaining valid inferences even when flexible
machine learning methods are used to estimate effects.*!
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TABLE 2.
Preeclampsia Using the Reference Super Learner Ensemble

Estimates of the Average Treatment Effect of 22.5 cups/1,000 kcal Total Fruit and Vegetable Density on the Risk of

ATE Estimates (95% CI)

Fruit and Vegetable Intake Population at Risk Preeclampsia (%) AIPW TMLE
<2.5 cups/1,000 kcal 6,612 594 (9.0%) Ref. Ref.
>2.5 cups/1,000 kcal 1,311 88 (6.7%) —0.019 (=0.036, —0.003) —0.023 (—0.039, —0.007)

AIPW indicates augmented inverse probability weighting; ATE, average treatment effect; TMLE, targeted minimum loss-based estimation.

TABLE 3. Coefficient and Subalgorithm MSE of Outcome Model Fitted With the Reference Super Learner Ensemble Using

nuMoM2b Data (n = 7,923)

Outcome Model
Subalgorithm MSE
Algorithm Coefficient Na Min Max Geometric Mean
Stepwise by AIC 0.589 3 0.077 0.079 0.078
Random forests 0.163 3 0.078 0.078 0.078
GLMNET 0.123 5 0.077 0.077 0.077
Neural network 0.041 12 0.082 0.109 0.094
MARS 0.034 3 0.081 0.083 0.082
XGBoost 0.027 9 0.084 0.085 0.085
K Nearest 0.013 3 0.080 0.093 0.086
Mean 0.010 1 0.079 0.079 0.079
BayesGLM 0.000 1 0.078 0.078 0.078
GLM 0.000 1 0.078 0.078 0.078

N, number of subalgorithms in each candidate subensemble.

AIC indicates Akaike information criterion; BayesGLM, Bayesian generalized linear model; GLM, generalized linear model; GLMNET, elastic-net regularized generalized linear
models; MARS, multivariate adaptive regression spline; MSE, mean squared error; nuMoM2b, Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be; XGBoost, extreme

gradient boosting.

Using both AIPW and TMLE estimators with our
“pseudo-unbiased” reference Super Learner ensemble, we
found 2> 2.5 cups/1,000 keal of total fruit and vegetable den-
sity was associated with approximately 2 reduced cases of
preeclampsia per 100 pregnancies. This aligns with our pre-
vious findings,? as we obtained roughly the same estimates
of ATE but using an augmented ensemble with a more diverse
library of candidate algorithms and an optimized coverage of
tuning parameter specifications.

In our reference ensemble, we noted different algo-
rithmic coefficients (weights) between the propensity score
and outcome models. This suggests the importance of the
data-adaptive property of the Super Learning method: dif-
ferent algorithms are driving the overall fit of the propen-
sity score versus outcome model. Super Learning provides
a generalized approach that can combine parametric, semi-
parametric, and nonparametric algorithms together by lever-
aging multifold cross-validation to assign weights for each
algorithm, yielding a convex combination to minimize the
overall cross-validated risk.¢7° In this work, the MSE of the
reference Super Learner ensemble for both outcome regres-
sion and the propensity score model was no greater than
any candidate subalgorithms, indicating that the ensemble

© 2025 Wolters Kluwer Health, Inc. All rights reserved.

performed at least as well as the best-performing subalgo-
rithm in minimizing the L2 loss.

The Super Learner can be applied with a variety of
loss functions, such as L2, cross-entropy, and AUC losses.”!3
We restricted our Super Learners to the L2 loss minimized
via non-negative least squares for two reasons. First, in our
experience, this is the most commonly deployed optimiza-
tion approach when researchers use the Super Learner with
AIPW or TMLE to estimate ATEs, and is supported by theo-
retical work in statistics.*'5 Additionally, a recent paper sug-
gests that, when nuisance functions are optimized via L2 loss,
first-order ATE estimators such as AIPW and TMLE are not
improvable (in a minimax sense) without additional structural
assumptions.*

One fundamental motivation for applying flexible
machine learning algorithms in causal inference is to over-
come the reliance on parametric assumptions and thus avoid
model misspecification. However, when we applied each
candidate algorithm with AIPW and TMLE estimators, the
individual performance of all flexible machine learning algo-
rithms (except random forests) was inferior, with point esti-
mates deviating away from the reference and relatively wide
95% Cls. In contrast, parametric GLM-based algorithms,
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TABLE 4. Coefficient and Subalgorithm MSE of Propensity Score Model Fitted With the Reference Super Learner Ensemble

Using nuMoM2b Data (n = 7,923)

Propensity Score Model

Subalgorithm MSE
Algorithm Coefficient Na Min Max Geometric Mean
Random forests 0.374 3 0.121 0.121 0.121
MARS 0.154 3 0.125 0.128 0.127
GLM 0.136 1 0.121 0.121 0.121
Neural network 0.112 12 0.125 0.153 0.137
BayesGLM 0.090 1 0.121 0.121 0.121
GLMNET 0.062 5 0.121 0.121 0.121
XGBoost 0.046 9 0.135 0.140 0.138
Stepwise by AIC 0.018 3 0.122 0.138 0.127
K Nearest 0.009 3 0.129 0.150 0.139
Mean 0.000 1 0.138 0.138 0.138

aN, number of subalgorithms in each candidate subensemble.

AIC, Akaike information criterion; BayesGLM, Bayesian generalized linear model; GLM, generalized linear model; GLMNET, elastic-net regularized generalized linear models;
MARS, multivariate adaptive regression spline; MSE, mean squared error; nuMoM2b, Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be; XGBoost, extreme gradient

boosting.
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FIGURE 1. Estimates of the average treatment effect of >2.5 cups/1,000 kcal total fruit and vegetable density on the risk of
preeclampsia using algorithm-specific Super Learner ensembles in the Nulliparous Pregnancy Outcomes Study: monitoring

mothers-to-be (hnuMoM2b).

especially GLM with elastic net regularization, obtained
estimates that approximated the reference. In this case, the
improvement brought by using a Super Learner ensemble
with a diverse library that includes flexible machine learning
algorithms was limited compared with the conventional para-
metric modeling approach.

Our work revealed one advantage of incorporat-
ing a wide variety of algorithms into the Super Learner in
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epidemiologic practice, that is, to maximize the likelihood of
capturing the underlying functional format of both nuisance
models in the doubly robust estimator. In our analysis, the
estimates remained unchanged for all SL(_,) subensembles,
even when we removed the most dominant candidate algo-
rithm in the outcome and propensity score models from the
reference ensemble (Figure 2). However, this result should be
interpreted conditional on the arbitrarily selected reference
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Algorithm Selection for ATE Estimation, a nuMoM2b Example
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FIGURE 2. Estimates of the average treatment effect of 2.5 cups/1,000 kcal total fruit and vegetable density on the risk of
preeclampsia when each algorithm was excluded from the reference Super Learner ensemble in the Nulliparous Pregnancy

Outcomes Study: monitoring mothers-to-be (nuMoM2b).

Super Learner, as we included “mutually substitutable” can-
didate algorithms with significant overlap in strengths (e.g.,
GLM and GLMNET). The impact of excluding certain algo-
rithm from a Super Learner ensemble with such overlapped
algorithms on the effect estimates would therefore be much
smaller than the impact of excluding the same algorithm from
an ensemble without overlapping. Overall, our result is sug-
gestive of the importance of using a wide array of diverse
candidate algorithms in the Super Learner, despite the cost-
effectiveness of this strategy may become another concern
under limited computational resources.

Our findings should be considered with several key limita-
tions in mind. First, we estimated effects in empirical data, and
thus do not know the true ATE. In our setting, we used the effects
obtained under a full reference library as a comparator for all
other candidate libraries. However, it is possible that our referent
estimates were biased due to an inappropriately specified Super
Learner algorithm. Second, our findings are specific to our data
and may not be generalizable to other settings of different topics,
especially those with smaller sample sizes and different under-
lying effect sizes. We partially addressed the concern on sample
size by repeating the analysis using 10% subset (eAppendix 2;
https:/links.Iww.com/EDE/C266). Additionally, our overall
approach only consisted of including or excluding one candidate
algorithm each time from the reference ensemble. For example,
all GLMNET subalgorithms with different tuning parameter
specifications were included or excluded at once. However, we
did not evaluate the impact of including or excluding a set of dif-
ferent algorithms at a time.

© 2025 Wolters Kluwer Health, Inc. All rights reserved.

Our findings suggest that when applying doubly robust
estimators with the Super Learning ensemble method in large
epidemiologic data, a good performance in estimation can be
achieved by including finite algorithms. Building ensembles
with an extremely large array of flexible machine learning
algorithms may only yield minimal improvement in precision
and accuracy of doubly robust estimation and is therefore not
cost-effective under limited computational resources. Despite
this, using a diverse Super Learner ensemble does benefit the
doubly robust estimation in practice as consistent effect esti-
mates can be obtained with different algorithm choices.

REFERENCES

. Glynn AN, Quinn KM. An introduction to the augmented inverse propen-
sity weighted estimator. Polit Anal. 2010;18:36-56.

. van der Laan MJ, Rubin D. Targeted maximum likelihood learning. /nt J
Biostat. 2006;2:Article 11.

. Zivich PN, Breskin A. Machine learning for causal inference: on the use
of cross-fit estimators. Epidemiology. 2021;32:393-401.

. Bodnar LM, Cartus AR, Kirkpatrick SI, et al. Machine learning as a strat-
egy to account for dietary synergy: an illustration based on dietary intake
and adverse pregnancy outcomes. Am J Clin Nutr. 2020;111:1235-1243.

. Bosch NA, Teja B, Law AC, Pang B, Jafarzadeh SR, Walkey AlJ.
Comparative effectiveness of fludrocortisone and hydrocortisone vs
hydrocortisone alone among patients with septic shock. JAMA Intern
Med. 2023;183:451-459.

. Naimi Al, Balzer LB. Stacked generalization: an introduction to super
learning. Eur J Epidemiol. 2018;33:459-464.

. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet
Mol Biol. 2007;6:Article25.

8. van der Vaart AW, Dudoit S, van der Laan MJ. Oracle inequalities for

multi-fold cross validation. Stat Decis. 2006;24:51-71.

9. Polley EC, van der Laan MJ. Super learner in prediction. U.C. Berkeley

Division of Biostatistics Working Paper Series. 2010;266.

—

N

W

~

W

(=)}

~

www.epidem.com | 767

Copyright © 2025 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.


https://links.lww.com/EDE/C266

Zeng et al.

Epidemiology e Volume 36, Number 6, November 2025

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Coyle JR, Hejazi NS, Malencia I, et al. s13: Modern pipelines for machine
learning and super learning. 2021. Available at: https://github.com/
tlverse/sl3. Accessed 21 March 2025.

Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learn-
ing in Python. J Mach Learn Res. 2011;12:2825-2830.

Balzer LB, Westling T. Demystifying statistical inference when
using machine learning in causal research. Am J Epidemiol.
2023;192:1545-1549.

Phillips RV, van der Laan MJ, Lee H, Gruber S. Practical considerations
for specifying a super learner. /nt J Epidemiol. 2023;52:1276-1285.
Haas DM, Parker CB, Wing DA, et al; NuMoM2b study. A description of
the methods of the Nulliparous Pregnancy Outcomes Study: monitoring
mothers-to-be (nuMoM2b). Am J Obstet Gynecol. 2015;212:539.e1-539.
e24.

Bodnar LM, Kirkpatrick SI, Parisi SM, Jin Q, Naimi Al. Periconceptional
dietary patterns and adverse pregnancy and birth outcomes. J Nutr.
2024;154:680-690.

Petersen JM, Naimi Al, Bodnar LM. Does heterogeneity underlie differ-
ences in treatment effects estimated from SuperLearner versus logistic
regression? an application in nutritional epidemiology. Ann Epidemiol.
2023;83:30-34.

Block G, Woods M, Potosky A, Clifford C. Validation of a self-
administered diet history questionnaire using multiple diet records. J Clin
Epidemiol. 1990;43:1327-1335.

Siega-Riz AM, Savitz DA, Zeisel SH, Thorp JM, Herring A. Second
trimester folate status and preterm birth. Am J Obstet Gynecol.
2004;191:1851-1857.

Block G, Thompson FE, Hartman AM, Larkin FA, Guire KE.
Comparison of two dietary questionnaires validated against multi-
ple dietary records collected during a 1-year period. J Am Diet Assoc.
1992;92:686—693.

Kristal AR, Feng Z, Coates RJ, Oberman A, George V. Associations
of race/ethnicity, education, and dietary intervention with the validity
and reliability of a food frequency questionnaire: the Women’s Health
Trial Feasibility Study in minority populations. Am J Epidemiol.
1997;146:856-869.

Epidemiology and Genomics Research Program, National Cancer
Institute. Diet*Calc Analysis Program, Version 1.5.0. National Cancer
Institute; 2012.

Agricultural Research Service Food Surveys Research Group, US
Department of Agriculture. USDA Food and Nutrient Database for
Dietary Studies, Version 1.0. US Department of Agriculture; 2004.
Agricultural Research Service Food Surveys Research Group, US
Department of Agriculture. Food Patterns Equivalents Database 2011-
12. US Department of Agriculture; 2014.

U.S. Department of Agriculture and U.S. Department of Health and
Human Services. Dietary Guidelines for Americans, 2020-2025. 9th ed.
US Government Publishing Office; 2020. Available at: DietaryGuidelines.
gov. Accessed 23 May 2025.

Hypertension in pregnancy. Report of the American College of
Obstetricians and gynecologists’ task force on hypertension in pregnancy.
Obstet Gynecol. 2013;122:1122—-1131.

Bodnar LM, Kirkpatrick SI, Roberts JM, Kennedy EH, Naimi Al Is
the association between fruits and vegetables and preeclampsia due
to higher dietary vitamin C and carotenoid intakes? Am J Clin Nutr.
2023;118:459-467.

768 | www.epidem.com

217.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Giles-Corti B, Macaulay G, Middleton N, et al. Developing a research
and practice tool to measure walkability: a demonstration project. Health
Promot J Austr. 2014;25:160—-166.

Kind AJH, Buckingham WR. Making neighborhood-disadvantage metrics
accessible—the neighborhood atlas. N Engl J Med. 2018;378:2456-2458.
Davis TC, Crouch MA, Long SW, et al. Rapid assessment of literacy lev-
els of adult primary care patients. Fum Med. 1991;23:433-435.

Koren G, Boskovic R, Hard M, Maltepe C, Navioz Y, Einarson A.
Motherisk-PUQE scoring system for nausea and vomiting of pregnancy.
Am J Obstet Gynecol. 2002;186:S228-S231.

. Cox JL, Chapman G, Murray D, Jones P. Validation of the Edinburgh

Postnatal Depression Scale (EPDS) in non-postnatal women. J Affect
Disord. 1996;39:185-189.

Cohen S, Kamarck T, Mermelstein R. A global measure of perceived
stress. J Health Soc Behav. 1983;24:385-396.

Spielberger CD, Gorsuch RL, Lushene RE. Manual for State-Trait Anxiety
Inventory (Self-Evaluation Questionnaire). Consulting Psychologists
Press; 1970.

Krebs-Smith SM, Pannucci TE, Subar AF, et al. Update of the healthy
eating index: HEI-2015. J Acad Nutr Diet. 2018;118:1591-1602.

Coyle J. The TMLE framework. Available at: https:/tlverse.org/tlverse-hand-
book/tmle3.html. In: van der Laan MJ, Coyle J, Hejazi NS, Malenica I,
Phillips R, Hubbard A, eds. Targeted Learning in R: Causal Data Science
with the tlverse Software Ecosystem; 2022. Available at: https://tlverse.org/
tlverse-handbook/index.html. Accessed 21 March 2025.

Naimi AI, Whitcomb BW. Defining and identifying average treatment
effects. Am J Epidemiol. 2023;192:685-687.

Zheng W, van der Laan MJ. Asymptotic theory for cross-validated targeted
maximum likelihood estimation. U.C. Berkeley Division of Biostatistics
Working Paper Series. 2010;273.

Chernozhukov V, Chetverikov D, Demirer M, et al. Double/debiased
machine learning for treatment and structural parameters. Econom J.
2018;21:C1-C68.

Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coeffi-
cients when some regressors are not always observed. J Am Stat Assoc.
1994;89:846-866.

van der Laan MJ, Rose S. Targeted Learning: Causal Inference for
Observational and Experimental Data. Springer; 2011.

Kennedy EH. Semiparametric doubly robust targeted double machine
learning: a review. arXiv preprint. 2022. arXiv:2203.06469 [stat. ME].

R Core Team. R: A Language and Environment for Statistical Computing.
Version 4.3.1. R Foundation for Statistical Computing; 2023. Available at:
https://www.R-project.org/. Accessed 21 March 2025.

Polley EC, LeDell E, Kennedy C, Lendle S, van der Laan MIJ.
SuperLearner: Super Learner Prediction. R package version 2.0-29.
Published 20 February 2024. Available at: https://cran.r-project.org/pack-
age=SuperLearner. Accessed 21 March 2025.

Robins JM, Ritov Y. Toward a curse of dimensionality appropriate
(CODA) asymptotic theory for semi-parametric models. Stat Med.
1997;16:285-319.

Hines O, Dukes O, Diaz-Ordaz K, Vansteelandt S. Demystifying
statistical learning based on efficient influence functions. 4m Stat.
2022;76:292-304.

Balakrishnan S, Kennedy EH, Wasserman L. The fundamental lim-
its of structure-agnostic functional estimation. arXiv preprint. 2023.
arXiv:2305.04116 [math.ST].

© 2025 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2025 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.


https://github.com/tlverse/sl3
https://github.com/tlverse/sl3
DietaryGuidelines.gov
DietaryGuidelines.gov
https://tlverse.org/tlverse-handbook/tmle3.html
https://tlverse.org/tlverse-handbook/tmle3.html
https://tlverse.org/tlverse-handbook/index.html
https://tlverse.org/tlverse-handbook/index.html
https://www.R-project.org/
https://cran.r-project.org/package=SuperLearner
https://cran.r-project.org/package=SuperLearner

