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KEY POINTS

o Artificial intelligence (Al) is a promising tool for more effective treatment planning and pre-
dicting outcomes in the field of endodontics.

e This article focuses on the role of Al in evaluating factors that can directly/indirectly affect
treatment outcomes/prognosis.

o Data on the application of Al to predict endodontic treatment prognosis are still limited and
heterogeneous, which limits its translation to routine clinical practice.

INTRODUCTION

The term “Prognosis” means prediction of the outcome or course of a disease or a
condition.” Treatment prognosis is crucial for informed clinical decision-making and
improving patient outcomes in health care. Artificial intelligence (Al) is emerging as a
tool in the health care sector, providing clinicians with data-driven insights for more
effective treatment planning. In dentistry, the application of Al in terms of prognosis
has reported promise in predicting tooth loss, dental implant survival, caries outcome,
and orthodontic treatment outcomes, among others.?

One of the most critical aspects of prognosis in endodontics is to establish the defi-
nition of the intended outcome. Traditionally, the term “prognosis” or “success” in
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Abbreviations

2D 2 dimensional

3D 3 dimensional

AAE American Association of Endodontists
AGMB  Anatomy-Guided Multi-Branch

Al artificial intelligence

ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network

AUC area under the curve

BP-ANN backpropagation ANN

CBCT cone beam computed tomography
CNNs convolutional neural networks
DPSCs dental pulp stem cells

EMS endodontic microsurgery

GBMs gradient boosting machines

KNN K-Nearest Neighbors

LPS lipopolysaccharide

ML machine learning

Ni-Ti nickel titanium

NSRCTs  nonsurgical root canal treatments
PA periapical

RCT root canal treatment

REP regenerative endodontic procedures
RF Random Forest

ROC receiver operating characteristics
SVR support vector regression

XGBoost extreme gradient boosting

endodontics has been based on clinical-centered outcomes such as the absence of
radiographic findings and clinical signs and symptoms.® However, there has been a
shift toward understanding and reporting patient-centered outcomes such as func-
tion, esthetics, pain, and retention of teeth. It is essential to understand that several
preoperative, intraoperative, and postoperative factors can affect the prognosis or
outcome of endodontic treatment.* In addition to the use of Al models to predict
the success of nonsurgical and surgical endodontic treatments, studies have evalu-
ated the application of Al on factors that could indirectly affect or predict endodontic
outcomes. These include Al’s application in assessing case difficulty and referral de-
cisions, advancing endodontic instrumentation, deep caries management, regenera-
tive endodontic procedures (REP), and postoperative care (Table 1).>-'° By analyzing
clinical variables and predicting outcomes, the application of Al can help refine end-
odontic treatment modalities.

ARTIFICIAL INTELLIGENCE IN ASSESSING CASE DIFFICULTY AND DECISION-MAKING

Al holds immense potential in evaluating case complexity by analyzing clinical, radio-
graphic, and patient-related data. Machine learning (ML) techniques, such as decision
tree classifiers and convolutional neural networks (CNN), are trained on large datasets
to identify patterns and predict difficulty levels."" For example, Al systems trained us-
ing the American Association of Endodontists (AAE) Case Difficulty Assessment form
have achieved notable sensitivity rates of 94.96%.° Lee and colleagues® demon-
strated that decision tree classifiers could process radiographic data with an accuracy
of 84.13%, considering factors such as canal morphology, lesion size, and apical
anatomy. These advancements provide a consistent, objective framework for deter-
mining case difficulty and supporting referral decisions.?°
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Table 1

Main applications of included studies

Reference

Al Method

Application

Al in Assessment of Case Difficulty

Herbst et al,* 2022

RF, GBM, and extremely gradient boosting (XGBoost)

Identification of significant associations between covariates and
failures of NSRCT for predicting outcomes of RCT

Mallishery et al,” 2020

Machine learning-based analysis

Utilized AAE Case Difficulty Form and Ml algorithms for predicting
case difficulty and referral decisions

Bennasar et al,'? 2023

Logistic regression, RF, Naive-Bayes, and KNN

ML models as a second opinion to support the clinical decision on
whether to perform NSRCT

Signor et al,’® 2021

)48 algorithm and Weka software

Predictability of NSRCT using clinical and radiographic features of
apical periodontitis and the technical quality of endodontic
treatment

Al in Deep Caries Management

Ramezanzade et al,® 2023

ResNet-50

Predicting pulp exposure as an outcome measure after caries
excavation

Zheng et al,?® 2021

Convolutional Neural Networks (CNNs) of ResNet18 + C

Estimating deep caries and pulpitis

Wang et al,?' 2023

DenseNet CNN and ResNet model

Predicting pulp exposures

Al in Regenerative Endodontic Procedures

Bindal et al,” 2017

ANFIS-neural network learning algorithm

Predict the effect of LPS administration with different times and
concentrations on the growth and viability of DPSCs.

Shetty et al,?® 2021

OsiriX MD and 3D Slicer

3D software programs for pulp volume detection following REP.

Al and Non-surgical Endodontic Procedures

Kazimierczak et al,'*
2024

CNNs

Al-driven Diagnocat platform for CBCT evaluation to evaluate
obturation quality, root canal filling density, and voids

(continued on next page)
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Table 1
(continued)
Reference Al Method Application
Guo et al,® 2021 ANN Prediction and optimization of the force and torque applied

during cleaning and shaping

Li et al,?* 2022 AGMB Transformer Network

Evaluation of obturation quality on radiographic images

Al and Endodontic Microsurgery

Qu et al,’® 2023 Vector regression (SVR), and XGBoost

Determination of the difficulty level in surgical cases

Qu et al,® 2022 GBM and RF

Provides with surgical outcome when the required
factors are entered and helps in decision-making

Al in Postoperative Pain and Flare-ups

Nosrat et al,’® 2023 RF algorithm

ML model to predict flare up

Gao et al,** 2021 MLstudy utilizing Backpropagation (BP) ANN

Predicting postoperative pain after RCT using patient
demographics, inflammatory factors, and operative details
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Al and Prognosis of Treatment in Endodontics

ML models like Random Forest (RF), a model based on multiple baseline variables or
characteristics, and K-Nearest Neighbors (KNN) have been evaluated to assess the
complexity and success of nonsurgical root canal treatments (NSRCTs)."? A retrospec-
tive analysis of 119 NSRCT cases demonstrated that ML models outperformed expert
clinical judgment in treatment prognosis, achieving up to 77% accuracy compared to
60%, therefore showing enhanced diagnostic sensitivity and decision-making when
compared to clinician-based assessments.’? By synthesizing these variables, Al pro-
vides a structured, data-driven approach that aligns seamlessly with clinical needs.

Herbst and colleagues® investigated the application of ML in predicting failure to
heal after NSRCT. Analyzing 591 teeth, the study identified tooth-level factors
such as alveolar bone loss and periapical (PA) index scores as the most critical pre-
dictors of failure (Fig. 1). ML models like RF and gradient boosting machines (GBMs)
exhibited moderate predictive performance, achieving an area under the curve
(AUC) of approximately 0.6 and accuracy levels between 75% and 80.5%. The
research underscored the potential of ML for identifying high-risk cases and
improving clinical prognosis.

Al has also been applied to retreatments. Signor and colleagues’® used regression
analysis and decision trees (J48 algorithm) to predict technical quality and PA healing
in retreatments. Factors like root curvature, altered root canal morphology, and pre-
existing PA lesions significantly influenced outcomes. The predictive models used
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Fig. 1. Heat map of risk for failure of RT. Combined presence of a high periapical index
(scored 1-5) and alveolar bone loss (scored 1: mild to none, 2: moderate, 3: severe alveolar
bone loss) increased the risk of failure. (A) All risks factors pooled. (B) Nonsmokers. (C)
Smokers. (D) Primary treatments. (E) Retreatments gray: no cases. (Herbst CS, Schwendicke
F, Krois J, et al. Association between patient-, tooth- and treatment-level factors and root

canal treatment failure: A retrospective longitudinal and machine learning study. J Dent
2022;117:103937.)
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demonstrated an accuracy of 66.66% for assessing the technical quality of the root
canal retreatment and 79.66% for predicting PA healing outcomes. These findings
highlight the potential of decision tree analysis in evaluating the impact of clinical vari-
ables, such as root canal morphology and PA lesion size, on treatment success. The
study highlighted that lesion size and root resorption strongly correlated with healing,
emphasizing the importance of integrating clinical and radiographic data to enhance
retreatment success.

Commercial Al-powered tools, like Diagnocat Ltd (San Francisco, CA, USA),
demonstrate Al’s clinical utility. Diagnocat analyses CBCT images to evaluate obtura-
tion quality, root canal filling density, and voids, providing actionable insights for treat-
ment planning.’ Kazimierczak and colleagues' demonstrated that Diagnocat
achieved 84.1% accuracy in evaluating obturation quality, 88.6% accuracy in detect-
ing voids in fillings, and 95.5% accuracy in detecting parameters such as overfilling
and short fillings, significantly enhancing clinical decision-making.

Qu and colleagues'® developed and validated ML models of support vector regres-
sion (SVR) and extreme gradient boosting (XGBoost) algorithms for case difficulty pre-
diction in endodontic microsurgery (EMS). The study used dataset from 261 patients
with 341 teeth, which had undergone apicoectomy. The XGBoost model was accurate
in determining the difficulty level and had good generalization performance (mean ab-
solute error = 0.1010, mean squared error = 0.0391, and median absolute error =
0.235). The top 3 factors that predicted the difficulty were lesion size, the distance be-
tween apex of the tooth and adjacent important anatomic structures and, root filling
density (Fig. 2). This study did not take into consideration the thickness of the cortical
bone over the roots to be treated, the buccal approach to palatal roots, or the prox-
imity to the lingual cortical plate, grafting, periodontal status, restricted mouth open-
ing, iatrogenic errors, and systemic factors that could alter clinical outcomes. ML
models can be efficient in complex quantitative analysis and are independent of hu-
man skills and knowledge. Thus, they can provide accurate and objective suggestions
to the clinicians to achieve predictable outcomes.

Schwendicke and colleagues'® noted that Al significantly enhances decision-
making by integrating diverse and complex datasets, such as imagery, medical his-
tories, and sociodemographic data. With an accuracy of 84%, Hung and colleagues'”

Lesion size

Adjacent anatomical structures
Root filling density

Root apex diameter

Root resorption

Tooth type

Features

Tooth length
Root filling length
Root canal curvature

The number of root canals

0.00 0.05 0.10 0.15 0.20 0.25

Relative feature importance

Fig. 2. Relative feature importance based on the XGBoost model. (Qu Y, Wen Y, Chen M,
et al. Predicting case difficulty in endodontic microsurgery using machine learning algo-
rithms. J Dent 2023;133:104522.)
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Al and Prognosis of Treatment in Endodontics

demonstrated that ML, particularly RF and classification and regression trees, could
effectively prioritize high-risk patients, enabling earlier interventions and better out-
comes. However, current Al applications often provide limited information, which
only partially supports the complexity of clinical decision-making. This highlights the
need for outputs to be more actionable and transparent.'®

ARTIFICIAL INTELLIGENCE AND DEEP CARIES MANAGEMENT

Deep caries management strategies have witnessed trends toward minimally inva-
sive therapies, shifting from nonselective caries (complete) removal to selective
caries (partial) removal, resulting in a lesser chance of pulp exposure.'® Carious
pulp exposures in nonselective caries removal have also been implicated with lower
success rates for direct pulp capping and pulpotomy when compared to selective
caries removal.'® PA radiographs or bitewings have traditionally been used to assess
caries depth.’® However, the interpretation can be variable because of the 2 dimen-
sional (2D) nature of radiographs, subjectivity among operators, and operator
expertise.®

Pulp exposure has often been cited as a negative outcome during deep caries man-
agement, necessitating vital pulp therapy or endodontic treatment.® Zheng and col-
leagues?® tested 3 different CNN models based on deep learning to estimate the
depth of deep caries and predict pulpitis using PA radiographs. After training the
CNNs, 127 periapical radiographs (PAs) were used to test the CNNs. The multimodal
CNN of ResNet18 + C (ResNet18 integrated with clinical parameters) demonstrated
significantly better performance in estimating deep caries and pulpitis.?® This study
has been corroborated by the findings of a study by Wang and colleagues,?' wherein
the DenseNet CNN and ResNet model had an AUC of 0.89 and 0.97, respectively,
which was similar to the accuracy of experienced dentists in predicting pulp expo-
sures. However, this study did not consider any clinical parameters for pulp exposure
prediction.?! A recent study by Ramezanzade and colleagues® employed a multipath
neural network based on ResNet-50 architecture for predicting pulp exposure as an
outcome measure after caries excavation. In addition, the study investigated the effect
of providing Al-based radiographic information versus standard radiographic informa-
tion to 25 dental students in assessing how this would affect their predictions of pulp
exposure. Multipath neural networks outperformed the students, achieving a signifi-
cantly higher F1 score when predicting pulp exposure. Interestingly, there was no sta-
tistical difference between dental students with and without access to Al predictions.
This might be attributed to the expertise level in interpreting caries depth as the stu-
dents were in the fourth and fifth years of dental school.®

The use of Al technology, especially CNNs based on deep learning, has significantly
advanced image analysis. Cumulatively, these studies demonstrate the acceptable
accuracy of these models in predicting pulp exposures.®2%2! This might help dentists
determine prognoses of deep caries management and customize treatment plans
accordingly. It is important to note that several factors, such as operator expertise,
type of CNN and associated learning curve, tooth type, depth, and location of caries,
can affect the accuracy. To extrapolate the results of these studies to routine clinical
settings, more studies are needed to validate the effect of these factors in Al interpre-
tation and integration.

ARTIFICIAL INTELLIGENCE AND REGENERATIVE ENDODONTIC PROCEDURES

REPs have emerged as a promising treatment modality for managing immature
teeth with infected root canal spaces.?? The primary outcome of successful REP
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is to achieve radiographic bony healing and resolve clinical signs and symptoms. In
addition, continued root maturation regarding root length and width is another more
pertinent outcome while managing immature teeth.?? This latter outcome has been
attributed to the deposition of dentin-like or osteoid tissue subsequent to differen-
tiation of dental mesenchymal stem cells into different cell phenotypes.??

Survival and differentiation of dental mesenchymal stem cells is a crucial prognostic
factor in the outcome of regenerative therapies.?® Several studies have reported the
effect of microbes and their toxins, such as lipopolysaccharide (LPS), on dental
stem cells’ differentiation, proliferation, and migration.?* However, evaluating the syn-
ergistic impact of varying concentrations of LPS and treatment times on stem cells has
been challenging. To overcome this, a recent study by Bindal and colleagues’ has
investigated using an adaptive neuro-fuzzy inference system (ANFIS), an Al computa-
tional model that combines the fuzzy inference system with a neural network-learning
algorithm, to predict dental pulp stem cells (DPSCs) viability. In this in vitro study,
DPSCs were systematically isolated and subject to varying concentrations of LPS
for different time intervals of up to 72 hours. The Al model displayed sufficient accu-
racy (root mean square error [RMSE] = 0.0288, R? = 0.81) in predicting the simulta-
neous effect of LPS concentration and treatment time on the viability of DPSCs.’

Continued root formation due to mineralized tissue deposition is an important
outcome of REPs in immature teeth.?® This outcome has traditionally been evaluated
using 2D imaging, such as PA radiographs.?® Utilizing a segmentation model, Shetty
and colleagues?®® have demonstrated the accuracy of 2 Al-based imaging programs,
that is, OsiriX MD and 3D Slicer, to estimate the difference in pulp space volume
following a REP.26 In vitro assessments were performed initially to assess the 2 pro-
grams’ sensitivity and reliability, followed by clinical validation on 35 permanent imma-
ture teeth with necrotic pulps and PA pathoses. The results demonstrated a
statistically significant decrease (P<.05) in pulp volume after REP; however, there
was no significant difference between the 2 imaging programs in estimating pulp
space volumes.?® Compared to the Food and Drug Administration-approved program
OsiriX MD, the 3 dimensional (3D) slicer is a free, open-source imaging program that
turned out to be faster to use with less user interaction, showing more promise for clin-
ical application.?®

The limited amount of Al data on evaluating REP prognosis outcomes is focused
on assessing stem cell viability and estimating pulp space volume.”?® Owing to the
in vitro nature of study by Bindal and colleagues’ on assessing stem cell viability,
several in vivo variables that could affect stem cell survival were not considered dur-
ing the study. This limits the extrapolation of the results to clinical settings. In addi-
tion, as the study focused only on DPSCs, the results cannot be generalized to other
stem cell populations, especially Stem Cells from Apical Papilla, which plays a sig-
nificant role in REP.?? Despite these limitations, the neuro-fuzzy Al model is a prom-
ising tool for conducting future studies to evaluate the effect of other treatment-
related and in vivo factors on the viability of various stem cells. The Al imaging pro-
grams used by Shetty and colleagues®® were limited by the ability to accurately
quantify the hard tissue deposition on the canal walls, which questions whether
the reduction in volume was because of increased thickness in root width or a result
of intracanal calcification, which can be a potential complication for future endodon-
tic intervention. This was attributed to limitations of cone beam computed tomogra-
phy (CBCT) imaging, such as low contrast and background noise.?® Despite these
limitations, this study can be a foundation for future research to analyze the use of
segmentation models with Al-based imaging programs to assess volumetric
changes in endodontic outcomes.
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Al and Prognosis of Treatment in Endodontics

ARTIFICIAL INTELLIGENCE AND NONSURGICAL ROOT CANAL TREATMENT AND
RETREATMENT

The aim of endodontic instrumentation is cleaning, shaping, and preparing the root ca-
nal system for disinfection and obturation. Rotary nickel titanium (Ni-Ti) files have revo-
lutionized root canal shaping by reducing the risk of file fracture and improving canal
cleaning efficiency.?” Advances in technology, such as electronic apex locators and
CBCT have reduced procedural errors and help achieve more predictable treatment
results.?® Despite these advances, challenges such as instrument separation, canal
transportation, and obstruction still pose a clinical challenge.?®-*°

A recent study by Guo and colleagues® used the ML model of artificial neural
network (ANN) for the prediction and optimization of the force and torque applied dur-
ing cleaning and shaping. In this in vitro study, the proposed model had an accurate
precision in the force and torque prediction (error <14%). Based on the data, this ML
model can help dentists to accurately select the size of Ni-Ti file and set the speed of
the rotary instrument below the suggested range to avoid file separation and
perforation.

After thorough instrumentation of the canals, obturation aims to achieve a complete,
3D seal from the apex to the coronal end of the canal to effectively prevent microbial
leakage.®" Adequate obturation ensures the long-term success by preventing post-
treatment apical periodontitis.>? Precise evaluation of the obturation is very significant
since underfilling and overfilling can lead to endodontic treatment failures.?

Li and colleagues®* proposed an automatic and accurate evaluation method for the
root canal therapy results using ML tools. This clinical study utilized medical image
classification and segmentation to automate the evaluation of obturation quality on
radiographic images by employing advanced computer vision and Al techniques.
The Al model of Anatomy-Guided Multi-Branch (AGMB) Transformer Network can
improve the diagnosis accuracy from 57.96% to 90.20%.

Integrating Al into endodontic instrumentation holds the potential to significantly
enhance the precision, efficiency, and predictability of root canal therapy. Al’s ability
to monitor instrument usage and canal shaping can help improve clinical outcomes by
minimizing complications like instrument separation and canal transportation. While
challenges such as data integration, clinician acceptance, regulatory considerations,
and limited clinical studies remain, the continued development of Al in endodontics
promises to revolutionize the field.

ARTIFICIAL INTELLIGENCE AND ENDODONTIC MICROSURGERY

EMS aims at addressing complex cases of endodontic treatment failure or infection.
Successful surgical outcome hinges on precise clinical and radiographic diagnosis,
careful treatment planning, and execution.®® Al is leveraging on data analysis and
ML algorithms to enhance surgical outcome forecasting. Recent studies have used
Al-driven systems that analyze extensive datasets of patient records and radiographic
imaging, identifying patterns and correlating clinical variables that human practitioners
might overlook.36-38

A recent study by Qu and colleagues® aimed at establishing ML models to predict
the prognosis of EMS. They trained and evaluated the GBM and RF models of ML. For
the GBM model, the predictive accuracy was 0.80, with a sensitivity of 0.92, specificity
of 0.71. For the RF model, the accuracy was 0.80, with a sensitivity of 0.85, specificity
of 0.76 (Fig. 3). The GBM and RF models can immediately output a most likely surgical
outcome when the required factors are entered, thus providing an objective reference
for clinicians in decision-making. The study analyzed their algorithm on a dataset of
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Fig. 3. Receiver operating characteristics (ROC) curves and the resulting area under the
curves (AUGs). (A) ROC curves of the gradient boosting machine model, mean AUC = 0.88
(95% Cl 0.81-0.89); (B) ROC curves of the Random Forest model, mean AUC = 0.83 (95%
Cl1 0.79-0.90). (Qu Y, Lin Z, Yang Z, et al. Machine learning models for prognosis prediction
in endodontic microsurgery. J Dent 2022;118:103947.)

234 teeth from 178 patients and found that out of the 8 variables used to predict prog-
nosis, both models contained sex, age, size of the lesion, and type of bone defect in
the top-ranking features (Fig. 4). The study was limited by the small datasets of un-
healed cases.

The success rate of EMS is greater than 90%.%°*" Integrating Al in predicting suc-
cess rate of EMS can revolutionize outcomes by helping endodontists in providing
personalized treatment recommendations, risk assessment, assist in robotic surgery,
and provide real-time and posttreatment monitoring in EMS.*2 Al models need diverse
and accurate data to make reliable predictions as it depends largely on the quality and
quantity of the data it is trained on. To predict success of EMS, the data availability of
high-resolution CBCT imaging and patient history is limited. Al lacks the refined clinical
judgment as that of trained clinician. It faces significant limitations related to adapt-
ability and integration with the existing diagnostic, imaging, and surgical systems
used in endodontics. Consolidating the static and historical data that the Al is trained
on along with complex biological systems that affect tissue and immune response,
healing rates, and complications during EMS is yet another challenge that researchers
and clinicians are facing. As Al continues to evolve and as more high-quality data be-
comes available, it is a promising tool to improve surgical care and will likely comple-
ment and augment the expertise of human clinicians.

A Gradient boosting machine B Random forest
Sex Lesion size
Lesion size (e m——— Age
Type of bone defect jumm—— Sex |emm———
Root filling length  jes——— Type of bone defect Jummmm—"
@ Root filling density {m—— @ Root filling length {e——e
2 Age {mmm— 2 Tooth type {mmmmum
Lf Apical extension of post {u—— Lf Root filling density Jmsm
Tooth type {um—— Apical extension of post -jumm—
000 005 010 015 020 025 030 035 000 005 010 015 020 025 030 035

Feature importance Feature importance

Fig. 4. Feature importance of top 8 features contributing to (A) the gradient boosting ma-
chine model and (B) random forest model. The values were normalized to the range from
0to 1. (Qu Y, Lin Z, Yang Z, et al. Machine learning models for prognosis prediction in end-
odontic microsurgery. J Dent 2022;118:103947.)
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ARTIFICIAL INTELLIGENCE AND POSTOPERATIVE PAIN AND FLARE UPS

Pain is one of the most significant health care crises in the United States.*® Despite our
best efforts, 15% to 25% of patients suffer from postoperative pain after root canal
treatment (RCT), which can affect the quality of life and other patient-centered out-
comes.** In some instances, flare-ups can occur, which are unexpected occurrences
or exaggeration of pain and/or swelling after endodontic intervention.™®

Gao and colleagues*® evaluated using backpropagation ANN (BP-ANN) with 13 var-
iables as inputs to predict postoperative pain 1 week after RCT. The accuracy of this
BP neural network model was 95.60% for the prediction of postoperative pain
following RCT. Most of the variables used as inputs for this model are well-
established factors associated with postoperative pain.*® However, this study did
not account for psychological factors associated with pain and only evaluated
short-term postoperative pain for 1 week.*® A study by Nosrat and colleagues'® eval-
uated an RF algorithm, an ML model based on multiple baseline variables or charac-
teristics, to predict the occurrence of flare-ups following nonsurgical retreatment in
2846 patients. Their results indicated a weak performance of the model to predict
the occurrence of flare-ups (precision = 0.13). This was attributed to the rarity of
flare-ups in their study (4%), and the validity of baseline characteristics was ques-
tioned to predict flare-ups in clinical settings.'°

Pain is an important patient-reported outcome measure that has garnered signifi-
cant interest in clinical research and practice. Postoperative discomfort and pain
can be disruptive and can affect dentist—patient relationships. The use of BP-ANN
by Gao and colleagues® showed high accuracy in predicting postendodontic pain.
This high accuracy was attributed to applying the BP-ANN Al model, which can run
complex analyses of numerous strongly coupled variables and effectively deal with
nonlinear problems. The BP-ANN model also benefits from its self-learning capability
and strong simulation ability.*® In contrast, the RF algorithm based on the ML model in
the study by Nosrat and colleagues'® displayed a limited ability to predict “flare-ups.”
This result was also attributed to the rare nature of the event. As there is data scarcity
to train the model, it suffers from a problem known as “class imbalance,” where the
skewed dataset can lead to biased results in poor prediction of a rare event.*®

SUMMARY

Al is becoming an integral part of endodontic practice with the potential to transform
how clinicians predict treatment prognosis and make critical decisions. It can provide
actionable insights by analyzing complex data, assessing case difficulty, optimizing
procedures, and improving patient outcomes. Specifically, in the field of endodontics,
Al’'simpact is evident by its use in deep caries management, regenerative procedures,
postoperative pain prediction and microsurgery case selection and outcomes.
Although Al has demonstrated significant potential in predicting treatment outcomes,
there can be further refinements. Continued research is critical to improve its accuracy
and dependability. Advances in data integration and algorithm development will play
an integral role in pushing Al closer to its full potential in the field of endodontics.

CLINICS CARE POINTS

e Clinicians should be aware that multiple prognostic factors can directly or indirectly affect
the outcome/prognosis of endodontic treatment.
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The application of Al to analyze clinical, radiographic, and patient-related data can help
accurately assess case complexity and help in decision-making and referral decisions,
impacting the outcome of the intended treatment.

The influence of Al in predicting the prognosis of nonsurgical and surgical endodontic
treatments can significantly impact patient care.

Al models will help clinicians in patient counseling and customize treatment plans based on
case complexity, patient needs, and predictive data analytics.

Al models must be trained and validated on large and diverse datasets to serve as reliable
tools suitable for clinical practice.

Ethical and regulatory concerns must be addressed before the routine application of Al in
endodontic practice.
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