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INTRODUCTION

The term “Prognosis” means prediction of the outcome or course of a disease or a 
condition. 1 Treatment prognosis is crucial for informed clinical decision-making and 
improving patient outcomes in health care. Artificial intelligence (AI) is emerging as a 
tool in the health care sector, providing clinicians with data-driven insights for more 
effective treatment planning. In dentistry, the application of AI in terms of prognosis 
has reported promise in predicting tooth loss, dental implant survival, caries outcome, 
and orthodontic treatment outcomes, among others. 2

One of the most critical aspects of prognosis in endodontics is to establish the defi-

nition of the intended outcome. Traditionally, the term “prognosis” or “success” in
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KEY POINTS

• Artificial intelligence (AI) is a promising tool for more effective treatment planning and pre-

dicting outcomes in the field of endodontics.

• This article focuses on the role of AI in evaluating factors that can directly/indirectly affect

treatment outcomes/prognosis.

• Data on the application of AI to predict endodontic treatment prognosis are still limited and

heterogeneous, which limits its translation to routine clinical practice.
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endodontics has been based on clinical-centered outcomes such as the absence of 
radiographic findings and clinical signs and symptoms. 3 However, there has been a 
shift toward understanding and reporting patient-centered outcomes such as func-

tion, esthetics, pain, and retention of teeth. It is essential to understand that several 
preoperative, intraoperative, and postoperative factors can affect the prognosis or 
outcome of endodontic treatment. 4 In addition to the use of AI models to predict 
the success of nonsurgical and surgical endodontic treatments, studies have evalu-

ated the application of AI on factors that could indirectly affect or predict endodontic 
outcomes. These include AI’s application in assessing case difficulty and referral de-

cisions, advancing endodontic instrumentation, deep caries management, regenera-

tive endodontic procedures (REP), and postoperative care (Table 1). 5–10 By analyzing 
clinical variables and predicting outcomes, the application of AI can help refine end-

odontic treatment modalities.

ARTIFICIAL INTELLIGENCE IN ASSESSING CASE DIFFICULTY AND DECISION-MAKING

AI holds immense potential in evaluating case complexity by analyzing clinical, radio-

graphic, and patient-related data. Machine learning (ML) techniques, such as decision 
tree classifiers and convolutional neural networks (CNN), are trained on large datasets 
to identify patterns and predict difficulty levels. 11 For example, AI systems trained us-

ing the American Association of Endodontists (AAE) Case Difficulty Assessment form 
have achieved notable sensitivity rates of 94.96%. 5 Lee and colleagues 2 demon-

strated that decision tree classifiers could process radiographic data with an accuracy 
of 84.13%, considering factors such as canal morphology, lesion size, and apical 
anatomy. These advancements provide a consistent, objective framework for deter-

mining case difficulty and supporting referral decisions. 2,5

Abbreviations

2D 2 dimensional

3D 3 dimensional

AAE American Association of Endodontists

AGMB Anatomy-Guided Multi-Branch

AI artificial intelligence

ANFIS adaptive neuro-fuzzy inference system

ANN artificial neural network

AUC area under the curve

BP-ANN backpropagation ANN

CBCT cone beam computed tomography

CNNs convolutional neural networks

DPSCs dental pulp stem cells

EMS endodontic microsurgery

GBMs gradient boosting machines

KNN K-Nearest Neighbors

LPS lipopolysaccharide

ML machine learning

Ni-Ti nickel titanium

NSRCTs nonsurgical root canal treatments

PA periapical

RCT root canal treatment

REP regenerative endodontic procedures

RF Random Forest

ROC receiver operating characteristics

SVR support vector regression

XGBoost extreme gradient boosting
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Table
 

1

Main
 

applications of included
 

studies

Reference
 

AI Method Application

AI in
 

Assessment of Case
 

Difficulty

Herbst et al, 
4
 2022

 
RF, GBM, and

 
extremely gradient boosting

 
(XGBoost) Identification

 
of significant associations between

 
covariates and

 
failures of NSRCT

 
for predicting

 
outcomes of RCT

Mallishery et al, 
5
 2020

 
Machine

 
learning-based

 
analysis Utilized

 
AAE

 
Case

 
Difficulty Form

 
and

 
MI algorithms for predicting

 
case

 
difficulty and

 
referral decisions

Bennasar et al, 
12
 2023

 
Logistic regression, RF, Naive-Bayes, and

 
KNN

 
ML models as a

 
second

 
opinion

 
to
 

support the
 

clinical decision
 

on
 

whether to
 

perform
 

NSRCT

Signor et al, 
13
 2021

 
J48
 

algorithm
 

and
 

Weka
 

software Predictability of NSRCT
 

using
 

clinical and
 

radiographic features of 
apical periodontitis and

 
the
 

technical quality of endodontic 
treatment

AI in
 

Deep
 

Caries Management

Ramezanzade
 

et al, 
6
 2023

 
ResNet-50 Predicting

 
pulp

 
exposure

 
as an

 
outcome

 
measure

 
after caries 

excavation

Zheng
 

et al, 
20
 2021

 
Convolutional Neural Networks (CNNs) of ResNet18

 
+
 

C
 

Estimating
 

deep
 

caries and
 

pulpitis

Wang
 

et al, 
21
 2023

 
DenseNet CNN

 
and

 
ResNet model Predicting

 
pulp

 
exposures

AI in
 

Regenerative
 

Endodontic Procedures

Bindal et al, 
7
 2017

 
ANFIS-neural network

 
learning

 
algorithm

 
Predict the

 
effect of LPS administration

 
with

 
different times and

 
concentrations on

 
the
 

growth
 

and
 

viability of DPSCs.

Shetty et al, 
26
 2021

 
OsiriX

 
MD
 

and
 

3D
 

Slicer 3D
 

software
 

programs for pulp
 

volume
 

detection
 

following
 

REP.

AI and
 

Non-surgical Endodontic Procedures

Kazimierczak
 

et al, 
14
 

2024

CNNs AI-driven
 

Diagnocat platform
 

for CBCT
 

evaluation
 

to
 

evaluate
 

obturation
 

quality, root canal filling
 

density, and
 

voids

(continued
 

on
 

next page)
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Table
 

1
 

(continued
 

)

Reference
 

AI Method Application

Guo
 

et al, 
8
 2021

 
ANN Prediction

 
and

 
optimization

 
of the

 
force

 
and

 
torque

 
applied

 
during

 
cleaning

 
and

 
shaping

Li et al, 
34
 2022

 
AGMB

 
Transformer Network Evaluation

 
of obturation

 
quality on

 
radiographic images

AI and
 

Endodontic Microsurgery

Qu
 

et al, 
15
 2023 Vector regression

 
(SVR), and

 
XGBoost Determination

 
of the

 
difficulty level in

 
surgical cases

Qu
 

et al, 
9
 2022 GBM

 
and

 
RF Provides with

 
surgical outcome

 
when

 
the
 

required
 

factors are
 

entered
 

and
 

helps in
 

decision-making

AI in
 

Postoperative
 

Pain
 

and
 

Flare-ups

Nosrat et al, 
10
 2023 RF algorithm ML model to

 
predict flare

 
up

Gao
 

et al, 
44
 2021 MLstudy utilizing

 
Backpropagation

 
(BP) ANN Predicting

 
postoperative

 
pain

 
after RCT

 
using

 
patient 

demographics, inflammatory factors, and
 

operative
 

details

Z
e
b

o
u

n
i e

t a
l

5
3
0
 

D
escargado para Irene R

am
írez (iram

irez@
binasss.sa.cr) en N

ational Library of H
ealth and Social 

Security de C
linicalK

ey.es por Elsevier en octubre 23, 2025. Para uso personal exclusivam
ente. N

o se 
perm

iten otros usos sin autorización. C
opyright ©

2025. Elsevier Inc. Todos los derechos reservados.



ML models like Random Forest (RF), a model based on multiple baseline variables or 
characteristics, and K-Nearest Neighbors (KNN) have been evaluated to assess the 
complexity and success of nonsurgical root canal treatments (NSRCTs). 12 A retrospec-

tive analysis of 119 NSRCT cases demonstrated that ML models outperformed expert 
clinical judgment in treatment prognosis, achieving up to 77% accuracy compared to 
60%, therefore showing enhanced diagnostic sensitivity and decision-making when 
compared to clinician-based assessments. 12 By synthesizing these variables, AI pro-

vides a structured, data-driven approach that aligns seamlessly with clinical needs. 
Herbst and colleagues 4 investigated the application of ML in predicting failure to 

heal after NSRCT. Analyzing 591 teeth, the study identified tooth-level factors 
such as alveolar bone loss and periapical (PA) index scores as the most critical pre-

dictors of failure (Fig. 1). ML models like RF and gradient boosting machines (GBMs) 
exhibited moderate predictive performance, achieving an area under the curve 
(AUC) of approximately 0.6 and accuracy levels between 75% and 80.5%. The 
research underscored the potential of ML for identifying high-risk cases and 
improving clinical prognosis.

AI has also been applied to retreatments. Signor and colleagues 13 used regression 
analysis and decision trees (J48 algorithm) to predict technical quality and PA healing 
in retreatments. Factors like root curvature, altered root canal morphology, and pre-

existing PA lesions significantly influenced outcomes. The predictive models used

Fig. 1. Heat map of risk for failure of RT. Combined presence of a high periapical index 

(scored 1–5) and alveolar bone loss (scored 1: mild to none, 2: moderate, 3: severe alveolar 
bone loss) increased the risk of failure. (A) All risks factors pooled. (B) Nonsmokers. (C) 

Smokers. (D) Primary treatments. (E) Retreatments gray: no cases. (Herbst CS, Schwendicke 

F, Krois J, et al. Association between patient-, tooth- and treatment-level factors and root 

canal treatment failure: A retrospective longitudinal and machine learning study. J Dent 
2022;117:103937.)
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demonstrated an accuracy of 66.66% for assessing the technical quality of the root 
canal retreatment and 79.66% for predicting PA healing outcomes. These findings 
highlight the potential of decision tree analysis in evaluating the impact of clinical vari-

ables, such as root canal morphology and PA lesion size, on treatment success. The 
study highlighted that lesion size and root resorption strongly correlated with healing, 
emphasizing the importance of integrating clinical and radiographic data to enhance 
retreatment success.

Commercial AI-powered tools, like Diagnocat Ltd (San Francisco, CA, USA), 
demonstrate AI’s clinical utility. Diagnocat analyses CBCT images to evaluate obtura-

tion quality, root canal filling density, and voids, providing actionable insights for treat-

ment planning. 14 Kazimierczak and colleagues 14 demonstrated that Diagnocat 
achieved 84.1% accuracy in evaluating obturation quality, 88.6% accuracy in detect-

ing voids in fillings, and 95.5% accuracy in detecting parameters such as overfilling 
and short fillings, significantly enhancing clinical decision-making.

Qu and colleagues 15 developed and validated ML models of support vector regres-

sion (SVR) and extreme gradient boosting (XGBoost) algorithms for case difficulty pre-

diction in endodontic microsurgery (EMS). The study used dataset from 261 patients 
with 341 teeth, which had undergone apicoectomy. The XGBoost model was accurate 
in determining the difficulty level and had good generalization performance (mean ab-

solute error = 0.1010, mean squared error = 0.0391, and median absolute error = 
0.235). The top 3 factors that predicted the difficulty were lesion size, the distance be-

tween apex of the tooth and adjacent important anatomic structures and, root filling 
density (Fig. 2). This study did not take into consideration the thickness of the cortical 
bone over the roots to be treated, the buccal approach to palatal roots, or the prox-

imity to the lingual cortical plate, grafting, periodontal status, restricted mouth open-

ing, iatrogenic errors, and systemic factors that could alter clinical outcomes. ML 
models can be efficient in complex quantitative analysis and are independent of hu-

man skills and knowledge. Thus, they can provide accurate and objective suggestions 
to the clinicians to achieve predictable outcomes.

Schwendicke and colleagues 16 noted that AI significantly enhances decision-

making by integrating diverse and complex datasets, such as imagery, medical his-

tories, and sociodemographic data. With an accuracy of 84%, Hung and colleagues 17

Fig. 2. Relative feature importance based on the XGBoost model. (Qu Y, Wen Y, Chen M, 

et al. Predicting case difficulty in endodontic microsurgery using machine learning algo-

rithms. J Dent 2023;133:104522.)
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demonstrated that ML, particularly RF and classification and regression trees, could 
effectively prioritize high-risk patients, enabling earlier interventions and better out-

comes. However, current AI applications often provide limited information, which 
only partially supports the complexity of clinical decision-making. This highlights the 
need for outputs to be more actionable and transparent. 16

ARTIFICIAL INTELLIGENCE AND DEEP CARIES MANAGEMENT

Deep caries management strategies have witnessed trends toward minimally inva-

sive therapies, shifting from nonselective caries (complete) removal to selective 
caries (partial) removal, resulting in a lesser chance of pulp exposure. 18 Carious 
pulp exposures in nonselective caries removal have also been implicated with lower 
success rates for direct pulp capping and pulpotomy when compared to selective 
caries removal. 18 PA radiographs or bitewings have traditionally been used to assess 
caries depth. 19 However, the interpretation can be variable because of the 2 dimen-

sional (2D) nature of radiographs, subjectivity among operators, and operator 
expertise. 6

Pulp exposure has often been cited as a negative outcome during deep caries man-

agement, necessitating vital pulp therapy or endodontic treatment. 6 Zheng and col-

leagues 20 tested 3 different CNN models based on deep learning to estimate the 
depth of deep caries and predict pulpitis using PA radiographs. After training the 
CNNs, 127 periapical radiographs (PAs) were used to test the CNNs. The multimodal 
CNN of ResNet18 + C (ResNet18 integrated with clinical parameters) demonstrated 
significantly better performance in estimating deep caries and pulpitis. 20 This study 
has been corroborated by the findings of a study by Wang and colleagues, 21 wherein 
the DenseNet CNN and ResNet model had an AUC of 0.89 and 0.97, respectively, 
which was similar to the accuracy of experienced dentists in predicting pulp expo-

sures. However, this study did not consider any clinical parameters for pulp exposure 
prediction. 21 A recent study by Ramezanzade and colleagues 6 employed a multipath 
neural network based on ResNet-50 architecture for predicting pulp exposure as an 
outcome measure after caries excavation. In addition, the study investigated the effect 
of providing AI-based radiographic information versus standard radiographic informa-

tion to 25 dental students in assessing how this would affect their predictions of pulp 
exposure. Multipath neural networks outperformed the students, achieving a signifi-

cantly higher F1 score when predicting pulp exposure. Interestingly, there was no sta-

tistical difference between dental students with and without access to AI predictions. 
This might be attributed to the expertise level in interpreting caries depth as the stu-

dents were in the fourth and fifth years of dental school. 6

The use of AI technology, especially CNNs based on deep learning, has significantly 
advanced image analysis. Cumulatively, these studies demonstrate the acceptable 
accuracy of these models in predicting pulp exposures. 6,20,21 This might help dentists 
determine prognoses of deep caries management and customize treatment plans 
accordingly. It is important to note that several factors, such as operator expertise, 
type of CNN and associated learning curve, tooth type, depth, and location of caries, 
can affect the accuracy. To extrapolate the results of these studies to routine clinical 
settings, more studies are needed to validate the effect of these factors in AI interpre-

tation and integration.

ARTIFICIAL INTELLIGENCE AND REGENERATIVE ENDODONTIC PROCEDURES

REPs have emerged as a promising treatment modality for managing immature 
teeth with infected root canal spaces. 22 The primary outcome of successful REP
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is to achieve radiographic bony healing and resolve clinical signs and symptoms. In 
addition, continued root maturation regarding root length and width is another more 
pertinent outcome while managing immature teeth. 22 This latter outcome has been 
attributed to the deposition of dentin-like or osteoid tissue subsequent to differen-

tiation of dental mesenchymal stem cells into different cell phenotypes. 22

Survival and differentiation of dental mesenchymal stem cells is a crucial prognostic 
factor in the outcome of regenerative therapies. 23 Several studies have reported the 
effect of microbes and their toxins, such as lipopolysaccharide (LPS), on dental 
stem cells’ differentiation, proliferation, and migration. 24 However, evaluating the syn-

ergistic impact of varying concentrations of LPS and treatment times on stem cells has 
been challenging. To overcome this, a recent study by Bindal and colleagues 7 has 
investigated using an adaptive neuro-fuzzy inference system (ANFIS), an AI computa-

tional model that combines the fuzzy inference system with a neural network-learning 
algorithm, to predict dental pulp stem cells (DPSCs) viability. In this in vitro study, 
DPSCs were systematically isolated and subject to varying concentrations of LPS 
for different time intervals of up to 72 hours. The AI model displayed sufficient accu-

racy (root mean square error [RMSE] = 0.0288, R 2 = 0.81) in predicting the simulta-

neous effect of LPS concentration and treatment time on the viability of DPSCs. 7 

Continued root formation due to mineralized tissue deposition is an important 
outcome of REPs in immature teeth. 25 This outcome has traditionally been evaluated 
using 2D imaging, such as PA radiographs. 26 Utilizing a segmentation model, Shetty 
and colleagues 26 have demonstrated the accuracy of 2 AI-based imaging programs, 
that is, OsiriX MD and 3D Slicer, to estimate the difference in pulp space volume 
following a REP. 26 In vitro assessments were performed initially to assess the 2 pro-

grams’ sensitivity and reliability, followed by clinical validation on 35 permanent imma-

ture teeth with necrotic pulps and PA pathoses. The results demonstrated a 
statistically significant decrease (P<.05) in pulp volume after REP; however, there 
was no significant difference between the 2 imaging programs in estimating pulp 
space volumes. 26 Compared to the Food and Drug Administration-approved program 
OsiriX MD, the 3 dimensional (3D) slicer is a free, open-source imaging program that 
turned out to be faster to use with less user interaction, showing more promise for clin-

ical application. 26

The limited amount of AI data on evaluating REP prognosis outcomes is focused 
on assessing stem cell viability and estimating pulp space volume. 7,26 Owing to the 
in vitro nature of study by Bindal and colleagues 7 on assessing stem cell viability, 
several in vivo variables that could affect stem cell survival were not considered dur-

ing the study. This limits the extrapolation of the results to clinical settings. In addi-

tion, as the study focused only on DPSCs, the results cannot be generalized to other 
stem cell populations, especially Stem Cells from Apical Papilla, which plays a sig-

nificant role in REP. 22 Despite these limitations, the neuro-fuzzy AI model is a prom-

ising tool for conducting future studies to evaluate the effect of other treatment-

related and in vivo factors on the viability of various stem cells. The AI imaging pro-

grams used by Shetty and colleagues 26 were limited by the ability to accurately 
quantify the hard tissue deposition on the canal walls, which questions whether 
the reduction in volume was because of increased thickness in root width or a result 
of intracanal calcification, which can be a potential complication for future endodon-

tic intervention. This was attributed to limitations of cone beam computed tomogra-

phy (CBCT) imaging, such as low contrast and background noise. 26 Despite these 
limitations, this study can be a foundation for future research to analyze the use of 
segmentation models with AI-based imaging programs to assess volumetric 
changes in endodontic outcomes.
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ARTIFICIAL INTELLIGENCE AND NONSURGICAL ROOT CANAL TREATMENT AND 
RETREATMENT

The aim of endodontic instrumentation is cleaning, shaping, and preparing the root ca-

nal system for disinfection and obturation. Rotary nickel titanium (Ni-Ti) files have revo-

lutionized root canal shaping by reducing the risk of file fracture and improving canal 
cleaning efficiency. 27 Advances in technology, such as electronic apex locators and 
CBCT have reduced procedural errors and help achieve more predictable treatment 
results. 28 Despite these advances, challenges such as instrument separation, canal 
transportation, and obstruction still pose a clinical challenge. 29,30

A recent study by Guo and colleagues 8 used the ML model of artificial neural 
network (ANN) for the prediction and optimization of the force and torque applied dur-

ing cleaning and shaping. In this in vitro study, the proposed model had an accurate 
precision in the force and torque prediction (error <14%). Based on the data, this ML 
model can help dentists to accurately select the size of Ni-Ti file and set the speed of 
the rotary instrument below the suggested range to avoid file separation and 
perforation.

After thorough instrumentation of the canals, obturation aims to achieve a complete, 
3D seal from the apex to the coronal end of the canal to effectively prevent microbial 
leakage. 31 Adequate obturation ensures the long-term success by preventing post-

treatment apical periodontitis. 32 Precise evaluation of the obturation is very significant 
since underfilling and overfilling can lead to endodontic treatment failures. 33

Li and colleagues 34 proposed an automatic and accurate evaluation method for the 
root canal therapy results using ML tools. This clinical study utilized medical image 
classification and segmentation to automate the evaluation of obturation quality on 
radiographic images by employing advanced computer vision and AI techniques. 
The AI model of Anatomy-Guided Multi-Branch (AGMB) Transformer Network can 
improve the diagnosis accuracy from 57.96% to 90.20%.

Integrating AI into endodontic instrumentation holds the potential to significantly 
enhance the precision, efficiency, and predictability of root canal therapy. AI’s ability 
to monitor instrument usage and canal shaping can help improve clinical outcomes by 
minimizing complications like instrument separation and canal transportation. While 
challenges such as data integration, clinician acceptance, regulatory considerations, 
and limited clinical studies remain, the continued development of AI in endodontics 
promises to revolutionize the field.

ARTIFICIAL INTELLIGENCE AND ENDODONTIC MICROSURGERY

EMS aims at addressing complex cases of endodontic treatment failure or infection. 
Successful surgical outcome hinges on precise clinical and radiographic diagnosis, 
careful treatment planning, and execution. 35 AI is leveraging on data analysis and 
ML algorithms to enhance surgical outcome forecasting. Recent studies have used 
AI-driven systems that analyze extensive datasets of patient records and radiographic 
imaging, identifying patterns and correlating clinical variables that human practitioners 
might overlook. 36–38

A recent study by Qu and colleagues 9 aimed at establishing ML models to predict 
the prognosis of EMS. They trained and evaluated the GBM and RF models of ML. For 
the GBM model, the predictive accuracy was 0.80, with a sensitivity of 0.92, specificity 
of 0.71. For the RF model, the accuracy was 0.80, with a sensitivity of 0.85, specificity 
of 0.76 (Fig. 3). The GBM and RF models can immediately output a most likely surgical 
outcome when the required factors are entered, thus providing an objective reference 
for clinicians in decision-making. The study analyzed their algorithm on a dataset of
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234 teeth from 178 patients and found that out of the 8 variables used to predict prog-

nosis, both models contained sex, age, size of the lesion, and type of bone defect in 
the top-ranking features (Fig. 4). The study was limited by the small datasets of un-

healed cases.

The success rate of EMS is greater than 90%. 39–41 Integrating AI in predicting suc-

cess rate of EMS can revolutionize outcomes by helping endodontists in providing 
personalized treatment recommendations, risk assessment, assist in robotic surgery, 
and provide real-time and posttreatment monitoring in EMS. 42 AI models need diverse 
and accurate data to make reliable predictions as it depends largely on the quality and 
quantity of the data it is trained on. To predict success of EMS, the data availability of 
high-resolution CBCT imaging and patient history is limited. AI lacks the refined clinical 
judgment as that of trained clinician. It faces significant limitations related to adapt-

ability and integration with the existing diagnostic, imaging, and surgical systems 
used in endodontics. Consolidating the static and historical data that the AI is trained 
on along with complex biological systems that affect tissue and immune response, 
healing rates, and complications during EMS is yet another challenge that researchers 
and clinicians are facing. As AI continues to evolve and as more high-quality data be-

comes available, it is a promising tool to improve surgical care and will likely comple-

ment and augment the expertise of human clinicians.

Fig. 3. Receiver operating characteristics (ROC) curves and the resulting area under the 
curves (AUCs). (A) ROC curves of the gradient boosting machine model, mean AUC = 0.88 

(95% CI 0.81–0.89); (B) ROC curves of the Random Forest model, mean AUC = 0.83 (95% 

CI 0.79–0.90). (Qu Y, Lin Z, Yang Z, et al. Machine learning models for prognosis prediction 

in endodontic microsurgery. J Dent 2022;118:103947.)

Fig. 4. Feature importance of top 8 features contributing to (A) the gradient boosting ma-

chine model and (B) random forest model. The values were normalized to the range from 

0 to 1. (Qu Y, Lin Z, Yang Z, et al. Machine learning models for prognosis prediction in end-

odontic microsurgery. J Dent 2022;118:103947.)
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ARTIFICIAL INTELLIGENCE AND POSTOPERATIVE PAIN AND FLARE UPS

Pain is one of the most significant health care crises in the United States. 43 Despite our 
best efforts, 15% to 25% of patients suffer from postoperative pain after root canal 
treatment (RCT), which can affect the quality of life and other patient-centered out-

comes. 44 In some instances, flare-ups can occur, which are unexpected occurrences 
or exaggeration of pain and/or swelling after endodontic intervention. 10

Gao and colleagues 45 evaluated using backpropagation ANN (BP-ANN) with 13 var-

iables as inputs to predict postoperative pain 1 week after RCT. The accuracy of this 
BP neural network model was 95.60% for the prediction of postoperative pain 
following RCT. Most of the variables used as inputs for this model are well-

established factors associated with postoperative pain. 45 However, this study did 
not account for psychological factors associated with pain and only evaluated 
short-term postoperative pain for 1 week. 45 A study by Nosrat and colleagues 10 eval-

uated an RF algorithm, an ML model based on multiple baseline variables or charac-

teristics, to predict the occurrence of flare-ups following nonsurgical retreatment in 
2846 patients. Their results indicated a weak performance of the model to predict 
the occurrence of flare-ups (precision = 0.13). This was attributed to the rarity of 
flare-ups in their study (4%), and the validity of baseline characteristics was ques-

tioned to predict flare-ups in clinical settings. 10

Pain is an important patient-reported outcome measure that has garnered signifi-

cant interest in clinical research and practice. Postoperative discomfort and pain 
can be disruptive and can affect dentist–patient relationships. The use of BP-ANN 
by Gao and colleagues 45 showed high accuracy in predicting postendodontic pain. 
This high accuracy was attributed to applying the BP-ANN AI model, which can run 
complex analyses of numerous strongly coupled variables and effectively deal with 
nonlinear problems. The BP-ANN model also benefits from its self-learning capability 
and strong simulation ability. 45 In contrast, the RF algorithm based on the ML model in 
the study by Nosrat and colleagues 10 displayed a limited ability to predict “flare-ups.” 
This result was also attributed to the rare nature of the event. As there is data scarcity 
to train the model, it suffers from a problem known as “class imbalance,” where the 
skewed dataset can lead to biased results in poor prediction of a rare event. 46

SUMMARY

AI is becoming an integral part of endodontic practice with the potential to transform 
how clinicians predict treatment prognosis and make critical decisions. It can provide 
actionable insights by analyzing complex data, assessing case difficulty, optimizing 
procedures, and improving patient outcomes. Specifically, in the field of endodontics, 
AI’s impact is evident by its use in deep caries management, regenerative procedures, 
postoperative pain prediction and microsurgery case selection and outcomes. 
Although AI has demonstrated significant potential in predicting treatment outcomes, 
there can be further refinements. Continued research is critical to improve its accuracy 
and dependability. Advances in data integration and algorithm development will play 
an integral role in pushing AI closer to its full potential in the field of endodontics.

CLINICS CARE POINTS

• Clinicians should be aware that multiple prognostic factors can directly or indirectly affect 

the outcome/prognosis of endodontic treatment.
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• The application of AI to analyze clinical, radiographic, and patient-related data can help 

accurately assess case complexity and help in decision-making and referral decisions, 

impacting the outcome of the intended treatment.

• The influence of AI in predicting the prognosis of nonsurgical and surgical endodontic 

treatments can significantly impact patient care.

• AI models will help clinicians in patient counseling and customize treatment plans based on 

case complexity, patient needs, and predictive data analytics.

• AI models must be trained and validated on large and diverse datasets to serve as reliable 

tools suitable for clinical practice.

• Ethical and regulatory concerns must be addressed before the routine application of AI in 

endodontic practice.
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24. Rodas-Junco BA, Herná ndez-Solı́s SE, Serralta-Interian AA, et al. Dental stem 
cells and lipopolysaccharides: a concise review. Int J Mol Sci 2024;25(8):4338.

25. EzEldeen M, Van Gorp G, Van Dessel J, et al. 3-dimensional analysis of regener-

ative endodontic treatment outcome. J Endod 2015;41(3):317–24.

26. Shetty H, Shetty S, Kakade A, et al. Three-dimensional semi-automated volu-

metric assessment of the pulp space of teeth following regenerative dental pro-

cedures. Sci Rep 2021;11(1):21914.

27. Damkoengsunthon C, Wongviriya A, Tantanapornkul W, et al. Evaluation of the 
shaping ability of different rotary file systems in severely and abruptly curved 
root canals using cone beam computed tomography. Saudi Dent J 2024;36-

(10):1333–8.

28. Venskutonis T, Plotino G, Juodzbalys G, et al. The importance of cone-beam 
computed tomography in the management of endodontic problems: a review 
of the literature. J Endod 2014;40(12):1895–901.

29. Peters OA. Current challenges and concepts in the preparation of root canal sys-

tems: a review. J Endod 2004;30(8):559–67.

30. Haapasalo M, Shen Y. Current therapeutic options for endodontic biofilms. Endod 
Top 2010;22(1):79–98.

31. Schilder H. Cleaning and shaping the root canal. Dent Clin North Am 1974;18(2): 
269–96.

32. Komabayashi T, Colmenar D, Cvach N, et al. Comprehensive review of current 
endodontic sealers. Dent Mater J 2020;39(5):703–20.

33. Schaeffer MA, White RR, Walton RE. Determining the optimal obturation length: a 
meta-analysis of literature. J Endod 2005;31(4):271–4.

AI and Prognosis of Treatment in Endodontics 539

Descargado para Irene Ramírez (iramirez@binasss.sa.cr) en National Library of Health and Social 
Security de ClinicalKey.es por Elsevier en octubre 23, 2025. Para uso personal exclusivamente. No se 
permiten otros usos sin autorización. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.

http://refhub.elsevier.com/S0011-8532(25)00035-7/sref13
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref13
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref13
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref14
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref14
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref14
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref15
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref15
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref16
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref16
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref17
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref17
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref18
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref18
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref19
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref19
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref19
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref20
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref20
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref20
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref21
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref21
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref22
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref22
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref23
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref23
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref23
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref24
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref24
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref25
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref25
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref26
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref26
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref26
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref27
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref27
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref27
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref27
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref28
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref28
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref28
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref29
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref29
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref30
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref30
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref31
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref31
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref32
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref32
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref33
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref33


34. Li Y, Zeng G, Zhang Y, et al. AGMB-transformer: anatomy-guided multi-branch 
transformer network for automated evaluation of root canal therapy. IEEE J Bio-

med Health Inform 2022;26(4):1684–95.

35. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a re-

view. J Endod 2006;32(7):601–23.

36. Setzer FC, Shi KJ, Zhang Z, et al. Artificial intelligence for the computer-aided 
detection of periapical lesions in cone-beam computed tomographic images. 
J Endod 2020;46(7):987–93.

37. Chen YM, Hsiao TH, Lin CH, et al. Unlocking precision medicine: clinical applica-

tions of integrating health records, genetics, and immunology through artificial in-

telligence. J Biomed Sci 2025;32(1):16.

38. Slashcheva LD, Schroeder K, Heaton LJ, et al. Artificial intelligence-produced 
radiographic enhancements in dental clinical care: provider and patient perspec-

tives. Front Oral Health 2025;6:1473877.

39. Pinto D, Marques A, Pereira JF, et al. Long-term prognosis of endodontic 
microsurgery-A systematic review and meta-analysis. Medicina (Kaunas) 2020; 
56(9):447.

40. Safi C, Kohli MR, Kratchman SI, et al. Outcome of endodontic microsurgery using 
mineral trioxide aggregate or root repair material as root-end filling material: a 
randomized controlled trial with cone-beam computed tomographic evaluation. 
J Endod 2019;45(7):831–9.

41. Curtis DM, VanderWeele RA, Ray JJ, et al. Clinician-centered outcomes assess-

ment of retreatment and endodontic microsurgery using cone-beam computed 
tomographic volumetric analysis. J Endod 2018;44(8):1251–6.

42. Isufi A, Hsu TY, Chogle S. Robot-assisted and haptic-guided endodontic surgery: 
a case report. J Endod 2024;50(4):533–9.e1.

43. Katz N. The impact of pain management on quality of life. J Pain Symptom Manag 
2002;24(1 Suppl):S38–47.

44. Pak JG, White SN. Pain prevalence and severity before, during, and after root ca-

nal treatment: a systematic review. J Endod 2011;37(4):429–38.

45. Gao X, Xin X, Li Z, et al. Predicting postoperative pain following root canal treat-

ment by using artificial neural network evaluation. Sci Rep 2021;11(1):17243.

46. Megahed FM, Chen YJ, Megahed A, et al. The class imbalance problem. Nat 
Methods 2021;18(11):1270–2.

Zebouni et al540 

Descargado para Irene Ramírez (iramirez@binasss.sa.cr) en National Library of Health and Social 
Security de ClinicalKey.es por Elsevier en octubre 23, 2025. Para uso personal exclusivamente. No se 
permiten otros usos sin autorización. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.

http://refhub.elsevier.com/S0011-8532(25)00035-7/sref34
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref34
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref34
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref35
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref35
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref36
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref36
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref36
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref37
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref37
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref37
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref38
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref38
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref38
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref39
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref39
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref39
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref40
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref40
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref40
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref40
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref41
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref41
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref41
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref42
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref42
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref43
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref43
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref44
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref44
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref45
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref45
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref46
http://refhub.elsevier.com/S0011-8532(25)00035-7/sref46

	Artificial Intelligence and Prognosis of Treatment in Endodontics
	Key points
	Introduction
	Artificial intelligence in assessing case difficulty and decision-making
	Artificial intelligence and deep caries management
	Artificial intelligence and regenerative endodontic procedures
	Artificial intelligence and nonsurgical root canal treatment and retreatment
	Artificial intelligence and endodontic microsurgery
	Artificial intelligence and postoperative pain and flare ups
	Summary
	Clinics care points
	Disclosure
	References


