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Objective: The Emergency Severity Index (ESI) is the most commonly used system in over 70% of all U.S. emer-
gency departments (ED) that uses predicted resource utilization as a means to triage [1], Mistriage, which in-
cludes both undertriage and overtriage has been a persistent issue, affecting 32.2% of total ED visits [2]. Our
goal is to develop a machine learning framework that predicts patients' resource needs, thereby improving re-
source allocation during triage.
Methods: This retrospective study analyzed ED visits from theMedical InformationMart for Intensive Care IV, di-
viding the data into training (80%) and testing (20%) cohorts. We utilized data available during triage, including
patient vital signs, age, gender, mode of arrival, medication history, and chief complaint. Azure AutoMLwas used
to create differentmachine learningmodels trained to predict the 144 target columns including laboratory panels
and imaging modalities as well as medications required during patients' ED visits. The 144 models' performance
was evaluated using the area under the receiver operating characteristic curve (AUROC), F1 score, accuracy, pre-
cision and recall.
Results: A total of 391,472 ED visits were analyzed. 144 Voting ensemblemodels were created for each target. All
frameworks achieved on average an AUC score of 0.82 and accuracy of 0.76. We gathered the feature importance
for each target and observed that ‘chief complaint’, among others, had a high aggregate feature importance across
different targets.
Conclusion: This study shows the high accuracy in predicting resource needs for patients in the ED using a ma-
chine learning model. This can greatly improve patient flow and resource allocation in already resource limited
emergency departments.

© 2024 Published by Elsevier Inc.
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1. Introduction

In the high-stakes environment of emergency departments (ED), the
triage process plays a pivotal role. This process is not just about directing
patient flow to appropriate treatment areas, but it ensures effective allo-
cation of resources for care delivery. While multiple different triage sys-
tems exist, the Emergency Severity Index (ESI) is the most commonly
used in the US, employed in over 70% of all U.S. EDs [1]. The ESI is a
five-level triage algorithm that categorizes patients into groups from 1
(most urgent) to 5 (least urgent) on the basis of their vital signs and re-
source needs. The ESI has beenwidely adopted in EDsworldwide due to
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its reliability and validity in predicting hospital admission and resource
utilization [2,3].

Despite advancements in triagemethods, significant challenges per-
sist, particularlywith the Emergency Severity Index (ESI), leading to fre-
quent mistriage. While these tools rely on objective data for triage
decisions, the inherent subjective judgment of clinicians during triage
plays a critical role, introducing variability and potential bias [4,5].
Mistriage is defined here as the act of giving a patient an inappropriate
level of triage, including both undertriage and overtriage. Undertriage
refers to a situation where a patient who need urgent interventions is
mistakenly assigned a lower ESI level (for example ESI 3 or 4 instead
of a 2). On the other hand, overtriage occurs when a patient who re-
quires minimal resources is assigned a higher ESI level (for example
ESI 3 or 4 instead of a 5). Mistriage has been found to occur in 32.2%
of total ED visits, of which 3.3% were undertriaged and 28.9% were
 of Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
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overtriaged [4,5]. This issue stems from the subjective nature of the ESI
system, particularly for ESI levels 3, 4, and 5, which require clinicians to
estimate the number of resources patients are expected to need. For ex-
ample, a patient with mild abdominal pain might be overtriaged to ESI
level 3 if the clinician anticipates the need for multiple resources such
as tests and consultations, whereas they might more appropriately be
assigned to ESI level 4 or 5 if fewer resources are needed. Conversely,
a patient with moderate symptoms might be undertriaged to ESI level
4 butmay actually require an ESI level 3 due to needing several diagnos-
tic tests and treatments. Incorrectly estimating resource needs can lead
to assigning an inappropriate triage level, potentially delayingnecessary
treatment and straining ED resources.

This highlights the need to improve the triage process by providing
more data-driven tools for resource allocation decisions, which will in
turn inform the assignment of a patient's ESI score.

An additional aspect of this endeavor is the early decision-making
regarding patient disposition, especially in cases requiring transfers.
The ability to determine the need for specialized care or transfer to an-
other facility can be vital for patient outcomes and efficient use of ED re-
sources [6,7]. Artificial intelligence (AI) and machine learning (ML)
emerge as potent tools to transcend these challenges, capable of sifting
through complex data to uncover patterns and enhance decision-
making thereby supporting more informed and timely decisions in
emergency care. In addition, they can mitigate the tendency to overuse
diagnostic tools by providing data-driven suggestions [8]. Studies have
already shown the effectiveness of AI in various scenarios including
mortality, admission or need for critical care [9,10].

Furthermore, the utilization of Electronic Health Records (EHR) in
conjunctionwith AI algorithms has led to the development of predictive
models that can anticipate outcomes like hospitalization needs and crit-
ical care events. These models, which encompass machine learning,
deep learning, and interpretable machine learning, are promising but
require further comparative studies to ensure their reliability and gen-
eralizability [10].

Our research aims to leverage machine learning models to accu-
rately predict patients' resource needs, thus improving the efficacy of
the Emergency Severity Index (ESI) system. This includes predicting
the need for laboratory tests, imaging services, medications, and proce-
dures which are significant contributors to resource utilization and
length of stay in the ED. Accurate prediction of resource needs enables
us to refine the ESI system, leading potentially to better patient alloca-
tion across various ED sections. This improvement not only enhances ef-
ficiency and reduces wait times but also significantly boosts patient
outcomes, particularly for those who are currently misclassified.

2. Methods

2.1. Study design, setting, participant selection

This retrospective cohort study analyzed clinical data from patients
aged 18 and over who visited the ED of Beth Israel Deaconess Medical
Center, an academic medical center in Boston, Massachusetts, between
2008 and 2019. The data, sourced from the Medical Information Mart
for Intensive Care IV (MIMIC-IV) database, included 425,087 ED visits
[11]. Since the MIMIC-IV database does not involve identifiable human
subjects, Institutional Review Board (IRB) approval was not required
for this study.

2.2. Data pre-processing

The dataset used for all algorithms was sourced from triage informa-
tion, comprising both structured and unstructured data elements. Struc-
tured data included vital signs such as temperature, blood pressure
(systolic and diastolic), heart rate, respiratory rate, and oxygen satura-
tion, as well as demographic details such as age, sex, andmode of arrival.
Additionally, a categorized list of each patient's medications, organized
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by therapeutic purpose, was incorporated. Unstructured data, such as
the free-text descriptions of patients' chief complaints,was also included.
This type of text allows clinicians to capture the exact symptoms and nu-
ances reported by patients, which can be crucial for accurate diagnosis
and treatment [12]. Furthermore, there is no universal coding for chief
complaints, which could limit the generalizability of the model [13].

To conduct the machine learning analysis, a dataset was created
with a schema consisting of feature columns to serve as inputs and tar-
get columns to serve as outputs.

Encounters with no recorded vital signs were removed from the
dataset, and the missing values in the remaining encounters were im-
puted usingmean imputation. The feature columns included structured
data such as age and pulse rate were added with their raw values, cate-
gorical data likemedication used at homewere one-hot encodedwhich
converts them into a binary format suitable for machine learning appli-
cations. It achieves this by assigning a unique column in amatrix to each
medication category.Within thismatrix, the presence of amedication is
indicated by a 1, while its absence is marked with a 0, thereby
transforming the categorical information into a format that machine
learning algorithms can efficiently process. On the other hand, unstruc-
tured data like chief complaints was manipulated by azure Auto Ma-
chine Learning (AutoML) using different techniques like word
embeddings, TF-IDF vectorization or categorical hash among others
suited for machine learning depending on the model used.

The target columns encompass various resources utilized, including
laboratory testing, imaging techniques, procedures, and medications
administered. Laboratory tests were grouped into detailed panels to as-
sess specific organ systems. For instance, amylase and lipase were col-
lectively categorized under pancreatic enzymes. Imaging techniques
were classified into distinct categories such as MRI, CT, ultrasound,
and X-ray. Procedures (such as interventional radiology) were consoli-
dated to indicate whether a patient underwent any procedure. Lastly,
the medication data in the ED focused on the top 90% most frequently
used medications, excluding the least used 10% due to their minimal
count, which rendered them statistically insignificant for predictive
analysis. These columns were converted into one-hot encoded format,
using 0 s and 1 s to denote whether they were used or not.

The dataset underwent a stratified sampling into an80% training and
a 20% testing. Furthermore, to address the issue of imbalanced data for
each target due to the sheer number of samples, we employed a
random-balanced under-sampling technique to the training set. This
method balances the class distribution in the dataset by reducing the
size of the more abundant class. Such balancing ensures that the
model can learn effectively from both classes, thereby enhancing its
generalization capabilities and improving its accuracy inmaking predic-
tions across all classes, not just the predominant one.

The dataset was uploaded to Azure AutoML for preprocessing and
feature engineering, which automated the transformation of raw data
into a machine learning-ready format. During this phase, AutoML un-
dertook the imputation of missing values by substituting them with
the feature's mean, ensuring that no data points were discarded due
to incomplete information.

2.3. Model development

After preprocessing the initial dataset, it was then split into several
datasets, each corresponding to a single target column. This resulted
in different subsets, each with their own unique training dataset.
These datasets were then uploaded to Azure Blob storage in a tabulated
format with each column data type predefined. Following this, an ex-
periment was created for each prediction target with its dataset speci-
fied in the configuration. Azure AutoML was then triggered to execute
training for each experiment.

Following the initial preprocessing, Azure AutoML proceeds to the
model selection and training phase, specifically within the context of a
classification task. Utilizing its extensive repository of algorithms,
f Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
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Table 1
Demographic and clinical characteristics of training and testing sets.

Demographic Training Set
(N = 313,177)

Testing Set
(N = 78,295)

p-value

Male, n (%) 141,761 (45.27) 35,947 (45.91) <0.001
Age, mean (SD) 50.00 (20.00) 50.04 (20.03) 0.62
Race
White, n (%) 168,296 (53.74) 42,300 (54.03) 0.07
Black, n (%) 57,406 (18.33) 14,377 (18.36) 37

Acuity Level, n (%)
1 11,323 (3.62) 2889 (3.68) 0.21
2 104,933 (33.51) 26,179 (33.43) 0.33
3 174,023 (55.57)) 43,483 (55.53) 0.42
4 22,081 (7.05) 5530 (7.1) 0.35
5 817 (0.25) 214 (0.26) 0.31

Mode of Arrival, n (%)
Walk-in 193,100 (61.66) 48,205 (61.57) 0.32
Ambulance 110,186 (35.18) 27,569 (35.21) 0.43

Vital Signs
Heart Rate (beats/min), mean (SD) 84.97 (17.76) 84.50 (17.50) <0.001
Systolic Blood Pressure (mmHg), mean (SD) 135.12 (41.56) 134.93 (22.43) 0.08
Diastolic Blood Pressure (mmHg), mean (SD) 81.50 (11.89) 79.58 (17.81) <0.001
Body Temperature (F), mean (SD) 98.02 (4.03) 98.00 (2.56) 0.09
Respiratory Rate (breaths/min), mean (SD) 17.57 (9.36) 17.53 (4.02) 0.07
Oxygen Saturation (percents), mean (SD) 98.51 (19.04) 98.43 (5.08) 0.04

Table 2
Patient features and the percentage of missing values.

Feature Data type Missing values, n (%)

Gender Categorical 0 (0%)
Age Continuous 0 (0%)
Race Categorical 0 (0%)
Mode of Arrival Categorical 0 (0%)
Chief Complaint Text 0 (0%)
Systolic Blood Pressure Continuous 18,291 (4.03%)
Diastolic Blood Pressure Continuous 19,091 (4.49%)
Body Temperature Continuous 23,415 (5.51%)
Heart Rate Continuous 17,090 (4.02%)
Respiratory Rate Continuous 20,353 (4.79%)
Oxygen Saturation Continuous 20,596 (4.85%)
Home Medications Categorical 0 (0%)
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AutoML selects a diverse array of classification models that range from
traditional methods, such as logistic regression and decision trees, to
more complex ones like gradient boosting, SVM and LightGBM. It then
applies these models within a robust validation framework, employing
a 5-fold cross-validation technique to rigorously evaluatemodel perfor-
mance. Cross-validation is a resampling procedure used to assess the
predictive capabilities of a model by partitioning the original sample
into a training set to train the model, and a test set to evaluate it. In
each of the five iterations, a different subset of the data is held out as
the test set while the remaining data is used for training, ensuring that
every data point is used for both training and validation exactly once.
The performance metrics from these folds are then aggregated to pro-
vide a comprehensive measure of model efficacy. Upon completion of
the model training and validation process, Azure AutoML synthesizes
the insights gathered from various individual classifiers to construct a
superior predictive model.

This is achieved through the implementation of a voting ensemble
method among 12 trained machine learning models, which leverages
soft voting. In soft voting, predictions from each constituent model are
weighted and combined based on the predicted probabilities of the
class labels, rather than a simple majority vote. This probabilistic ap-
proach allows for a more nuanced aggregation of model predictions,
giving higherweight to the confidence level of eachmodel's predictions.
The resulting ensemble model capitalizes on the strengths of its mem-
bers while mitigating individual weaknesses, culminating in a robust
and often more accurate final model.

2.4. Model performance evaluation

To provide a comprehensive assessment of model performance on
the test set, several key metrics were utilized. After retrieving the best
performing models, the voting ensemble runs again on the test set
and retrieves the F1 score, AUC, accuracy, precision score, and recall
score. The Accuracy metric measures the proportion of correct predic-
tions, including both true positives and true negatives, among the
total number of cases examined, serving as a straightforward and intu-
itive gauge of overall model performance. The AUC (Area Under the
Curve) reflects the model's ability to discriminate between positive
and negative classes, with values closer to 1 indicating better discrimi-
nation. The F1 Score combines precision and recall into a single metric,
offering a balance between the model's precision in predicting positive
instances and its ability to recall all positive instances. Precision Score
focuses exclusively on the model's accuracy in predicting positive
143
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instances, whereas the Recall Score measures the model's ability to
identify all actual positives [14].

3. Results

A total of 391,472 ED visits were included in this analysis, with
313,177 visits in the training set and 78,295 visits in the testing set
(Table 1). The input features used in model development are shown in
Table 2, with each variable in our study database having <6% missing
values. We created 144 voting ensemble models for each target.

3.1. Statistical analysis

3.1.1. Performance Metrics of the voting ensembles of several resources
Fig. 1 displays the performance metrics of voting ensemble classi-

fiers used inmedical settings to predict various patient needs, including
hospital admission, imaging and procedure requirements, laboratory
testing, andmedication use in the ED. Themodel predicting hospital ad-
missions shows promising results, with an accuracy of approximately
0.75 and an AUC close to 0.8, indicating strong overall performance
and discriminative power. The F1 score, at 0.7, signifies an excellent bal-
ance between precision and recall, confirming the model's reliability.
Precision at nearly 0.65suggests that the positive predictions are correct,
while a recall around 0.7 underscores the model's ability to identify
most actual cases that require admission.

Themodel's capability in forecasting the need for imaging and proce-
dures is similarly proficient in general accuracy (0.78) and identifying
cases (AUC of 0.85). However, the lower F1 (0.15) and precision (0.09)
f Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
ización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.
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Fig. 1. Average Performance of the voting ensembles that predicts the laboratory testing, imaging and procedures, Medications used in the ED and admission.
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scores point to a significant area for enhancement, especially inminimiz-
ing false positives. For laboratory tests, the classifier's accuracy (0.75)
and AUC (0.81) imply effective discrimination between necessary and
unnecessary tests. Nevertheless, the lower F1 score (0.22) and precision
score (0.2) reveal a propensity for over-predicting positive cases. In
predicting medication use in the ED, the classifier mirrors the overall
high accuracy (0.77) and AUC (0.81) seen in the performance of other
models. However, the model's low F1 score (0.06) and precision score
(0.03) highlight a skewed emphasis on recall over precision.

3.2. Closer examination of some voting ensembles

Upon closer examination of the predictive models, we find a note-
worthy that the model predicting hospital admissions assigns the
Fig. 2. Aggregate Feature im
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greatest importance to chief complaints (as illustrated in Fig. 2).
Among the chief complaints, Fig. 3 illustrates some of the words in
the chief complaints that were associated with a higher likelihood
of admission.

Further analysis reveals that age is the secondmost influential factor,
with admission rate increasingwith age, as shown in Fig. 4. Additionally,
blood pressure readings significantly impact the likelihood of admis-
sion; patientswith extremely low (50–100) or high (200–250) readings
are more likely to be flagged for admission (Fig. 5).

Focusing on imaging classification, the model predicting the utiliza-
tion of CT scans assigns high feature importance to chief complaints
such as “alcohol status post fall” at 1.75 and “right lower quadrant ab-
dominal pain” at 1.57, indicating these as strong predictors for the
need of a CT scan, as illustrated in Fig. 6.
portance for admission.
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In laboratory testing, the machine learning model for pleural
fluid metabolic panel (i.e. PH, proBNP, LDH, protein etc) accurately
identifies patients with O2 saturation below 95% as needing pleural
fluid analysis, typically associated with pleural effusions (Fig. 7).

To illustrate the rationale behind our model's classification process,
we chose “Emtricitabine/Tenofovir” from the list of predicted
Fig. 4. Detailed Analysis of age as a Key Feature in admi
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medications as an example. This model identifies patients prescribed
home antiretroviral as indicator for administering Emtricitabine Teno-
fovir in the ED with a feature importance reaching 2.4 (Fig. S8).

Highlighting the capabilities of other medication prediction models,
a prime illustration is themodel developed for forecasting the necessity
of norepinephrine. This model pinpoints individuals whose systolic
tting a patient as indicated by the voting ensemble.

f Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
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blood pressure (SBP) falls below 100mmHg as likely candidates in need
of norepinephrine (Fig. S9).

4. Discussion

In our study, we developed 144 machine learning models to antici-
pate the need for various resources in the ED, using data from patient
triage. Thesemodels, informed by historical data on resource allocation,
learn to recognize patterns and make objective predictions about re-
source needs. Our model's performance is comparable to previous
work in this domain, such as the study by Hunter-Zinck et al., which
used multilabel machine learning framework to predict clinical orders
Fig. 6. Detailed Analysis of chief complaint as a Key Feature in performing
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simultaneously [15]. In comparison, our study employed a different ap-
proach by using a separate model for each target instead of a multilabel
classification. This method provided us with clearer insights into how
the models classify the necessity for each order based on the triage in-
formation and thus the clinical profile of the patient. However, both
studies reached the same conclusion thatmachine learning holds signif-
icant potential for predicting resources and supporting decision-making
in emergency departments.This study's evaluation of the performance
of voting ensembles in predicting medication usage in ED settings re-
veals a multifaceted picture of the different model's efficacy (Figs. 1).
Notably, the high accuracy observed indicates a general reliability of
the models in making correct predictions about imaging, laboratory
a Computed tomography (CT) as indicated by the voting ensemble.

f Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
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Fig. 7. Detailed Analysis of O2sat as a Key Feature in performing a pleural fluid analysis as
indicated by the voting ensemble.
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tests andmedication to be ordered in the ED. Such a level of accuracy is
reassuring, given the critical nature of decision-making in emergency
medicine. Complementing this, the high AUC scores demonstrate the
model's robust capability to discriminate effectively between instances
where medication is required and where it is not. This characteristic is
particularly vital in the ED context, where the accurate identification
of medication necessity can significantly impact patient outcomes.

However, the study also uncovers areas needing improvement, par-
ticularly regarding precision metrics. The lower precision score indi-
cates a reduced confidence in the model's positive predictive power.
This reduced precision could lead to challenges in distinguishing true
positives from false positives, raising concerns about the potential for
over-prescription or unnecessary medication administration in the ED.
The lower F1 score, representing the harmonic mean of precision and
recall, points to an imbalance in themodels' performance. The tendency
of themodels to favor recall over precision suggests a proclivity towards
identifying cases that require medication at the expense of generating
more false positives. In practical terms, this could result in the recom-
mendation of medications for patients who do not need them, leading
to unwarranted treatment interventions. Lastly, the precision score fur-
ther underscores the issue of the models mistakenly labeling negative
instances (cases where no medication is needed) as positive.

While themodels demonstrate strongpredictive accuracy and recall,
thus effectively identifying patients in need of a medication, the lower
precision-related metrics highlight a crucial area for enhancement.
However, it is important to emphasize that the models are trained
based on patterns observed in the behaviors of emergency physicians
in the ED, particularly regarding their resource ordering practices,
which is concordant with the literature [16].

As we investigate and explore the mechanism through which the
voting ensemblemodel predicts admissions, we find that it bases its de-
cisions on various ‘chief complaints,’ as well as ‘age’ (Fig. S2–5) aligning
with current literature [17]. Moreover, as blood pressure readings
below 100 are typically regarded as an unstable condition, Fig. S4
shows that the model is effectively predicting hospital admissions for
this specific patient group. Furthermore, Fig. S9 underscores themodel's
proficiency in accurately recommending the use of norepinephrine for
patients with low blood pressure, particularly in cases where blood
pressure falls below 90. This demonstrates the model's effectiveness in
critical clinical decision-making scenarios. In addition, an examination
of the voting ensemble model predicting the need for CT scans, as illus-
trated in Fig. S6, reveals that ‘chief complaint’ ranks highly in terms of
feature importance influencing its decision-making. Notably, specific
complaints like ‘alcohol status post-fall’, ‘right lower quadrant abdomi-
nal pain’, and ‘altered mental status’ are among the key reasons
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indicating the necessity for a CT scan. On the other hand, the model
also identifies scenarios where a CT is not required, such as in patients
presenting with finger laceration and other cases. This distinction aligns
with clinical expectations, as conditions like ‘alcohol status post-fall’ is
often associated with various bodily injuries that could necessitate a
CT scan [18].

Fig. S8 shows that patients who take at home an antiretroviral are
more likely to get prescribed “Emtricitabine Tenofovir” in the ED;
which is an antiretroviral especially used in HIV patients [19]. This un-
derlines the performance of one of the models dedicated to predict an-
tiretroviral administration in the ED.

In summary, a comprehensive evaluation of selected voting ensem-
bles reveals their reliability in classifying the necessity of resources. This
detailed analysis confirms the models' capability in making dependable
decisions about resource allocation in clinical settings. It's important to
emphasize that these models do not rely on a single parameter to pre-
dict the use of specific resources. Instead, they incorporate a compre-
hensive view of the patient's context, including vital signs,
demographics, medication history, and chief complaint. This holistic ap-
proach allows for a more accurate and tailored prediction of resource
utilization.

Enhancing the model's accuracy and predictive power could be
achieved by incorporating a greater volume and variety of data points,
particularly those gathered post-admission. Such additional data
would enable the training of the model on a broader range of patient
outcomes, thereby improving its predictive capabilities for those who
are admitted to the hospital.

Issues such as sociodemographic biases and tendencies like over-
triaging to an ESI of level 2 or under-triaging older patients [20,21] sug-
gest the necessity for a more data-driven approach. Our machine learn-
ing models, by analyzing patient data at admission, can effectively
predict patient needs, thereby substantially minimizing variability in
the ESI's framework [22].

By integrating these models into the ESI process, we can signifi-
cantly enhance the system's objectivity. Leveraging objective data de-
rived from patterns identified by machine learning models, the ESI
will become more robust, thus optimizing patient flow and
empowering clinicians with more informed decision-making during
triage [23]. Moreover, the potential for automation in triage with
these models adds another layer of efficiency. Finally, the dynamic
nature of machine learning models means they continuously learn
and improve with new data. As they encounter more patient cases,
they refine their predictive accuracy, adapting to evolving clinical en-
vironments.

4.1. Limitations

Our study has certain limitations, one of which is usingmean impu-
tation to replace missing data. This method can reduce the variance of
variables and affect their relationships [24]. Additionally, it can intro-
duce bias, especially if the data is not missing at random, leading to in-
accurate estimates and predictions [25].

In future work, we plan to explore more advanced approaches, such
as regression or deep learning imputation, to address these issues. In ad-
dition, the absence of certain essential resources such as consultations
with specialists, EKG and use of monitors which were not documented
in the database. Furthermore, the observed low F1 and precision scores
of the voting ensemble suggest a reduced efficiency in recognizing false
positives, potentially due to the characteristics of the training dataset.
Additionally, the models were trained solely on data from a tertiary ac-
ademicmedical center, potentially limiting their generalizability to sim-
ilar hospitals. To address this, we plan to incorporate data frommultiple
institutions in futurework, enhancing themodel's accuracy and applica-
bility across diverse healthcare settings.
f Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
ización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.
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5. Conclusions

This study acts as a demonstrative framework, showcasing how
data can be utilized by a suite of machine learning models to predict
the entire spectrum of resources a patient might require in the ED.
This data-driven approach aims to eliminate bias and minimize
error, forecasting potential admissions and standardizing the triage
process. Further research is planned to broaden the scope of these
models, incorporating more comprehensive data sets and increasing
the number of models.

Meeting

SAEM conference 2024, Phoenix, Arizona, NERDS conference.

Funding sources/disclosures

None, AA, NK, SA, JY, AM, AL and SH reports no conflict of interest.

Data sharing statement

The machine learning models can be shared upon request.

Author contribution statement

Abdel Badih El Ariss, Norawit Kijpaisalratana, and Shuhan He came
up with the study idea. Abdel Badih El Ariss, Norawit Kijpaisalratana,
and Saadh Ahmed built the machine learning models. All authors, in-
cluding Abdel Badih El Ariss, Norawit Kijpaisalratana, Saadh Ahmed,
Adriana Coleska, Andrew Marshall, Andrew D. Luo, and Shuhan He,
helped write and improve the manuscript.

CRediT authorship contribution statement

Abdel Badih el Ariss:Writing – review & editing, Writing – original
draft, Resources, Methodology, Formal analysis, Data curation, Concep-
tualization. Norawit Kijpaisalratana: Writing – review & editing,
Writing – original draft, Methodology, Investigation, Data curation,
Conceptualization. Saadh Ahmed: Writing – review & editing, Writing
– original draft, Software, Methodology, Conceptualization. Jeffrey
Yuan: Writing – original draft. Adriana Coleska: Writing – original
draft. Andrew Marshall: Writing – original draft. Andrew D. Luo:
Writing – original draft. ShuhanHe:Writing– review& editing,Writing
– original draft.

Declaration of competing interest

None.

Acknowledgments

Not applicable.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ajem.2024.07.040.

References

[1] Mccugh M, Tanabe P, Mcclelland M, Khare RK. More patients are triaged using the
emergency severity index than any other triage acuity system in the United States.
Acad Emerg Med. 2012;19(1):106–9. https://doi.org/10.1111/j.1553-2712.2011.
01240.x.
148

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library o
2024. Para uso personal exclusivamente. No se permiten otros usos sin autor
[2] Eitel DR, Travers DA, Rosenau AM, Gilboy N, Wuerz RC. The emergency severity
index triage algorithm version 2 is reliable and valid. Acad Emerg Med. 2003;10:
1070–80.

[3] Chmielewski, Nicholas DNP, RN, CEN, Cenp, NEA-BC, Faen Moretz, Jason MHA, BSN,
RN, CEN, CTRN. ESI Triage Distribution in U.S. Emergency Departments. Adv. Emerg.
Nurs. J. 44(1):p 46–53, January/March 2022. https://doi.org/10.1097/
TME.0000000000000390

[4] Sax DR, Warton EM, Mark DG, et al. Assessment of emergency severity index triage
accuracy and disparities in a large, diverse cohort. JAMA Netw Open. 2023;6(1):
e222222. https://doi.org/10.1001/jamanetworkopen.2022.22222.

[5] SmithM, Cattermole G, Li X. Evaluation of the emergency severity index in US emer-
gency departments for the rate of Mistriage. JAMA Netw Open. 2023;6(1):
e2802556. https://doi.org/10.1001/jamanetworkopen.2022.02556.

[6] Schreiber M, Yin S, O’Neil B, Moore C, Mello MJ. Using machine learning to predict
patient transfer in the emergency department. J Am Med Inform Assoc. 2018;25
(3):271–7. https://doi.org/10.1093/jamia/ocx115.

[7] Wu CC, Yen ZS, Wu MH. Artificial intelligence and machine learning in emergency
medicine. Emerg Med Clin North Am. 2020;38(1):153–63. https://doi.org/10.1016/
j.emc.2019.10.001.

[8] Pines JM, Hollander JE, Localio AR, Metlay JP. The association between physician risk
tolerance and imaging use in abdominal pain. Am J Emerg Med. 2009;27(5):552–7.
https://doi.org/10.1016/j.ajem.2008.04.014.

[9] Tan L, Young J, OngMEH, et al. A systematic review of the use of machine learning in
the prediction of the emergency severity index triage level. J Healthc Eng. 2021;
2021:6645260. https://doi.org/10.1155/2021/6645260.

[10] Clifton DA, Clifton L, Sandu DM, et al. Machine learning for early prediction of hospi-
talization in the emergency department. J Am Med Inform Assoc. 2019;26(10):1–7.
https://doi.org/10.1093/jamia/ocz112.

[11] Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic
health record dataset [published correction appears in Sci Data. 2023 Jan 16;10
(1):31. https://doi.org/10.1038/s41597-023-01945-2] [published correction ap-
pears in Sci Data. 2023 Apr 18;10(1):219. https://doi.org/10.1038/s41597-023-
02136-9]. Sci Data. 2023;10(1):1. Published 2023 Jan 3. https://doi.org/10.1038/
s41597-022-01899-xJohnson A., Bulgarelli L., Pollard T., Celi L.A., Mark R., Horng S.
MIMIC-IV-ED (version 2.2). PhysioNet 2023. https://doi.org/10.13026/5ntk-km72.

[12] Chang David, HongWoo Suk. Richard Andrew Taylor, Generating contextual embed-
dings for emergency department chief complaints. JAMIA Open. 2020;Volume 3(2):
160–6. https://doi.org/10.1093/jamiaopen/ooaa022.

[13] Horng S, Greenbaum NR, Nathanson LA, McClay JC, Goss FR, Nielson JA. Consensus
development of a modern ontology of emergency department presenting
problems-the hierarchical presenting problem ontology (HaPPy). Appl Clin Inform.
2019 May;10(3):409–20. https://doi.org/10.1055/s-0039-1691842. [Epub 2019 Jun
12. PMID: 31189204; PMCID: PMC6561773].

[14] Microsoft. (n.d.). How to understand automated machine learning. Retrieved from
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-understand-
automated-ml?view=azureml-api-2

[15] Hunter-Zinck Aley S, Peck Jordan S, Strout Tania D, Gaehde Stephan A. Predicting
emergency department orders with multilabel machine learning techniques and
simulating effects on length of stay. J Am Med Inform Assoc. December 2019;26
(12):1427–36. https://doi.org/10.1093/jamia/ocz171.

[16] Lam JH, Pickles K, Stanaway FF, et al. Why clinicians overtest: development of a the-
matic framework. BMC Health Serv Res. 2020;20:1011. https://doi.org/10.1186/
s12913-020-05844-9.

[17] Panahpour Eslami N, Nguyen J, Navarro L, et al. Factors associated with low-acuity
hospital admissions in a public safety-net setting: a cross-sectional study. BMC
Health Serv Res. 2020;20:775. https://doi.org/10.1186/s12913-020-05456-3).

[18] Taylor TR, Mhlanga J, Thomas A. Alcohol-related head injury: impact on acute CT
workload in a major trauma center published in the Br. J. Neurosurg. (2009;23(6):
622–624. https://doi.org/10.3109/02688690903215666.

[19] Mayo Clinic. (n.d.). Emtricitabine and Tenofovir (Oral Route) Description. Retrieved
from https://www.mayoclinic.org/drugs-supplements/emtricitabine-and-tenofovir-
oral-route/description/drg-20061833

[20] Sangal RB, Su H, Khidir H, et al. Sociodemographic disparities in queue jumping for
emergency department care. JAMA Netw Open. 2023;6(7):e2326338. https://doi.
org/10.1001/jamanetworkopen.2023.26338.

[21] Malinovska A, Pitasch L, Geigy N, Nickel CH, Bingisser R. Modification of the emer-
gency severity index improves mortality prediction in older patients. West J
Emerg Med. 2019;20(4):633–40. https://doi.org/10.5811/westjem.2019.4.40031.

[22] Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA, Hasegawa K. Emergency de-
partment triage prediction of clinical outcomes using machine learning models.
Crit Care. 2019;23(1):64. https://doi.org/10.1186/s13054-019-2351-7.

[23] Wardi G, Carlile M, Holder A, Shashikumar S, Hayden SR, Nemati S. Predicting pro-
gression to septic shock in the emergency department using an externally general-
izable machine-learning algorithm. Ann Emerg Med. 2021;77(4):395–406. https://
doi.org/10.1016/j.annemergmed.2020.11.007.

[24] Jakobsen JC, Gluud C, Wetterslev J, et al. When and how should multiple imputation
be used for handling missing data in randomised clinical trials – a practical guide
with flowcharts. BMC Med Res Methodol. 2017;17:162. https://doi.org/10.1186/
s12874-017-0442-1.

[25] Austin PC, White IR, Lee DS, van Buuren S.Missing data in clinical research: a tutorial
on multiple imputation. Can J Cardiol. 2021 Sep;37(9):1322–31. https://doi.org/10.
1016/j.cjca.2020.11.010. Epub 2020 Dec 1. PMID: 33276049; PMCID: PMC8499698.
f Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
ización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

https://doi.org/10.1016/j.ajem.2024.07.040
https://doi.org/10.1016/j.ajem.2024.07.040
https://doi.org/10.1111/j.1553-2712.2011.01240.x
https://doi.org/10.1111/j.1553-2712.2011.01240.x
http://refhub.elsevier.com/S0735-6757(24)00364-4/rf0010
http://refhub.elsevier.com/S0735-6757(24)00364-4/rf0010
http://refhub.elsevier.com/S0735-6757(24)00364-4/rf0010
https://doi.org/10.1097/TME.0000000000000390
https://doi.org/10.1097/TME.0000000000000390
https://doi.org/10.1001/jamanetworkopen.2022.22222
https://doi.org/10.1001/jamanetworkopen.2022.02556
https://doi.org/10.1093/jamia/ocx115
https://doi.org/10.1016/j.emc.2019.10.001
https://doi.org/10.1016/j.emc.2019.10.001
https://doi.org/10.1016/j.ajem.2008.04.014
https://doi.org/10.1155/2021/6645260
https://doi.org/10.1093/jamia/ocz112
https://doi.org/10.1038/s41597-023-01945-2
https://doi.org/10.1038/s41597-023-02136-9
https://doi.org/10.1038/s41597-023-02136-9
https://doi.org/10.1038/s41597-022-01899-xJohnson
https://doi.org/10.1038/s41597-022-01899-xJohnson
https://doi.org/10.13026/5ntk-km72
https://doi.org/10.1093/jamiaopen/ooaa022
https://doi.org/10.1055/s-0039-1691842
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml?view=azureml-api-2
https://doi.org/10.1093/jamia/ocz171
https://doi.org/10.1186/s12913-020-05844-9
https://doi.org/10.1186/s12913-020-05844-9
https://doi.org/10.1186/s12913-020-05456-3)
https://doi.org/10.3109/02688690903215666
https://www.mayoclinic.org/drugs-supplements/emtricitabine-and-tenofovir-oral-route/description/drg-20061833
https://www.mayoclinic.org/drugs-supplements/emtricitabine-and-tenofovir-oral-route/description/drg-20061833
https://doi.org/10.1001/jamanetworkopen.2023.26338
https://doi.org/10.1001/jamanetworkopen.2023.26338
https://doi.org/10.5811/westjem.2019.4.40031
https://doi.org/10.1186/s13054-019-2351-7
https://doi.org/10.1016/j.annemergmed.2020.11.007
https://doi.org/10.1016/j.annemergmed.2020.11.007
https://doi.org/10.1186/s12874-017-0442-1
https://doi.org/10.1186/s12874-017-0442-1
https://doi.org/10.1016/j.cjca.2020.11.010
https://doi.org/10.1016/j.cjca.2020.11.010

	Development and validation of a machine learning framework for improved resource allocation in the emergency department
	Declaration of competing interest
	Acknowledgments
	References




