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KEY POINTS

� This narrative review focuses on the role of clinical prediction models in supporting
informed clinical decision-making in critical care, emphasizing their 2 forms: traditional
scores and artificial intelligence-based models.

� Clinicians should evaluate these prediction models for their validity in ways similar to how
ICU clinicians assess validity of pulse pressure variation.

� The assessment of pulse pressure variation is one of the many tasks critical care practi-
tioners perform daily.

� Clinical prediction models play a crucial role in handling complex data to support clini-
cians to make more informed and timely decisions.
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INTRODUCTION

With the rapid deployment of medical sensors, devices, and software systems in hos-
pitals, the practice of critical care medicine has evolved and now relies extensively on
the use of scoring tools and models to better monitor or predict clinical endpoints. For
example, the assessment of volume status is critical to determine whether a hypoten-
sive patient requires either more fluid or the initiation of vasopressors. To address this
need, models such as pulse pressure variation (PPV) were created to predict volume
responsiveness.1,2 In clinical medicine, we are taught that PPV is predictive of fluid
responsiveness but that certain conditions must be met to ensure its validity.1,2 For
example, initial studies required 2 criteria: positive pressure ventilation of 8 to
12 cc/kg and a regularly regular heart rate (ie, not in atrial fibrillation). Outside of these
conditions, the accuracy of PPV is debatable; therefore, using this surrogate metric to
guide clinical decision-making may not result in the intended effects.1,2

The assessment of PPV is one of the many tasks critical care practitioners perform
daily. While this tool and other scoring systems (eg, Sequential Organ Failure Assess-
ment [SOFA], Pneumonia Patient Outcomes Research Team [PORT] cohort study, and
pneumonia severity index [PSI]) were studied in great detail during clinical training and
subsequently put into practice, a large number of the prediction models embedded
into the workflow involve recent advances in artificial intelligence and machine
learning (AI/ML) approaches (eg, epic sepsis model [ESM]3 and Glucommander4).
Further, although clinical teams are familiar with physiology-based measures such
as PPV, they may not be equally versed in model-based tools. Given the speed at
which new model architectures emerge in computer science, continued education
is needed not only to familiarize with the content and methods underlying clinical pre-
diction models but also to become aware of the associated risk of bias and
inaccuracy.3,5

Given the unprecedented complexity, and potential for widespread impact, many
governments are taking steps to regulate AI that may impact the daily lives of their cit-
izens. The EU AI Act, approved by the European Parliament in June 2023, establishes
obligations for providers and users depending on the level of risk from AI.6 Just
recently, in October 2023, the Biden–Harris Administration issued an executive order
on safe, secure, and trustworthy AI,7 reflecting the global concern over the potential
implications of unregulated AI advancement.
As the field advances, it is critical for clinicians to understand the applicability and

limitations of the many prediction models used in the intensive care unit (ICU), espe-
cially those based on AI/ML. In this narrative review, we take the perspective of critical
care clinicians evaluating the practical aspects of a clinical prediction model that is
available for use in the ICU. Through case studies and a listing of existing educational
materials, our objective is to raise awareness and encourage the clinical end-user to
be more inquisitive when apprehending a new prediction model.

CHALLENGES INHERENT TO THE INTENSIVE CARE UNIT

Clinical prediction tools, encompassing various scoring systems and models, play an
indispensable role in the field of critical care.8 In the ICU, clinicians face challenges
akin to analyzing “big data,” due to their quantity, sampling frequency, multimodality,
and varying resolution and quality.9 Health care practitioners in the critical care setting
must incorporate information from multiple data sources, ranging from patient inter-
views to physical examinations, laboratory results, imaging, consultant reports, phys-
iologic sensors, and scientific evidence. The complexities arising from this wide array
of data are further compounded by patient heterogeneity, ranging from clinical
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features such as comorbidities and surgical histories to vital signs10 and, to a lesser
extent in critical care, social determinants of health.11

Furthermore, observational studies of physician decision-making over time and in
cognitively demanding clinical settings have suggested that repeated engagement
in cognitively intense thinking can lead to a degradation in the quality of decisions.12

In the demanding milieu of critical care, clinicians are burdened with multifaceted
goals. Balancing patient safety, optimizing postillness outcomes, employing re-
sources judiciously, and tailoring care through personalized medicine necessitate pro-
cessing this vast amount of information. The criticality of each decision is heightened
by the inherent ambiguity and challenge of establishing causal connections between
treatment and outcomes.13

To navigate the challenges posed by big data andmitigate the impact of cognitive lim-
itations, clinicians turn to clinical prediction tools. These tools assist in identifying the
salient aspects of the data that are most critical for a particular decision.14 Similar to
applying a filter to a database search, clinical prediction models seek to clarify which
data elements contain the most information pertinent to a particular problem and isolate
these essential data into easy-to-interpret scales, such as categories or percentage
risks. This summarization process involves strategically discarding nonessential infor-
mation, ensuring that what remains is of utmost importance for the intended decision.
CLINICAL PREDICTION MODELS IN THE INTENSIVE CARE UNIT

Clinical prediction models have the potential to enhance the quality of care delivery
and contribute to improved patient outcomes within the dynamic and demanding envi-
ronment of critical care.15

Traditionally, these models are score-based, meaning they consist of a set of opera-
tions that consider various clinical variables, ultimately yielding a numerical score. By
assessing the scale and distribution of data, thresholds can be established to facilitate
informed decision-making. These models can aid in critical decisions involving risks
versus benefits of specific treatments (eg, MELD,16 congestive heart failure, hyperten-
sion, age �75 [doubled], diabetes, stroke [doubled], vascular disease, age 65 to 74
and sex category [female] [CHADS2-VASC], and Hypertension, Abnormal Renal/Liver
Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol
Concomitantly [HAS-BLED]17), detection of early or atypical disease presentations (eg,
the laboratory risk indicator for necrotizing fasciitis [LRINEC] score for necrotizing soft
tissue infection,18 or Hscore for hemophagocytic lymphohistiocytosis19), test selection
and interpretation (eg, Wells score for PE prediction), prognosis assessment (eg, Acute
Physiology and Chronic Health Evaluation [APACHE] IV20 and Oxford Acute Severity of
Illness Score (OASIS)21 for mortality risk assessment), and risk adjustment for bench-
marking and comparison (eg, Medicare Severity Diagnosis Related Group [MS-
DRG],22 Charlson comorbidity,23 and Elixhauser scores24). At times, these models
have been used to inform decisions related to resource allocation, even when not orig-
inally designed for such purposes (eg, SOFA for extracorporeal cardiopulmonary resus-
citation [eCPR]25 and extracorporeal membrane oxygenation [ECMO]26).
As AI/ML technologies become the foundation of these prediction models, some of

the more recent developments have shifted toward leveraging advanced computa-
tional algorithms to handle complex, high-dimensional data and to extract intricate
patterns that might not be discernible through conventional statistical methods.8 AI-
based models, distinguished from their traditional score-based counterparts, can
tackle a wider range of tasks, adapt to evolving clinical environments, and refine their
predictive accuracy over time. Examples of predictive models of this nature include
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monitoring, early diagnosis (eg, sepsis), treatment decision support systems (eg,
onset of mechanical ventilation), and outcome and prognosis assessment (eg, in-
hospital mortality).27

These AI-based models can incorporate sophisticated modeling approaches such
as deep learning architectures28 or reinforcement learning techniques,29 enabling a
more dynamic and adaptive approach to data analysis and decision-making within
critical care settings. AI-based models can also integrate multimodal input,30 real-
time data streams, and offer personalized predictions, thereby contributing to a
more precise and tailored approach to patient care, treatment optimization, and
resource allocation.31

In this section, we explore both “traditional score-based” and “AI-based” prediction
models, which reveal distinct approaches and capabilities (Table 1). Traditional score-
based models are typically limited in their scope, addressing specific problems such
as mortality prediction, illness severity, and early warning scores (EWS).37 These
models rely on prespecified patient characteristics and are relatively simple, often
summarized as a sequence of operations and easily computed using tools like
MDCalc.32 On the other hand, AI-based models have a much broader range of tasks,
including monitoring, diagnosis, treatment, and outcome prediction.27 However, their
complexity lies in their often opaque, “black-box” structures, which require significant
computational resources for both training and inference.33

Although traditional models generally do not consider fairness during develop-
ment,38 AI-based models are starting to incorporate fairness metrics from their initial
design, even though there is still progress to be made in this area.34 In terms of
longevity and generalization, traditional score-based models are commonly used
across various geographic and clinical settings, often remaining relevant for decades,
even when not designed with that objective.23,25,26 In contrast, AI-based models are
more customized and designed to be adaptable, often tailored to specific populations,
hospitals, or units and intended for iterative improvement.35 Finally, while traditional
models heavily emphasize clinical expertise, the development of AI-based models ne-
cessitates collaboration between individuals with clinical expertise and those pos-
sessing data science skills.36

Traditional Scores as Clinical Prediction Models

Clinical prediction models in the form of traditional scores have long served as vital
tools for informing clinical decision-making. These scores often serve the purpose
of either providing valuable information or aiding in specific decision-making pro-
cesses, such as treatment assignment and resource allocation within a defined time
frame. However, there are instances where these models, initially developed for spe-
cific purposes, may be repurposed or applied in different clinical contexts. An example
of this is the utilization of the SOFA score for patient triage, highlighting the versatility
of these tools beyond their original intended scope. In this section, we review some
common score-based prediction models in the ICU, highlighting some of their limita-
tions and factors to consider when using them in clinical practice.
Ashana and colleagues’ investigation of the SOFA score’s predictive capabilities for

in-hospital mortality risks unearths marked racial disparities.39 Their findings show that
the risk of mortality is frequently underestimated among White patients but overesti-
mated among Black patients. In scenarios where crisis standards of care (CSCs)
apportion resources based on predicted mortality risks, this bias could inadvertently
skew resource allocation. This is particularly evident among patients with projected
mortality rates under 30%—the demographic arguably benefiting most from intensive
care.39 This bias persisted after adjustment for age, sex, and comorbidities, hinting at
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Table 1
Comparison of “traditional” with “artificial intelligence-based” clinical prediction models

“Traditional Score-based” Prediction Models “AI-based” Prediction Models

Range of addressed problems Limited range: eg, mortality prediction, illness severity,
or EWS

Wide range of tasks, encompassing monitoring,
diagnosis, treatment, and outcomes

Underlying patient characteristics Often prespecified May not always be specified

Complexity and interpretability Simple, usually summarized as a sequence of operations
and easily computed with tools like MDCalc32

Often resemble “black-box” models,33 with complex
structures and higher computational times both for
training and inference

Fairness Generally not considered during development; mostly
evaluated post hoc and after the scores have been
deployed

Although fairness metrics have a long way to go,34 it is
beginning to be considered from the initial design

Longevity and generalization Used across diverse geographic and clinical settings. Use
often grows stale and lasts for decades

More customized, “disposable,” often limited to
certain populations, hospitals, or units. Designed to
be reiterated35

Talent and teams Emphasis on clinical expertise Collaboration between clinical expertise and data
science skills for development, and implementation
scientists for deployment36

Abbreviation: AI, artificial intelligence.
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Matos et al832
systemic factors like structural racism influencing mortality differentials. Ashana and
colleagues’ study demonstrates the pernicious consequences of this miscalibration
on resource allocation, highlighting the pitfalls of using a model outside of its intended
scope, and arguing for a reassessment of the SOFA score’s place within CSCs.40

Model predictions can be skewed by information unrelated to the patient’s clinical
condition, such as the rate at which data are sampled. A case in point is the utilization
of the APACHE II and simplified acute physiology score (SAPS) II severity scores in
intensive care contexts.37 Suistomaa and colleagues’ exploration at a university hos-
pital’s ICU involved varying the sampling rates of laboratory and hemodynamic data
and observing the consequential effects on severity scores.37 Three distinct scoring
paradigms were assessed: traditional scores (manual hemodynamic data paired
with sporadic laboratory values), clinical information management system (CIMS)
scores (2 minute median hemodynamic data with laboratory values based on clinical
needs), and high rate scores (2 minute median hemodynamic data with 2 hourly lab-
oratory assessments). The results revealed that increasing the sampling rate for hemo-
dynamic monitoring and laboratory testing amplified the APACHE II and SAPS II
scores considerably, leading to heightened predicted probabilities of hospital deaths.
Notably, these increased scores did not correspond to heightened mortality rates,
suggesting that predictive overestimations can distort clinical judgments. Additionally,
the APACHE II score, despite its widespread use, harbors intrinsic limitations: opera-
tional complexity (its intricate nature poses operational challenges to routine use), pre-
dictive limitations (not a reliable prognostic tool, especially within the first 24 hours
postadmission), and generalizability issues (initial validation was tailored for ICU-
admitted patients, thereby reducing its efficacy for patients transferred from other
wards or institutions). Suistomaa and colleagues’ findings, juxtaposed with the
inherent limitations of APACHE II, underscore the necessity for methodological rigor
when interpreting the predictions from this model in the context of delivering care to
individual patients.
EWS, like the United Kingdom’s National Early Warning Score 2 (NEWS2), have

become indispensable for identifying early decompensation in a complicated clinical
milieu. The instrumentality of oxygen saturation by pulse oximetry (SpO2), a core
component, accentuates its utility in assessing respiratory functions. Nonetheless,
recent studies spotlight biases in pulse oximetry, especially pertinent during the coro-
navirus disease 2019 (COVID-19) pandemic.41 A retrospective analysis of 7126 pa-
tients with COVID-19 revealed a concerning racial bias in oxyhemoglobin
measurement by pulse oximeters, with the device disproportionately overestimating
arterial oxygen saturation for Asian, Black, and Hispanic patients vis-à-vis White
patients.41 These miscalibrations led to a substantial number of Black and Hispanic
patients being overlooked for COVID-19-specific treatments. An exhaustive cross-
sectional study further substantiated these discrepancies and highlighted the “hidden
hypoxemia” phenomenon, which portends dire clinical ramifications.42 These findings
underscore the necessity for continuous re-evaluation of scores like NEWS2, with spe-
cial emphasis on rectifying inherent biases to ensure clinical equity. In summation, it is
paramount for clinicians to continuously scrutinize and understand the intricacies, cor-
rect application, and potential biases of traditional clinical prediction models. Doing so
ensures that these tools maintain their efficacy and reliability, ultimately safeguarding
the quality and equity of patient care.

Artificial Intelligence-based Clinical Prediction Models

In recent years, the landscape of clinical risk prediction models in critical care has wit-
nessed a significant shift toward AI-based solutions. This precedent—including
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successes and failures in design and/or implementation—can inform the training and
deployment of new models, especially in situations where traditional scores might
come short and alternatives are urgently needed.8,43 Unlike traditional scores that
can be easily computed,32 AI-based models often necessitate integration within the
health care system infrastructure, making them less readily available for scrutiny or
interpretation by individual clinicians. This trend toward AI-based models also raises
concerns about the purchase of newly developed and commercialized medical soft-
ware and devices by health care institutions. Specifically, the selection of commercial
products for use in the ICUmay not be by end-user clinicians, although they should be
part of the decision-making process.44 Assessing the risks associated with these
models becomes a critical consideration in this context, especially given the increased
complexity of the algorithms, as well as the varying expertise of the teams developing
them, which may differ significantly from traditional medical expertise.36

In this section, we explore the realm of clinical prediction models, emphasizing the
role of AI in shaping their evolution. Table 2 outlines the main categories for the tasks
where AI/ML is being leveraged, similar to the taxonomy proposed by Hong and col-
leagues.27 The 4 categories outlined can be grouped into 2 broader classifications.
The first category is related to a “current assessment,” involving (1) real-time moni-
toring, which evaluates the progression of patients’ physiologic variables (22), or the
settings of an ongoing treatment like mechanical ventilation.46,48 The reviewed studies
often utilized simpler modeling approaches. On the other hand, the second broad
category focuses on predicting the “future” state of the patient and encompasses
(2) early diagnosis, (3) treatment decision support systems, and (4) outcome assess-
ment. These have recently garnered significant attention in research, leveraging
state-of-the-art technologies in the realm of AI/ML.
Examples of prediction models for early diagnosis include acute kidney injury,49

sepsis,85 and respiratory disease,56,57 all of which are associated with increased mor-
tality in the ICU, andabnormal bloodglucose levels.86 As for treatment decision support
systems, our review describes prediction models related to therapies that have a deci-
sive impact on the management and outcomes of critically ill patients, including me-
chanical ventilation,60–62,87 antibiotics dosing,63 intravenous fluids and vasopressor
administration,64,65 heparin dosing,66 morphine dosing,67 and insulin dosing.68,70

Regarding outcome prediction, prevalent tasks identified in the literature include pre-
dicting ICU and in-hospital mortality (20), ICU length of stay,78–80 ICU readmission,82,83

and long-term survival and quality of life.84

These prediction models can potentially improve patient outcomes, the salience of
information, and, thus, the quality of decisions taken by the clinical teams and
enhance bed management, aiding in resource allocation. Yet, the current reality re-
mains that the algorithms prominently featured in research literature are largely
impractical for direct implementation at the forefront of clinical practice.44,88,89 Imple-
mentation may often be significantly harder than development on retrospective data;
data management, model development, and clinical workflow implementation are 3
common hurdles that must all be passed.88 In the following section, we explore the
current limitations, challenges, and suggestions for clinicians to mitigate the risk of
bias associated with such prediction tools in the ICU.45,47,50–55,58,59,69,71–77,81,89
RISK OF BIAS: RECOMMENDATIONS FOR A CLINICIAN USING AN ARTIFICIAL
INTELLIGENCE TOOL IN THE INTENSIVE CARE UNIT

In this section, we apply the taxonomy proposed by Nazer and colleagues90 on the
bias in the AI/ML development pipeline, with a focus on an example application of
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Table 2
Nonexhaustive description of categories of intensive care unit artificial intelligence-based clinical prediction models in literature

Category Specific Task Examples in Research Literature

1. Real-time monitoring Physiologic indicators Zhang and Szolovits45 proposed patient-specific, bedside, real-time alarm algorithms based on
neural network learning for adaptive monitoring in the ICU

Mechanical ventilation
settings

Kwok et al.46 used a linear regression model and a nonlinear adaptive neuro-fuzzy inference
system to estimate FiO2; Rehm et al.47 and Gholami et al.48 created an ML classifier to detect
patient-ventilator asynchrony

2. Early diagnosis Acute kidney injury (AKI) Sun et al.49 proposed the use of clinical notes and deep learning for an early detection of AKI
onset; Sanchez-Pinto and Khemani50 delved into AKI prediction among critically ill children,
using multivariable logistic regression

Sepsis and infection Desautels et al.51 presented “InSight,” a gradient-boost ML model to predict sepsis using a
minimal set of EHR variables. Calvert et al.52 studied the same model among an alcohol use
disorder patient population. Mao et al.53 from the same company, validated the same model
across different centers in the United States. Ghosh et al.54 explored coupled hidden Markov
models to predict septic shock in the ICU. Bedoya et al.55 developed a multioutput Gaussian
process and recurrent neural network to predict sepsis upon emergency department admission.

Wong et al.3 attempted to externally validate the ESM, a proprietary early warning system for
sepsis that has shown poor discrimination and calibration in predicting sepsis

Respiratory disease Le et al.56 proposed gradient-boosted tree models for early prediction of acute respiratory distress
syndrome (ARDS) in the ICU. Sauthier et al.57 used random forest models to predict prolonged
acute hypoxemic respiratory failure in influenza-infected critically ill children

Abnormal glucose Tang et al.58 used deep neural networks to predict blood glucose concentrations after short-
acting insulin injections

3. Treatment decision
support system

Mechanical ventilation
timing, duration,
weaning, reinitiation

Miu et al.59 created a multivariable logistic regression model to predict the need for reintubation
in the ICU

Ghazal et al.60 trained bagged complex trees to predict SpO2 value after a ventilator setting
change.

Yu et al.61 2020 proposed a supervised-actor-critic reinforcement learning modeling approach to
aid in the decision-making problems of ventilation and sedative dosing in the ICU. Sayed et al.62

used gradient-boosted tree models to predict invasive mechanical ventilation duration after
ARDS onset
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Antibiotics dosing Janssen et al.63 proposed a framework for informed precision dosing, requiring accurate
pharmacokinetic or ML

Intravenous (IV) fluid
and vasopressor
administration

Komorowski et al.64 developed a reinforcement learning agent to achieve optimal administration
of IV fluids and vasopressors. Srinivasan and Doshi-Velez65 developed a novel interpretable
batch variant of Adversarial Inverse Reinforcement Learning algorithm to optimize vasopressor
and IV fluid administration in the ICU

Heparin dosing Nemati et al.66 developed a deep reinforcement learning model to learn an optimal heparin
dosing policy in the ICU

Morphine dosing Lopez-Martinez et al.67 proposed a decision-making framework for opioid dosing based on
reinforcement learning

Insulin dosing DeJournett et al.68 proposed an AI-based closed-loop glucose controller for an ICU setting using
an adaptive modeling approach proposed by Van Herpe et al.69

Nguyen et al.70 proposed an ensemble model to predict patients requiring more than 6 units of
total daily insulin dose

4. Outcome Assessment In-hospital and ICU
mortality/survival

Hsieh et al.71 created a Fuzzy Hyper-Rectangular Composite Neural Network to predict the
survival of ICU patients in a Taiwanese center. Johnson and Mark72 developed a gradient-
boosting model to predict mortality among ICU patients in MIMIC-III.73 Monteiro et al.74

proposed the use of a linear support-vector machine model coupled with a multivariate feature
selection process to predict ICU mortality using the 3 datasets of the PhysioNet/Computing in
Cardiology Challenge.75 Iwase et al.76 created random forest models to predict ICU mortality
and length of stay in a Japanese center. Choi et al.77 trained, among others, light gradient-
boosted machine models to predict ICU mortality in 2 university hospitals in South Korea

ICU length of stay (LoS) Abd-Elrazek et al.78 employed fuzzy logic to predict LoS in the ICU using general admission
features

Alghatani et al.79 created a binary model to predict whether the ICU stay is short or long, using
MIMIC-III

Hempel et al.80 found random forest models to attain the highest performance for ICU LoS
prediction using MIMIC-IV81

ICU readmission Rojas et al.82 proposed a gradient-boosted machine model to predict ICU readmission using
MIMIC-III. Lin et al.83 used recurrent neural networks with long short-term memory to predict
unplanned readmission using MIMIC-III

Long-term survival
and quality of life

Oeyen et al.84 developed a prediction model for quality of life 1 y after ICU discharge based upon
data available at the first ICU day using Lasso regression

Abbreviations: AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; ESM, epic sepsis model; HMM, hidden Markov models; ICU, intensive care unit;
LoS, length of stay; MIMIC-III, medical information mart for intensive care-III.

Taxonomy based on Hong and colleagues.27
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Matos et al836
this framework in the ICU. We emphasize how to effectively utilize these tools while
maintaining a critical stance that addresses the potential risks of bias. The premise
is that a new AI tool has just been deployed in an ICU. Prior to deployment, it has pre-
sumably been carefully analyzed by the hospital administration, who reviewed the
framing of the problem and model, ensured that the modeling overarching approach
is well-suited to solve the problem at hand; the team of developers was well suited for
the task; and the methodology was sound and well executed. It is imperative for the
clinicians to be well-versed in their institution’s governance process, as it plays a
pivotal role in querying developers and vendors. Following this initial step, we analyze
the different steps of the ML development pipeline in the context of critical care, as
defined by Nazer and colleagues.90 For each step, we provide specific ICU examples;
recommendations for bias risk assessment; and highlight how these can be put into
practice in the context of the well-known overhaul and withdrawal of the epic sepsis
prediction model.3,91

Guidelines for the ethical and equitable development, implementation, utilization,
and governance of AI/ML models in the health care sector as a whole have attracted
considerable attention in scholarly studies in recent times. Wiens and colleagues92

presented guidelines on the translation of ML-based interventions into health care.
Faes and colleagues93 focused on promoting clinicians’ critical appraisal studies of
clinical applications of ML. Van de Sande and colleagues94 summarized current guide-
lines, challenges, regulatory documents, and good practices that are needed to
develop and safely implement AI in medicine. Nazer and colleagues90 highlighted
sources of bias within the process of developing AI algorithms in health care. Hassan
and colleagues95 provided a road map to develop predictive models that can be used
in clinical practice.
With the increasing recognition of the importance of prioritizing fairness and uncov-

ering biases among AI/ML developers,96 reviews similar to the one performed byNazer
and colleagues90 have been extensively performed across medical specialties. Arbet
and colleagues97 outlined commonmisconceptions about ML studies using electronic
health record (EHR) data. Similarly, Sauer and colleagues98 elaborated on potential pit-
falls to be avoided when dealing with leveraging EHR data. Roberts and colleagues99

conducted a systematic review that showed that all examined models intended to
detect COVID-19 presented methodological flaws that hampered their utility. Delgado
and colleagues100 reviewed biases of AI algorithms developed for contact tracing and
medical triage for COVID-19. Drukker and colleagues101 delved into the different sour-
ces of bias in medical imaging-based ML methods. Gichoya and colleagues102

reviewed pitfalls framed in the larger AI lifecycle for radiology applications. Nakayama
and colleagues103 listed the biases that can lurk in the AI lifecycle in ophthalmology.
This abundance of studies suggests that the field is cognizant of the need for more
structure; however, consensus is still needed for a set of common operating
principles.104–114

Table 3 outlines the main sources of bias for an ML-based critical clinical prediction
model. In the context of critical care, we explored: data sources, which include limita-
tions related to selection bias,104,111 unequally performing medical devices (80), and
label bias; data preprocessing, where missingness handling (82, 83) and outlier
removal can drive harmful spurious correlations; model development, which encom-
passes understanding the input features and their potential to leak information that
compromises the utility of the model in real clinical practice (84); andmodel validation
and implementation, which are associated with the performance of the algorithms,
external validation, and postdeployment monitoring.3,35,114
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Table 3
A checklist for intensive care unit clinicians to evaluate artificial intelligence-based clinical prediction models

ML Step Risk of Bias/Challenge
What to do about it as a
Clinician in the ICU Case Study: ESM3,91

Data sources Selection bias
A mismatch between the training set
and the real-world target; it can occur
due to data and clinician drifts,104

population shift,105 and others

� Understand the population and
datathon model was trained on

� Compare the ICU typical composition
with the cohorts behind the algorithms

� Does the task at hand require any
exclusion that I should be aware of?

Underlying patient characteristics are not
reported (typically done in
“Table 1”106,107)

“This model was developed and validated
by Epic Systems Corporation based on
data from 405,000 patient encounters
across 3 health systems from 2013 to
2015.”

Weare unable to assess potential selection
bias, which would require looking at
the inclusion/exclusion criteria of the
cohort and represented demographics

Biased medical devices
Pulse oximeters, ECG, EEG, temporal
thermometers, and sphygmometers
are ubiquitously used in the ICU but
have been shown to yield inaccuracies
among certain subpopulations108

� Are these device limitations taken into
account in the model?

� Is the model’s incorporation of these
limitations enough to produce biased
results?

� Which groups of patients should I be
especially worried about?

There is limited information on the input
data due to the proprietary nature of
ESM

“Data elements included vital signs,
medication orders, lab values,
comorbidities, and demographic
information.” The inclusion of vital
signs could raise concerns as, for
example, pulse oximetry readings are
likely to be biased against Black and
Hispanic patients42

Label bias
The label (or ground-truth) may be
missing or inaccurate, thus leading to
assumptions or limitations.

� Is the ground-truth a good ground-
truth?

� Is there any problem with the way we
document the label that the model
uses?

� Is there anything I can do to increase the
accuracy of the way possible labels are
reported in the future?

“(.) sepsis was defined as any encounter
associated with an International
Classification of Diseases (ICD-9) code
indicating diagnosis of sepsis. Time of
sepsis onset was defined as 6 h prior to
clinical intervention (.)”

The label seems to be derived from billing
information and based on ICD-9, which

(continued on next page)

U
n
d
e
rsta

n
d
in
g
B
ia
s
in

C
lin

ica
l
P
re
d
ictio

n
M
o
d
e
ls

8
3
7

D
escargado para Lucia A

ngulo (lu.m
aru26@

gm
ail.com

) en N
ational Library of H

ealth and Social 
Security de C

linicalK
ey.es por Elsevier en octubre 16, 2024. Para uso personal exclusivam

ente. N
o se 

perm
iten otros usos sin autorización. C

opyright ©
2024. Elsevier Inc. Todos los derechos reservados.



Table 3
(continued )

ML Step Risk of Bias/Challenge
What to do about it as a
Clinician in the ICU Case Study: ESM3,91

maymean themodel was not trained on
patients with sepsis documented
differently. This could raise questions
about mismatches with actual practice

Data preprocessing Handling missingness
Some variables may not be missing at

random, driving spurious
correlations109,110; eg, the
measurement of arterial blood gas in
the ICU seems to be less likely among
certain subpopulations42

� How does the model handle
missingness?

� Does it mirror my practice?
� Does it embed any biases?
� Is it consistent across subgroups?
� Should I change anything in the way I

report or not readings/measurements?

Data preprocessing is not mentioned by
the vendors. “This limited information is
of concern because proprietary models
are difficult to assess owing to their
opaque nature and have been shown to
decline in performance over time.” We
recommend not to accept a model with
such opaqueness and requesting these
details from the development team

Outlier removal
In the ICU, extreme values often take

place (eg, blood pressure, glycemia)

� Does the outlier handling remove data
points that I should be aware of?

� Can I trust the model for such edge
cases?

� Can I recognize such edge cases and
know when to fully ignore the model?

Model development Diagnostic suspicion bias111

An uneven diagnostic procedure in the
target population, where some of the
variables used to train the model (eg,
timing and results of a test order)
already convey information about the
outcome, which constitutes a subtle
yet common example of data leakage
and limiting performance in patients
where staff are not already suspicious

� Does the model require any variables
that depend on my suspicion?

� Is there any variable that reflects my bias
and can be further confirmed or
reinforced by the model’s output?

� Is there any reinforcement loop that I
can or should avoid?

The only information on the modeling is:
“The ESM is a penalized logistic regression
model (.)”

As the input features are not disclosed,
assessing the soundness of this step is
very challenging, posing a significant
concern for this model. The study
conducted by Wong et al.3 suggested
that one input variable to the model
was antibiotic orders by a provider—a
classic example of diagnostic suspicion
bias since the suspicion of the clinical
team would be necessary for the model
to work. Further, we are unable to assess
whether the possible relations between
the features and the output have a
causal rationale behind them

Included variables
The input data must contain relevant

predictors that avoid leakages and go
in line with clinical causal intuition

� Do the included features follow a causal
rationale that makes sense according to
my clinical intuition?

� Understand that variable importance
tools (eg, SHAP112) are not causal
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Model validation Model performance
The model will never work for 100% of
the patients. External validation can
help assess the utility of a model,3 but
it does not represent a definitive
answer35,113

� What was the reported performance of
the model?

� Does the evaluation look sound?
� Was it equally effective across groups?
� To what extent can I trust this model?

In the final ESM, “(.) AUC ranged
between 0.76–0.83.”, which seems to be
fairly calibrated. However, the external
validation performed by Wong et al.3

showed a significant deterioration, with
poor discrimination in predicting the
onset of sepsis—AUC of 0.63—and a
large burden of alert fatigue. Critically
appraising these metrics is fundamental
to gaining trust

Implementation Postdeployment monitoring
Models are prone to drifts of different
kinds over time114

� Is the model being updated?
� Is it adaptable to possible changes?
� Can I trust it in the long term?
� Are there plans for real world

monitoring?

This model bypassed peer review and
regulatory oversight. The
postdeployment monitoring seems to
have been poorly conducted,
considering the drop in performance
verified by Wong et al.3

Abbreviations: AUC, area under the curve; ECG, electrocardiogram; EEG, electroencephalogram; ESM, epic sepsis model; ICD, International Classification Of Dis-
eases; ICU, intensive care unit.

Taxonomy of ML steps based on Nazer and colleagues.90
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Matos et al840
As a case study, we delved into the ESM,which has beenwithdrawn following a pub-
lication fromWong and colleagues.3 It presents various risk factors, biases, and, more
importantly, uncertainties that raise significant structural concerns for its use in the ICU
setting. First, the lack of transparency on the sources for the model’s training data
hampers our ability to assess the introduction of bias.115 Additionally, the model’s reli-
ance on medical devices that were later shown to introduce racial bias, such as pulse
oximeters, poses a risk since such medical devices may yield biased readings for
certain patient groups as described earlier.108 The use of billing data for label genera-
tion could also raise questions about the accuracy of the ground-truth, and the lack of
information on missingness handling and outlier removal complicates the model’s reli-
ability.103 The model’s dependence on diagnostic suspicion poses a serious limitation
to its real-world applicability and may perpetuate biases inherent in clinical decision-
making.3 The absence of information on model variables and causal rationale further
challenges its clinical applicability. Furthermore, the discrepancy between vendor-
reported and externally validated performance metrics, along with the apparent lack
of postdeployment monitoring and transparency, diminishes trust in the model’s
long-term reliability.3

Despite all these concerns, the ESM was implemented in hundreds of US hospitals,
bypassing peer review and regulatory oversight.3 In light of the concerns and potential
risks associated with the ESM, our recommendations for a clinician utilizing a similar
model emphasize 3 core principles: curiosity, questioning, and skepticism. It is imper-
ative for clinicians to actively engage with the model’s documentation, approaching
the model’s reported training processes and underlying architecture with a critical
and inquisitive mindset. This involves probing the model’s data sources, underlying
assumptions, and algorithms, as well as seeking transparency and detailed informa-
tion from the developers regarding data preprocessing, feature selection, model
development, and validation. Clinicians should continuously question the model’s ac-
curacy, especially in the context of their specific ICU patient population and remain
vigilant for any potential biases or limitations.
HOW TO LEARN ABOUT CLINICAL PREDICTION MODELS AND SOURCES OF BIAS?

AI in health care is a field that is developing and expanding rapidly, and therefore,
clinicians should be constantly updated on the most recent advances in this field,
as well as understand the various sources of bias and potential strategies to mitigate
them. This has traditionally been taught in the framework of scientific articles.116 His-
torically, continued education and professional development used to be limited to
individuals and institutions that can cover the cost of training and educational re-
sources; however, over the past several years, the increased availability of open-
access resources and virtual conferences/webinars has facilitated upskilling in
data science for health care for practitioners and institutions within various resource
settings. Table 4 outlines major resources that clinicians may utilize to advance their
skills and knowledge in the field of AI and the potential sources of bias. These
include dedicated textbooks and journals as well as more modern resources such
as datathons and workshops, which allow interactions around real-time, hands-on
case studies. The launch of the first SCCM datathon in August 2023 illustrates the
importance of the venue in fostering collegial information sharing and learning about
the development, implementation, and evaluation of clinical prediction models in crit-
ical care.
Textbooks have traditionally been considered as the primary source of knowledge;

however, as with all textbooks, the information quickly becomes outdated.120 Though
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Table 4
Resources available for clinicians to learn more about artificial intelligence in critical care and
potential biasesa

Source Examples

Books Chayakrit Krittanawong. Artificial intelligence in clinical practice.
1st Edition, 2023117

MIT Critical Data. Secondary Analysis of Electronic Health
Records.118

Asselbergs FW. Clinical Applications of Artificial Intelligence in
Real-World Data. 1st Edition, 2023

Journalsb Journal of American Medical Informatics Association
Lancet Digital Health
PLOS Digital Health
BMC Digital Health
BMJ Health & Care Informatics

Preprint servers arXiv
medRxiv

News Web sites Stat News
Guardian Technology
MIT Technology Review
Stanford HAI News
ProPublica Technology
Wired Science

Social media (Linkedin,
X (Twitter), others)

SCCM
ESICM
YouTube—for interest-oriented learning. Keywords relevant to

these topics include “AI Bias,” “ML Fairness,” “Health Equity”

Societies/professional
groups

SCCM Discovery Data Science
ESICM Data Science Section
BrainX
WiDS

Others Datathons—eg, MIT Critical Datathon 2023, focused on Pulse
Oximetry Bias; and SCCM Discovery Datathon 2023, which
included Patient Safety and Health Equity tracks

Conferences
Coursera—eg, Emma Pierson’s “Practical Steps for Building Fair AI

Algorithms” course119

Udemy

Abbreviations: ESICM, European Society of Intensive Care Medicine; SCCM, Society of Critical Care
Medicine.

a This is a nonexhaustive list of common sources.
b All critical care journals have been publishing articles related to AI and ML in critical care.

Understanding Bias in Clinical Prediction Models 841
most textbooks may be expensive to purchase, there are a few AI textbooks that are
freely available, such as Secondary Analysis of Electronic Health Records.118 Journals
are another major resource that clinicians constantly rely on to stay up to date on
recent science. In general, most critical care journals publish in the field of AI, but there
are also journals that specialize in digital health and AI, such as the Journal of the
American Medical Informatics Association, Lancet Digital Health, PLoS Digital Health,
and BMC Digital Health. However, not all of these journals are open access. Preprint
servers, such as arXiv or medRix, serve as valuable platforms for researchers to
rapidly disseminate their findings to the scientific community before formal peer re-
view, fostering early communication and collaboration. However, while enabling swift
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knowledge sharing, preprint servers may present challenges in terms of quality control
and the potential spread of unvalidated or misleading information.121

News Web sites also play an interesting role in scientific dissemination by simpli-
fying complex technical articles and making them accessible to diverse audiences.
News Web sites offer curated information sources, facilitating access to complex
technical and conceptual material for those who may find it challenging to navigate
on their own; as an example in the scope of technology and critical care, technical
computer science articles tailored to the comprehension of a medical audience can
often be found within these resources. Additionally, news Web sites serve as a means
for the early distribution of preprints and diverse viewpoints, contributing to the rapid
flow of information within the scientific community. Although institutions usually have
partnerships with these Web sites, hefty subscription fees may pose an obstacle to
accessibility. Examples include Stat News,122 MIT Technology Review,123 Stanford
HAI News,124 Guardian Technology,125 and ProPublica Technology.126 Social media
is becoming a major educational source for health care practitioners as it provides
an update on what has been recently published in science, as well as creates a plat-
form for discussing various aspects. The diversity of members on social media in
terms of their backgrounds and settings creates an enriching platform to understand
limitations and bias within various fields, including AI. Most critical care societies and
journals post on social media platforms, mainly LinkedIn and X/Twitter, and to a lesser
extent on Facebook and Instagram. However, though there is significant value to
learning through social media, one should keep in mind that the content does not un-
dergo any form of peer review and, therefore, should be carefully assessed for its
validity.
Societies are also an important venue for various educational programs. There are

data science groups within societies that conduct various educational activities during
their annual conferences as well as webinars and other educational sessions. For
example, the Society of Critical Care Medicine (SCCM) has a Data Science Campaign
through their Discovery Research Section,127 and the European Society of Intensive
Care Medicine (ESICM) has a Data Science section.128 However, activities through
such societies and sections are limited to those who have membership. There are
also other societies that are more specialized in AI and big data, such as the BrainX
Community129 and Women in Data Science (WiDS),130 both of which offer free mem-
bership. In addition, they both provide various educational programs, many of which
require no registration fees.
Datathons are a helpful way to build capacity and collaborations.131–133 Conceived in

2016, it places clinical staff and data scientists/informaticists in direct contact. As
opposed to a clinician who blindly relies on a black box/“magical” thinking, codevelop-
ment and working together breaks down silos and provides firsthand experience with
the process of model development. In-person datathons create fellow student and
researcher teams so that data scientists and clinicians can combine their skills when
addressing a problem. This unique opportunity to bring clinicians and data scientists
together allows for the creation of an interface layer.131 Not all academic centers
have both in sufficient concentrations or naturally encounter each other. Working
together on a project through a datathon can be a time-efficient manner to increase
effective learning.134 Datathon organizers include institutions (eg, Massachusetts Insti-
tute of Technology) and clinical societies (eg, ESICM and SCCM).135 Datathons have
been conducted in-person and virtually and have been received positively.117,119,136

They have also generated diverse groups of research teams that continue to work
together after the datathons. However, such datathons are restricted to a small group
of participants, given that most of them require financial support for the travel of the
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Understanding Bias in Clinical Prediction Models 843
participants to the site of the event or the travel of instructors. While some virtual data-
thons have been organized, their impact remains to be assessed and compared with
that of in-person events.
DISCUSSION
Modeling Limitations

Despite rapid progress in ML for health in the last decade, estimating the causal ef-
fects of interventions taking place in ICU settings remains challenging. Indeed, ICU
patients often present multiple comorbidities upon admission, and their status may
further complicate during their stay, resulting in a large number of time-varying con-
founders of any treatment-outcome relationships of interest. Moreover, ICU clinicians
often prescribe several treatments concurrently (eg, antibiotics, anticoagulants, and
antiarrhythmics).137 The complexity of ICU pharmacotherapy thus makes isolating
the effect of a single drug difficult and preventing harmful drug–drug interactions
complicated.138–140

Beyond the presence of measurement errors emanating from numerous medical
devices used in ICU settings (eg, pulse oximeters and sphygmomanometers),141,142

observational studies conducted in critical care are also more prone to immortal
time bias143 than in other fields of medicine due to a high mortality rate in the first
24 hours following ICU admission. Indeed, a recent retrospective cohort study per-
formed in Alberta, Canada, found that patients who die within 1 day comprise one-
third of ICU deaths.144 Therefore, if we were interested in evaluating the effect of an
intervention only made available after the first day on ICU length-of-stay, patients
who survived to their first ICU day would have a period of unexposed immortal time
before receiving the intervention, an easily missed sampling bias. In 2009, Shintani
and colleagues145 had already warned about the prevalent but misleading use of stan-
dard Cox regression models in ICU survival analyses, showcasing the extent of bias
when using time-fixed covariates to analyze the effect of a time-varying exposure
on ICU length of stay. In a newly published perspective,146 Vail and colleagues have
again called for increased attention to immortal time bias in critical care, illustrating
their argumentation with flawed observational studies of exposure to hydrocortisone,
ascorbic acid, and thiamine therapy among patients with sepsis and septic shock—all
published between 2017 and now. The authors took a step forward by providing a
checklist for clinicians to more easily evaluate the characteristics of study design
and analysis that may result in immortal time bias or detect a lack of sufficient report-
ing to rule out its absence. Two simple recommendations emanate from the studies of
Shintani and colleagues and Vail and colleagues: first, carefully checking the methods
section of any clinical article to ensure that time-varying analytical techniques were
used appropriately, and second, ensuring that follow-up begins after the intervention
eligibility period ends and at a time that is aligned across all patients.
For practitioners who are also greatly involved in research, the detailed specification

of a “target trial” is advisable when retrospectively analyzing routinely collected patient
data, that is, following the same procedure as when writing the detailed protocol of a
randomized controlled trial. Practices such as listing inclusion/exclusion criteria,
describing the static or dynamic treatment strategies under investigation, defining
the follow-up period, and eliciting the causal estimands of interest all contribute to
improving the transparency of statistical inferences. For instance, by considering
more realistic treatment eligibility criteria and strategies, Wanis and colleagues147

have shown that ICU patients captured in the medical information mart for intensive
care (MIMIC)-IV database who were intubated earlier versus later during their stay
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had similar 30 day mortality rates. Their findings contrast with prior studies, which
often used infeasible treatment strategies, and highlight the sensitivity of treatment ef-
fect estimates to critical but often neglected study design decisions.
The challenges faced in the ICU, including those related to the complexity of

establishing causality within a context of multiple concurrent treatments, biases
from medical devices, and the presence of immortal time bias, have the potential
to generate misleading and harmful spurious correlations. Spurious correlations
are noncausal relationships between the input and the outcome, which may shift
in deployment.105 These spurious correlations are particularly concerning, especially
when they arise from systemic social discrimination, as seen in the case of bias in
critical care medical devices.108 Allowing the embedding of these errors, biases,
and limitations in subsequent AI models could perpetuate and exacerbate existing
disparities.148,149 Therefore, modeling efforts in the realm of critical care must be
approached with caution,150 and a careful inspection of such sources of bias must
be conducted a priori.151

Geographic Variability

Another challenge to the body of knowledge of clinical prediction models in the ICU is
the significant variability observed across different ICU units, hospitals, and
geographic locations. Numerous factors contribute to this variation, encompassing
aspects such as differential patient illness severity, clinical outcomes, hospital type
(eg, academic, community), size, number of beds, occupancy, staffing coverage,
weekend coverage, demographics of the served population, reasons for ICU admis-
sion, or types of ICU units within the hospital.152 For instance, comparing the health
care systems in the United Kingdom and the United States reveals substantial dissim-
ilarities.153,154 The United States has 7 times as many ICU beds per capita as the
United Kingdom.153 In the United Kingdom, hospital stays before ICU admission are
longer and the severity of illnesses is heightened.153 This diversity in health care set-
tings presents significant challenges in developing clinical prediction models that aim
to effectively function across different contexts. An illustrative example is the NEWS2
in the United Kingdom, which, despite probably not being equally performant for all the
different settings and populations,41 is used nationwide as a guideline. As a result, it is
imperative for clinicians to evaluate the architecture of their clinical prediction models
critically. The multitude of reasons why a model may not be effective in a new setting
underscores the need for a nuanced understanding of the local dynamics. Therefore,
any model must be conscious of these challenges, be grounded in its local context,
and aim to accommodate the intricacies of geographic variability from design. Simi-
larly, the methodologies and recommendations suggested herein may not universally
apply to all settings.

Challenges Related to Explainability, Generalizability, and External Validation

Explainability methodologies are argued to build trust among health care profes-
sionals, offering transparency in AI/ML decision-making, and potentially reducing
bias.155 In fact, recent Food and Drug Administration guidance recommends incorpo-
rating explanations into clinical decision support software so that clinicians are
informed about the foundations of recommendations.156 Nevertheless, the added
value of such explanations remains debatable. In fact, a recent randomized clinical
survey conducted by Jabbour and colleagues157 showed that AI model explanations
did not aid clinicians in identifying systematically biased models. In the absence of
suitable explainability techniques, it is argued that the emphasis should be on careful
internal and external validation of clinical models.158
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Generalizability, that is, the ability of AI/MLmodels to extrapolate their knowledge to
unobserved data, has also attracted considerable attention from researchers. Futoma
and colleagues113 highlighted that generalizability is not a binary concept but a multi-
faceted one, involving not only temporal considerations like prospective application
within the original center but also external validation across new centers and time-
frames. However, neglecting such limitations in generalizability could lead to missed
opportunities for leveraging AI/ML models in situations with potential clinical utility.
Instead, narrow, “overfit,” local models that work under certain circumstances and
for certain subpopulations may actually be acceptable and yield value in real-world
ICU practice.35

This has been confirmed in subsequent studies such as Youssef and colleagues35

that argue that external validation of a clinical prediction model does not necessarily
imply that it is useful in real-world settings. To ensure the practical usefulness of AI-
based clinical models, we recommend complementing offline internal and external
validations by the implementation of prospective impact studies; these can subse-
quently be used to timely determine the need to retrain the model locally. Wide adop-
tion of the proposed recurring and local validation framework should allow for
addressing distribution shifts in treatment, outcome, or both. In addition, if a change
in health insurance contracts affects the mix of patients coming to the ICU, if critical
care protocols are updated (eg, following the modification to sepsis recommendation
guidelines), or if a hospital deploys a new EHR system, a timely update to the model
using local patient cohorts would incorporate these new operational inputs.
Hence, as clinicians critically appraises a clinical prediction model, despite exten-

sive external validation, it is crucial to approach any prediction model with caution
and skepticism, as success in various centers and environments does not guarantee
optimal performance within a specific ICU setting.

Postdeployment Detection and Mitigation of Disparities

Detecting and mitigating disparities after model deployment involves a multistep pro-
cess, from data collection to data analysis, model correction development, dashboard
creation, and near real-time monitoring of the revised models once implemented.
While existing models may take at most a week to get updated and released on Hug-
ging Face (Brooklyn, New York, NY), methods to evaluate the extent of their biases
have not been standardized, and there is no platform where investigators can similarly
post the results of model investigations or stress tests.

Disparity Dashboards

Despite the limited offer, a few initiatives have recently emerged. For example, Yi and
colleagues159 have described the steps needed to design and develop a digital equity
dashboard for the emergency department of UC San Francisco hospitals. The use of
disparity dashboards in clinical care delivery is growing. To sustain such efforts, Gal-
lifant and colleagues160 have recommended the setup of incentive systems to accel-
erate health data collection and reporting and of rewards that acknowledge successful
mitigation of health disparities. Nonetheless, certain biases are more subtle and may
remain undetected.161 For instance, cognitive biases may affect the way clinicians
handle conversations regarding end-of-life care with a patient’s family.

Frameworks and Guidance Initiatives

High-level frameworks, recommendations, and guidance initiatives are also being
designed to address these issues. Specifically, initiatives like STANDINGTogether162

have the objective of ensuring the comprehensive representation of diverse
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populations in health datasets for the development of AI systems, which could solve
part of the problem. The primary focus lies in offering guidance on the collection and
reporting of crucial demographic details, including but not limited to gender, race,
ethnicity, and others. Emphasizing transparency, the recommendations advocate
for clear disclosure of any limitations within the dataset. This transparency facilitates
informed decision-making by developers when selecting datasets for their AI models
or tools. Furthermore, the STANDINGTogether guidelines provide insights into iden-
tifying potential harm to specific groups when employing medical AI systems, thereby
contributing to the responsible and ethical use of such technologies. Other initiatives,
such as the Coalition for Healthcare AI, are addressing this by convening experts from
health care systems experts from multiple institutions representing health care sys-
tems, academia, government, and industry to identify problems and propose solu-
tions to enable trustworthy AI in health care.163 By developing a framework for an
assurance standard and releasing a blueprint as a first step to building consensus
on the execution, they attempt to develop an executable path toward assurance lab-
oratories for continued assessment and monitoring of deployed and implemented
systems.
The Potential of Artificial Intelligence/Machine Learning Models to Help Level the
Playing Field

Chen and colleagues164 have also argued that AI can help address health disparities,
including by identifying and mitigating well-documented societal bias. A foundational
study by Obermeyer and colleagues165 estimated the calibration bias of an algorithm
used topredict thehealth needsof insuredpatients 1 year aheadandshowed significant
differences based on race. Practically, a Black patient with the same algorithmic risk
score as aWhite patient would on average have worse outcomes than their counterpart
a year later. This retrospective analysis suggests that the insurer’s model was underes-
timating the health needs of Black patients. Because they also had access to yearly
health care costs per patient, the authors were able to identify the source of this bias,
namely the use of individual-level health costs as a misleading proxy for health needs.
When the mechanisms underlying existing disparities can be interrogated and the

sources of bias can be identified even partially, the development of correction models
is facilitated. For example, underrepresentation of women and minority groups in clin-
ical trials for cardiovascular diseases is known to affect the fairness of risk prediction
models for atherosclerotic cardiovascular disease; yet, explicit adjustment in new
models can alleviate the repercussions of a lack of inclusion in past trials.166 Using
the Southern Community Cohort Study, Zink and colleagues167 identified differences
in data quality as another source of bias in colorectal cancer risk prediction models.
Detecting or addressing disparities or biased practices sometimes involves strati-

fying or adjusting for race, ethnicity, and other social determinants of health. However,
the decision of using race and ethnicity as input variables in risk prediction models re-
mains highly contentious168 and should be made on a case-by-case basis, with
desired health outcome targets and fairness metrics clearly stated. Indeed, while
the push169,170 to remove such variables from risk scoring systems is legitimate, sim-
ply omitting race and ethnicity could yield worse prediction accuracy for racially mi-
nority groups,171,172 as recently demonstrated by Khor and colleagues173 in the
context of a risk prediction model for colorectal cancer recurrence. Similarly, Zink
and colleagues showed that implementing race-based corrections into colorectal can-
cer risk prediction models can counterbalance differences in data collection (eg, miss-
ingness, quality) by race.
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In Pursuit of Fair, Performant, Sustainable, and Transparent Models

What do we ultimately seek from critical clinical prediction models? The answer, we
posit, is 4 fold: fairness, performance, sustainability, and transparency. Fairness is
essential to prevent the perpetuation and exacerbation of harmful societal biases
within our models. Performance is crucial for ensuring the reliability and accuracy of
these prediction models. Sustainability is pivotal to enable the necessary continual,
automated updates of the models. Finally, transparency will democratize the ability
to examine the underlying cohorts, methodologies, and architectures, which will ulti-
mately foster fairness, performance, and sustainability.
While implementation poses challenges, it is imperative to enhance the hospital’s

capacity to accommodate the demands of these ever-evolving, lifelong learning AI/
ML models. This requires not only building and improving data infrastructures within
our hospitals but also providing comprehensive training to clinicians, specifically
intensivists in the context of this review, to enable them to critically analyze the risk
of bias, and effectively utilize the new generation of ICU tools.

SUMMARY

Clinical prediction models play a crucial role in handling complex data to support
clinicians to make more informed and timely decisions. These models come in 2
forms: traditional scores and AI-based, each addressing a different range of tasks,
with varying levels of complexity, interpretability and generalizability; these differ-
ences are typically inherent to the differences of expertise between the development
teams of each type of model. Bias is not limited to either traditional or AI-based
models, as both types have been found to potentially perpetuate harmful societal
biases. Mitigating bias in AI models requires collaboration among diverse teams
well-versed in understanding the underlying datasets and AI methodologies, as
well as the critical appraisal of these tools by both hospital leadership and clinicians,
particularly in the ICU. As bias can emerge at every stage of the AI lifecycle, from
data sources to model deployment, we outline 6 steps, accompanied by examples
that serve as a scaffold to design strategies to manage the risk of bias. In a more
holistic view, bias mitigation will require ensuring the sustainability of clinical data
pipelines within hospitals, prioritizing transparency and fairness in model develop-
ment, and providing a more interdisciplinary training to clinicians. For clinicians
interested in expanding their understanding of bias, resources like books, journals,
social media platforms, professional societies, and events like datathons can be
valuable sources of information.

CLINICS CARE POINTS
� Critical clinical prediction models enable clinicians to distill complex data into actionable
insights, facilitating well-informed and timely decisions. These algorithms can be
“traditional score-based” and “AI-based,” yielding different properties regarding their
range of addressed problems, underlying patient characteristics, generalization capabilities,
development teams, fairness assessment, and complexity and interpretability.

� Biases can be present in traditional clinical prediction models (eg, SOFA, NEWS), as well as in
AI-based models (eg, ESM), and both models have demonstrated the risk to perpetuate
harmful societal biases.

� Effectively mitigating bias and reducing potential harm in AI-based models necessitates the
collaboration of diverse teams possessing expertise in understanding both underlying
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social 
Security de ClinicalKey.es por Elsevier en octubre 16, 2024. Para uso personal exclusivamente. No se 
permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Matos et al848
datasets and AI methodologies. Equally important is the critical evaluation of these tools in
the ICU by hospital leadership and clinicians. Biases, spanning the entire AI lifecycle,
originate from data sources, preprocessing, model development, evaluation, and
deployment stages.

� Clinicians seeking to expand their knowledge on bias can explore resources such as books,
journals, social media platforms, societies and professional groups, and other
decentralized events like datathons.

� Enhancing transparency and fairness in the development of predictive models, ensuring
sustainability in hospitals’ clinical data pipelines, and providing comprehensive training to
clinicians are fundamental steps to identify and mitigate biases in critical clinical prediction
models.
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