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A B S T R A C T   

Osteogenesis imperfecta (OI)is a rare genetically heterogeneous disorder caused by changes in the expression or 
processing of type I collagen. Clinical manifestations include bone fragility, decreased linear growth, and skeletal 
deformities that vary in severity. In typically growing children, skeletal maturation proceeds in a predictable 
pattern of changes in the size, shape, and mineralization on the hand and wrist bones that can be followed 
radiographically known at the bone age. Assessment of bone age can be clinically used to assess time remaining 
for linear growth, and the onset and duration of puberty, both of which can be useful in determining the timing of 
some surgeries or the interpretation of other imaging modalities such as bone densitometry. Additionally, de-
viations in the expected maturation process of the bone age may prompt or assist in the work up of a significant 
delay or advancement in a child’s growth pattern. The primary aim of our study was to determine whether the 
bone age in children with a skeletal disorder such as OI follow the same pattern and rate of bone maturation 
compared to a control population. Using participants from the Natural History Study of the Brittle Bone Disorders 
Consortium, we analyzed 159 left hand and wrist radiographs (bone age) for a cross-sectional analysis and 55 
bone ages repeated at approximately 24 months for a longitudinal analysis of skeletal maturation. Bone ages 
were read by a pediatric endocrinologist and by an automated analysis using a program called BoneXpert. Our 
results demonstrated that in children with mild-to-moderate OI (types I and IV), the skeletal maturation is 
comparable to chronological age-mated controls. For those with more severe forms of OI (type III), there is a 
delayed pattern of skeletal maturation of less than a year (10.5 months CI 5.1–16) P = 0.0012) at baseline and a 
delayed rate of maturation over the two-year follow up compared to type I (P = 0.06) and type III (P = 0.02). 
However, despite these parameters being statistically different, they may not be clinically significant. We 
conclude the bone age, with careful interpretation, can be used in the OI population in a way that is similar to the 
general pediatric population.   

1. Introduction 

Osteogenesis imperfecta (OI) is a genetically heterogeneous skeletal 
disorder with a broad phenotype caused by pathogenic variants in many 
genes [1]. The most common are autosomal dominant mutations in 

genes encoding type I collagen (COL1A1 or COL1A2) which result in 
alterations in the quantity, or structure and function of the protein [1]. 
OI can also result from less common recessive mutations in genes 
involved in type I collagen processing, bone mineralization and osteo-
blast function [2]. 
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While OI affects many aspects of connective tissue, the clinical 
phenotype is commonly classified by the severity of the skeletal disease 
(i.e., number and type of fragility fractures and bone deformities). 
Osteogenesis imperfecta can be classified into clinical phenotypes as 
follows: type I is the least severe with low trauma fractures and minimal 
to no bone deformities; type II is commonly lethal within the first year of 
life; type III presents with progressing bone deformities and frequent 
atraumatic fractures; and type IV has a phenotype that is intermediate in 
severity [3]. Although there is great variability in the relationship be-
tween genotype and phenotype, patients with mutations resulting in loss 
of the expression of the mutated type I collagen allele (hap-
loinsufficiency) allow the incorporation of quantitatively less, but 
structurally normal type I collagen into the bone matrix and most often 
present with milder disease (type I OI). Those with mutations altering 
the structure and function of type I collagen (e.g., glycine substitution 
mutations in the triple helical domain) that is still incorporated into the 
bone matrix usually have more skeletal abnormalities (types II, III, IV 
OI). 

In typically growing children, skeletal maturation progresses at a 
predictable and reproducible rate throughout skeletal development. As 
part of the ordered development of the skeleton during growth, the 
degree of growth plate fusion and mineralization can be quantitated 
using hand radiographs compared to published standardized images 
assigned to each year of growth, an assessment clinically referred to as 
the bone age. Serial bone ages can delineate the rate of change and 
maturation of the pediatric skeleton. 

Puberty is a time of particularly rapid bone mass accrual and 
accelerated linear growth and characteristic changes in the bone age 
closely correlate with the timing of pubertal growth acceleration and 
other markers of puberty (i.e., menarche in females) [4,5]. Although, the 
rate of bone age maturation is influenced by a variety of other factors, 
including nutritional status, thyroid hormone, and growth factors, it is 
the exposure to sex steroids, particularly estrogen in both males and 
females that starts the process of skeletal maturation and growth plate 
fusion. Sex steroids elongate and mineralize bone at the growth plate by 
upregulating the cellular pathways directing chondrocyte maturation, 
local growth factor production, and vascularization. The end result is the 
production of mature, mineralized bone and ultimately the fusion of the 
growth plate marking the cessation of linear growth [6]. Near final adult 
height (i.e 99 %) is achieved in males by a bone age of 17 years and in 
females by a bone age of 15 years, and radiographic fusion of the growth 
plates occurs by age 17–19 years in both sexes. Thus, examining the 
radiographic pattern of bone maturation during puberty can provide 
insight on the impact of sex steroids on skeletal development and pro-
vide a useful guide for clinicians regarding a patient’s skeletal 
maturation. 

Differences in the timing of sexual maturation is not a known feature 
clinical feature in children with OI and it presumed they progress 
through puberty at a normal time and develop the expected secondary 
sex characteristics indicating typical exposure to sex steroids. This pre-
sumption is supported by the published OI growth charts demonstrating 
the normal timing of the pubertal growth spurt in types I and IV OI 
(Children with type III OI had a significantly blunted growth pattern 
overall due to bone deformities.) [7]. To the best of our knowledge, 
there are no studies comparing the rate of bone maturation in children 
with OI directly to a control group. If the bone age assessment in chil-
dren with OI can be validated, its use would have important clinical 
implications such as the interpretation of bone densitometry scans, the 
timing of certain orthopedic procedures, and decisions about the dura-
tion of bisphosphonate therapy. Additionally, the bone age in children 
with OI could be applied to the work up of delayed or accelerated 
maturation much in the same way it is used in children without a 
skeletal dysplasia. For this study, our aim was to determine whether the 
rate of bone age maturation during adolescent growth is altered in OI 
compared to standardized bone age template readings from the average 
pediatric population. 

2. Methods 

2.1. Study population 

Plain radiographs of the left hand and wrist (bone age) were acquired 
as part of the Rare Diseases Clinical Research Network’s Brittle Bone 
Disorders Consortium’s (BBDC) Longitudinal Study of Osteogenesis 
Imperfecta (NCT02432625). To capture the pre-pubertal through post- 
pubertal growth phase in both males and females, we examined a 
cohort of 159 children with OI aged 8 to 17 years. Participating centers 
within the BBDC with expertise in the diagnosis and treatment of OI 
typed the participants based on the nosological Sillence classification 
[3]. Eighty participants had type I, 31 had type III, and 48 had type IV 
OI. Bone ages were acquired at the baseline evaluation (i.e., on enroll-
ment into the study). In a subset of children, a second bone age, 
approximately 24 months later was available. Images were de-identified 
and stored as dicom files. Information on Tanner staging and menses 
were not available for this study. Each bone age was read by a pediatric 
endocrinologist (LN) using Greulich and Pyle methodology (“Radio-
graphic Atlas of Skeletal Development of the Hand and Wrist”) [8] while 
blinded to the chronological age of the participant to eliminate reader 
bias. Bone age was also estimated using BoneXpert, an automated soft-
ware program validated in reading hand and wrist films and assigning a 
bone age in several reference populations [9–13]. The mean BoneXpert 
readings were about 4 months less than the endocrinologist readings 
with slightly greater discrepancies at the older age range, but the two 
methods were highly correlated (Supplement Fig. 1A and 1B). The 
endocrinologist and automated readings were averaged for a final score. 
Bone age readings that differed by >1.5 years between the two assess-
ments (n = 6 (five females; three with type I and two with type III OI and 
one male with type IV OI) were re-read in a blinded fashion by a second 
pediatric endocrinologist and the final score was calculated as the 
average of all three readings. Of the 159 participants who had baseline 
bone ages, follow-up films were available in 55 participants approxi-
mately 24 months later (Table 1). No bone age film within this cohort 
needed to be excluded for unreadability due to bone deformities or 
fractures. 

2.2. Statistical analysis 

Baseline and follow-up bone age readings by endocrinologist and 
automated program were compared via a one-sample t-test on their 
differences to examine agreement and any potential systematic bias 
between methods. A Bland-Altman plot of the two methods was con-
structed along with the limits of agreement to estimate the range of the 
discrepancy. 

Demographic variables for baseline and follow-up visits were 
compared between OI types using Kruskal-Wallis rank sum test or 
Fisher’s exact test, as appropriate. A paired t-test was performed within 
each OI group to determine whether bone age readings significantly 
differed from chronological age on average. Pearson’s correlations were 
also used to assess the strength of the linear relationships between 
baseline bone age and chronological age. A multivariable linear 
regression model was constructed to estimate the conditional expected 
difference between bone age and chronological age, with OI type, sex, 
race, ethnicity, linear and quadratic BMI (body mass index) terms, and a 
OI type-by-BMI interaction term as regressors. Marginal means were 
calculated and pairwise contrasts between OI types at various levels of 
BMI were performed using Tukey’s method to control for the family- 
wise error rate. 

To ascertain differences in bone age maturation between OI types, 
we calculated the change in bone (annualized) and regressed it against 
OI type, baseline age, baseline bone age - chronological age difference, 
BMI, sex, race, and ethnicity. We again constructed the marginal means 
and performed a Tukey-adjusted pairwise contrasts between OI types. A 
two-sided α-level of 0.05 was used to establish significance. Data were 

L.E. Nicol et al.                                                                                                                                                                                                                                  

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en octubre 16, 
2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Bone 187 (2024) 117192

3

analyzed in R (Version 4.1.2, Vienna, Austria) using the ‘emmeans’ 
package (Version 1.8.6). 

3. Results 

The characteristics of the study cohort are shown in Table 1A and B. 
Participants were predominately non-Hispanic white in both the cross- 
sectional and longitudinal cohorts. The mean BMI was statistically 
higher in those with type III OI, and types III and IV OI had greater 
bisphosphonate exposure. 

The cross-sectional analysis of baseline radiographs in the 159 chil-
dren showed a strong correlation between bone age and chronological 
age in all study subjects (r = 0.912–0.938) (Fig. 1). The bone age and 
chronologic ages were very similar in children with type I and type IV 
OI; in type I OI mean bone age was ~3 months higher than mean 
chronological age (adj P = 0.15), in type IV OI mean bone age was ~2 
months higher than mean chronological age (adj P = 0.24). Participants 
with type III OI had a significant delay in their bone age compared to 
their chronologic age (mean delay of 10.5 months CI 5.1–16) P =
0.0012). An un-blinded review of the bone ages from the type III cohort 
did not reveal any unique radiographic features, deformities or fractures 
that could have contributed to the result of a delayed bone age. 

Longitudinal analyses of 55 children (Table 1B) revealed the same 
trends that were observed with the cross-sectional analyses. In type I and 
IV OI, bone age tended to advance similarly compared to the chrono-
logic age over the two-year follow up, but there was a statistically sig-
nificant delay of BA advancement in the OI type III cohort (Fig. 3). 

In the cross-sectional analyses, there was no effect of sex, age or 
ethnicity on the relationship between bone age and chronologic in all OI 
types. Within each OI type, higher BMI was associated with a more 
advanced bone age. The relationship between BMI and bone age was not 
linear in types I or IV (Fig. 2) and suggested that the effect of BMI on 
bone age was maximal at a BMI of 25 kg/m2. 

The effect of previous bisphosphonate treatment on bone age 
maturation could not be determined in the type III or IV OI groups 
because nearly all these children had a history of treatment exposure 
(Table 1). In the type I OI group, a history of bisphosphonate treatment 
was not a significant coefficient in the cross-sectional (55 % treated) or 
longitudinal analyses (58 % treated) and was not associated with either 
a more advanced or delayed bone age in the type I OI group (Fig. 4). 

4. Conclusions 

Our study is the first to evaluate bone age and bone maturation in a 
large cohort of children clinically categorized with types I, III, and IV OI 
during the pubertal growth phase. We chose to study children during 
puberty because it is a critical stage of bone development and growth. 
Our cross-sectional data showed that there were no significant differ-
ences between the bone age and the chronologic age in children with 
type I and IV OI. These findings suggest that despite mutations causing 
alterations in type I collagen expression or processing, radiographic 
bone maturation appears to advance at a normal rate in children with 
type I and IV OI. The bone age in children with type III OI was delayed by 
about 10 months compared to chronologic age and showed a slower 
bone maturation rate in longitudinal analyses. These differences how-
ever, are small and may not be clinically impactful. 

There is some reduction in final height in all types of OI compared to 
the average population [14,15], which could reflect a deficit of bone 
elongation at the growth plate. In type III OI, bone deformity, scoliosis 
and fractures have a major impact on height, but these abnormalities 
cannot completely explain the deficit in linear growth [7,16]. Similarly, 
in children with milder disease and fewer deformities, growth deficits 
are also observed. Although our study does not address the histologic or 
physiologic factors affecting bone maturation during growth, it does 
provide information about the radiographic signs of fusion and miner-
alization in the area of the growth plate during puberty. The use of hand 

Table 1 
Demographics of the cross-sectional (A) and longitudinal (B) cohorts.  

A  

OI type p- 
Valueb 

I, N = 80a III, N =
31a 

IV, N =
48a 

Sex     0.3 
Female 42 (53 %) 21 (68 %) 30 (63 %)  
Male 38 (48 %) 10 (32 %) 18 (38 %)  

Treated with Bisphosphonates     <0.001 
Untreated 36 (45 %) 0 (0 %) 1 (2.1 %)  
Treated 44 (55 %) 31 (100 

%) 
47 (98 %)  

Race     0.11 
Asian 2 (2.5 %) 1 (3.2 %) 3 (6.3 %)  
Biracial 2 (2.5 %) 3 (9.7 %) 1 (2.1 %)  
Black 1 (1.3 %) 2 (6.5 %) 3 (6.3 %)  
Native American 1 (1.3 %) 0 (0 %) 0 (0 %)  
Unknown or Other 0 (0 %) 1 (3.2 %) 2 (4.2 %)  
White 74 (93 %) 24 (77 %) 39 (81 %)  

Ethnicity     0.3 
Hispanic, Latino, or Spanish 
origin 

11 (14 %) 2 (6.5 %) 9 (19 %)  

Not Hispanic, Latino, or 
Spanish origin 

69 (86 %) 29 (94 %) 39 (81 %)  

Baseline age (years) 12.51 
(2.83) 

13.42 
(2.96) 

13.48 
(2.79)  

0.12 

Baseline BMI 19.5 (4.3) 24.0 (6.9) 22.6 (5.1)  <0.001 
Baseline BA-CA difference 

(years) 
0.26 
(1.29) 

− 0.88 
(1.23) 

0.19 
(1.08)  

<0.001   

B  

OI type p- 
Valueb 

I, N = 26a III, N =
13a 

IV, N =
16a 

Sex     0.004 
Female 9 (35 %) 10 (77 %) 13 (81 %)  
Male 17 (65 %) 3 (23 %) 3 (19 %)  

Treated     <0.001 
Untreated 11 (42 %) 0 (0 %) 0 (0 %)  
Treated 15 (58 %) 13 (100 

%) 
16 (100 
%)  

Race     0.090 
Asian 0 (0 %) 0 (0 %) 1 (6.3 %)  
Biracial 1 (3.8 %) 2 (15 %) 0 (0 %)  
Black 0 (0 %) 0 (0 %) 2 (13 %)  
Native American 1 (3.8 %) 0 (0 %) 0 (0 %)  
Unknown or Other 0 (0 %) 0 (0 %) 1 (6.3 %)  
White 24 (92 %) 11 (85 %) 12 (75 %)  

Ethnicity     >0.9 
Hispanic, Latino, or 
Spanish origin 

3 (12 %) 1 (7.7 %) 2 (13 %)  

Not Hispanic, Latino, or 
Spanish origin 

23 (88 %) 12 (92 %) 14 (88 %)  

Baseline age 11.75 
(2.69) 

12.08 
(2.60) 

11.80 
(1.89)  

>0.9 

Baseline BMI 19.5 (4.5) 24.0 (8.3) 20.0 (3.9)  0.051 
Follow-up time (years) 2.03 

(0.13) 
1.89 
(0.24) 

1.94 
(0.25)  

0.089 

Baseline BA-CA difference 
(years) 

0.53 
(1.33) 

− 1.19 
(1.22) 

− 0.18 
(1.12)  

<0.001 

BA maturation rate 1.00 
(0.49) 

0.83 
(0.42) 

1.31 
(0.38) 

0.015 

BA = bone age, CA = chronologic age. 
a n (%); Mean (SD). 
b Fisher’s exact test; One-way ANOVA. 
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radiographs for bone age assessments should avoid confounding effects 
of fractures and bone deformities. Indeed, in our current study, no hand 
films were deemed unreadable due to underlying deformities. Similarly, 
a prior study used hand films to demonstrate metacarpal bone length 
deficits that correlated with height outcomes without the interference of 

fractures or deformities, concluding that abnormalities in linear bone 
accrual, presumably at the level of the growth plate, contribute to short 
stature in OI [17]. 

The biological events that are represented by the radiographic 
phenotype of bone age maturation are not well defined, but presumably 
include growth plate function and matrix mineralization. The delay we 
noted in type III OI could reflect the effects of abnormal collagen biology 
on either process. The possibility of disordered growth plate function in 
OI has been explored in several other studies [18–23]. Early reports 
described radiographic changes such as rickets-like features and 
abnormal calcifications in the growth plate in certain forms of severe OI 
[18,19]. Histologic changes in the growth plate were found in animal 
models of OI including elongation of the hypertrophic zone and differ-
ences in the expression of alkaline phosphatase in patients with OI 
[20,22,24]. Alterations in growth plate hypertrophic chondrocytes have 
also been identified in OI, with changes in morphologic structure and 
alterations in the endoplasmic reticulum in murine models [23,25]. 
Additionally, we previously reported that in moderate and severe forms 
of OI (types IV and III respectively), there is a disassociation of growth 
velocity and levels of the growth plate marker from the non-collagenous 
domain of type X collagen (CXM) [26]. CXM is strongly correlated to 
growth velocity in average growing children [27,28]. Whether these 
factors play a role in the delayed bone age we observed in type III OI 
need further investigation. 

Several endocrine factors are known to influence bone growth and 
maturation such as thyroid hormone, growth factors, and sex steroids. 
Levels of thyroid hormones were not measured in this study, but thyroid 
disease was not reported in the subjects’ histories at the baseline visit. In 

Fig. 1. Average cross-sectional bone age versus chronologic age by OI type.  

Fig. 2. BMI versus baseline bone age by OI type. There is a positive predictor 
effect on advancing the bone age versus chronologic age in OI types I and IV up 
through a BMI of 25 kg/m2. 
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addition, prior studies in children with OI have demonstrated normal 
growth factors levels (IGF-, IGFBP-3) and stimulated growth hormone 
values suggesting that classic growth hormone deficiency in not a 
feature of this disorder [29,30]. However, it should be noted that a 
portion of the children with OI had a blunted response in somatomedin 
stimulated IGF1 levels and lower growth hormone levels in response to 
growth hormone releasing factor [30]. These findings point to the pos-
sibility of a hypoactive growth hormone axis in some children with OI 
but given that it was not specific to the OI type it may not explain the 
delay in bone age our study identified in the type III cohort. Sex steroids, 
in particular estrogen, are major contributors to bone maturation and 
growth in both males and females [31,32]. Sex steroid levels were not 
obtained in this study and no other study has examined pubertal hor-
mone levels in growing children with OI. Yet, without evidence of 
significantly delayed puberty as a typically reported feature in children 
with OI, it is reasonable to expect that sex hormones are generally 
produced at normal physiologic levels in this population [7,16]. In our 
study, the evolution of bone age maturation in OI type I and IV appears 
to reflect a relatively normal skeletal response to pubertal hormones, but 
the delay in bone maturation in the children with OI type III suggests a 
less robust response. 

Similar to what is seen in average growing children, we observed that 
higher BMI was associated with more advanced bone age in children 
with OI [33]. Future studies could delineate whether this effect in OI is 
also associated with earlier onset of puberty that is observed in obese 
females in the general population by examining BMI and onset of menses 
(the latter of which was not available for our study). The effect of 
increased BMI on bone age advancement was lost in those subjects with 
type III OI suggesting the effects of aberrant collagen function supersede 
the effects of body composition. Exposure to bisphosphonates was not 
associated with a change in bone age maturation in this study, although 
the analysis was limited to those with OI type I. 

Within the type III OI group, there are statistically significant delays 
in the bone age and radiographic maturation both when comparing it to 
the chronological age as well as delays in the rate of maturation. These 
findings may reflect the effects of under-mineralized bone in this cohort. 
The differences however, are less than a year and thus the implications 
may not be clinically significant. 

Strengths of our study include the availability of a relatively large 
cohort that included all common types of OI, careful assessments of bone 
age using 2 methods, useful information on covariates, and the 

availability of both longitudinal and cross-sectional data. We lacked 
Tanner staging, information on menarche and measurements of hor-
mone levels, which would have provided an objective assessment of 
pubertal status and would be interesting to correlate in future studies. 
We also were not able to include the genotype of each participant and 
although most forms of type I OI involve null mutations in the COL1A1/ 
A2 gene we were not able to analyze data conclusively based on this 
criterion. We were also not able to differentiate whether rarer forms of 
autosomal recessive OI, which would have clinically been categorized 
into the type III group, had a unique effect on the bone age assessment. 
Additionally, the small sample size in the male type III and type IV 
longitudinal cohorts reduces our ability to confidently assess changes 
within these groups. 

Overall, our cross sectional and longitudinal evidence shows that the 
bone age advances congruently with the chronologic age in children 
with OI types I and IV, and its use in assessing the rate of skeletal 
maturation appears valid in this population despite the underlying 
collagen abnormalities and associated low bone mineral density. Given 
the delay of bone age compared to chronological age and the delay in the 
rate of progression of the maturation care must be taken in regarding its 
clinical use in the children with OI type III. We suggest that this meth-
odology of assessing skeletal maturation is still generally relevant in 
type III OI given the changes we found were small and may not be 
clinically important in most situations. If bone age is more delayed than 
our data suggest is characteristic of type III OI, an evaluation for other 
causes of the abnormality would be appropriate. 
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