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Objective: Medication errors are a worldwide public health issue. Redu-
cing inappropriate medication use is a daily challenge for clinical pharma-
cists. Computerization of the medication process and the rise of artificial
intelligence make it possible to develop tools to detect inappropriate pre-
scriptions. Our main goal was to compare the performance of two machine
learning models capable of predicting the probability of a prescription re-
quiring pharmaceutical intervention (Pl) using hospital data.

Methods: The study was conducted in a single hospital, with data col-
lected over 4 years, including 2,059,847 prescription lines (a patient's en-
tire medication regimen consists of multiple prescription lines) associated
with 260,611 Pls. Two tree-based binary classification machine learning
models were tested: the Light Gradient Boosting Machine (LGBM) model
and the Random Forest (RF) model. The dataset was split (70% for training
and 30% for testing), and training and testing were performed on the global
dataset and on data stratified by medical care department.

Results: For the global dataset, the LGBM model outperformed the
RF model in most metrics: accuracy (86% vs 85%), precision (80% vs
42%), specificity (97% vs 89%), area under the curve (83% vs 71%) and
F1-score (58% vs 47%). However, the RF model had superior recall (53%
vs 46%). Furthermore, the LGBM model trained on the global database
was generally more effective than models trained on the care departments’
databases.

Conclusion: The LGBM model showed superior performance in detecting
inappropriate prescriptions, potentially improving the thoroughness and
efficiency of prescription review. While further studies are needed to con-
firm these findings, the model holds significant promise for advancing
hospital clinical pharmacy and enhancing patient care through optimized
prescription management.

Keywords: artificial intelligence, clinical pharmacy, high-risk prescrip-
tions, inappropriate prescribing, machine learning
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Medication errors are a worldwide
issue. According to the US National
Coordinating Council for Medication
Error Reporting and Prevention,' a
medication error is “any preventable
event that may cause or lead to in-
appropriate medication use or patient
harm while the medication is in the
control of the healthcare professional,
patient, or consumer.” It can result from
a wrong indication for a medication, an

incorrect dose or treatment duration,
drug interactions, failure to initiate a
medication, or initiation of a medica-
tion when not appropriate in a spe-
cific context. In 2017, the World Health
Organization initiated the Medication
Without Harm program? to reduce se-
vere avoidable harm related to medica-
tion use by 50% in 5 years. Worldwide,
medication-related harm is preventable
in 50% of cases, and the annual cost of
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medication errors is estimated at $42
billion.?

Clinical pharmacists have a pre-
dominant role in limiting errors through
medication review. Pharmaceutical Care
Network Europe (PCNE)* has defined
medication review as follows: “structured
evaluation of a patient’s medicines with
the aim of optimizing medicines use and
improving health outcomes. This entails
detecting drug-related problems and re-
commending interventions” A pharma-
ceutical intervention (PI) is defined as
“any activity undertaken by the pharma-
cist which benefits the patient”” PIs are
meant to prevent negative outcomes and
optimize therapy when a medication
error is detected. Several studies®® show
that PIs have positive clinical, economic,
and organizational impacts.

Today, the computerization of the
medication-use process in hospitals
and the development of clinical deci-
sion support (CDS) systems help hos-
pital pharmacists in the medication
review process. While well-designed
CDS systems can offer many bene-
fits, such as improving efficiency and
decision-making, they may also lead
to alert fatigue when nonrelevant or
inappropriate alerts are generated.
This can reduce the effectiveness of the
system.” However, computerization of
pharmaceutical activities has led to the
collection of a massive quantity of data.
The rise of artificial intelligence (Al) in
pharmacy is an opportunity to leverage
this data, reduce “noise” by filtering
out irrelevant alerts, and assist clinical
pharmacists in prioritizing high-impact
interventions.'* 2,

Al, thanks to machine learning
(ML), has the capacity to predict situ-
ations using retrospective data. ML
is a subset of AI used for addressing
classification, regression, clustering,
dimension reduction, or association
tasks. ML models determine the rules
to solve these tasks, thanks to the
training dataset. The training dataset
is a retrospective dataset composed of
data relative to the prediction task. The
training can be supervised, unsuper-
vised, semisupervised, self-supervised,
or reinforced. Supervised ML means
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the outcome to predict is labeled in the
training dataset and is specified to the
algorithm to facilitate the development
of the predictive model. Supervised ML
is finding its way into clinical pharmacy
as a method to assist pharmacists in
their activities, such as predicting ad-
verse drug events in older inpatients
to enhance medication safety,"
identifying high-risk QTc prolongation
related to drug-drug interactions,'* and
reducing medication-related risks" .

Objectives. The objectives of this
study were 2-fold. The first objective
was to compare the performance of 2
common supervised ML methods in
order to generate algorithms (from the
same dataset) capable of predicting
the probability that a prescription re-
quires PIs in a hospital setting. The
performance comparison between the
models was conducted using 6 met-
rics: accuracy, recall, precision, spe-
cificity, F1-score, and area under the
receiver operating characteristic curve
(AUC-ROC). Based on the initial re-
sults, the second study objective was
to develop additional algorithms using
selected databases targeting specific
medical care departments with the aim
of improving the performance of the
models.

Methods

Setting. This retrospective study
was conducted at the University
Hospital of Strasbourg in France. This
hospital offers 1,972 beds for med-
ical, surgical, and obstetrics activities
grouped in more than 20 care depart-
ments. The hospital manages a high pa-
tient volume, with 451 emergency visits
per day (164,575 annually) and ap-
proximately 46,741 hospital stays each
year. The average length of stay is 5.9
days. In all care units except for medical
and surgical intensive care units, the
patients’ prescription lines (a patient's
entire medication regimen consists of
multiple prescription lines) are pre-
scribed using the prescription assist-
ance software DxCare (Dedalus France,
Artigues-pres-Bordeaux, France),
while biological orders are filed in the
Clinysys GLIMS software (Clinisys, Inc.,

Tucson, AZ). Clinical pharmacists per-
form their medication review activity
on DxCare and notify the clinicians if
a prescription requires a PI through a
brief comment explaining the drug-
related issue and suggesting an appro-
priate prescription modification.

Dataset. Data collection. Data
collected over a 4-year period (2017-
2020) were extracted from the elec-
tronic health record. This study covered
97,842 patients hospitalized across all
care units using the DxCare software.
Prescription lines, PIs generated by the
clinical pharmacists, biological results,
and hospitalization and administrative
data for all inpatients were collected
to train the ML models. After data
cleaning and processing (Figure 1), the
final dataset consisted of 2,059,847 pre-
scription lines associated with 260,611
PIs.

Data preparation. Before training
a model, the extracted data was pre-
processed. After a first analysis of the
data, outliers and duplicates were de-
leted. Clinically irrelevant PIs, such as
those related to drugs not listed in the
hospital’s formulary, were also removed.
To handle missing biological values,
the main interest was whether the data
was present or absent and, if present,
whether it was within the standard range
or not. To address this, biological re-
sults were dichotomized in 4 categories
to bypass the large number of missing
values: 0 (missing value), 1 (value below
the standard), 2 (value in the standard
range), 3 (value above the standard).
Finally, prescription lines were also di-
chotomized (0 = no PI, 1 = presence of
PI) to simplify the handling of the text
data.

To satisfy the second objective, the
extracted and preprocessed data was
divided into datasets for 9 selected care
departments: ophthalmology, geriatric,
cardiovascular pathologies, thoracic
pathologies, head and neck patholo-
gies, internal medicine, traumatology,
emergency, and digestive pathologies
and transplantation.

Model development. Training
and test sets. The ML models were
trained on the same dataset, covering
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Figure 1. Representation of the steps involved in processing of raw data and presentation of the remaining data after
preprocessing and removal of outlier values. ATC indicates Anatomical Therapeutic Chemical; NIP, patient identification

number; WE, weekend.
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all of the care departments. The overall
dataset was randomly split in 2 sets,
with 70% of the dataset used to train the
models and the remaining 30% of the
dataset used to test the performance of
the predictive model on untrained data.
This 70/30 split approach'® was used to
ensure a sufficient amount of data for
both model training and evaluation.
The imbalance of the PIs in this
dataset biased the training of the pre-
dictive models. Due to this imbalance,
we oversampled the prescription lines
requiring a PI (randomly duplicating
instances from the minority class to
increase their representation) and
undersampled the prescription lines
not associated with a PI (randomly
removing instances from the ma-
jority class to balance the dataset) in
the training, resulting in an equalized
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dataset.!” The balancing was performed
using the ovun.sample function from
the ROSE package in R (R Foundation
for Statistical Computing, Vienna,
Austria). This approach ensures that the
model learns equally from both types of
prescription lines, improving its ability
to detect PIs. The training set then in-
cluded 1,441,892 prescription lines, of
which 720,745 involved PIs. The test
set was not sampled and included the
remaining 30% of the original dataset:
617,955 prescription lines, of which
78,282 were associated with PIs.

The PIs (a binary 0/1 categorization)
were the labels used for the training of
the models, indicating the outcome
to be predicted. The remaining vari-
ables (age, sex, care department code,
name of the prescribed drug, fifth-level
Anatomical Therapeutic Chemical

[ATC] Classification System code
[ATC5] for the prescribed drug, route of
administration, and biological results
[levels of creatinine, C-reactive protein,
hemoglobin, leukocytes, potassium,
platelets, and sodium, as well as inter-
national normalized ratio] associated
with the prescription were the pre-
dictors necessary to develop and train
the different models.

Then, the performance of the dif-
ferent models was compared. The ML
model with the best performance was
then used to train the ensuing 9 models
for the selected care departments. The
models for selected care departments
were built on the same basis: 70% of
the dataset was used for the training set
and the remaining 30% for the test set.
The same process of equalization used
for the overall dataset was performed to
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Table 1. Descriptive Statistics for Patient Data

Pls
(N = 260,611)

No PIs
(N = 1,799,236)

Sex, No. (%)

Male 140,031 (53.7) 952,702 (53.0)
Female 120,577 (46.3) 846,493 (47.0)
Unknown 3 (<0.001) 41 (<0.001)
Age, years

Mean (SD) 64.3 (17.6) 67.8 (16.9)

Median (range)

67.0 (19.0-108)

70.0 (19.0-108)

Creatinine (mg/dL)

Mean (SD) 1.09 (0.68) 1.08 (0.68)
Median (range) 0.95 (0.34-5.09) 0.93 (0.34-5.09)
Missing data 73,895 (28.4) 416,767 (23.2)
C-reactive protein, mg/L

Mean (SD) 67.0 (77.5) 61.7 (74.0)
Median (range) 35.4 (4.0-450) 31.0 (4.0-450)
Missing data 122,602 (47.0) 717,932 (39,9)
International normalized ratio

Mean (SD) 1.34 (0.633) 1.45 (0.792)

Median (range)

1.14 (0.95-9.69)

1.16 (0.95-9.97)

Missing data 131,687 (50.5) 926,974 (51,5)
Hemoglobin, g/dL

Mean (SD) 11.2 (2.06) 11.3 (2.02)
Median (range) 11.1 (3.4-15.9) 11.2 (3.1-15.9)
Missing data 72,543 (27.8) 455,299 (25.3)
Leukocytes, g/dL

Mean (SD) 9.66 (4.70) 9.40 (4.44)

Median (range)

8.85 (0.21-30.0)

8.58 (0.21-30.0)

Missing data 73,473 (28.2) 446,171 (24.8)
Potassium (mEq/L)

Mean (SD) 4.01 (0.511) 3.99 (0.521)
Median (range) 3.97 (2.7-7.9) 3.94 (2.7-7.9)

Missing data 63,127 (24.2) 360,210 (20.0)
Platelets, x10°/L

Mean (SD) 244 (111) 248 (108)
Median (range) 234 (11.0-599) 236 (11.0-599)
Missing data 75,269 (28.8) 465,704 (25.9)
Sodium, mEg/L

Mean (SD) 138 (4.39) 138 (4.40)
Median (range) 138 (121-159) 138 (121-159)
Missing data 65,278 (25.0) 377,991 (21.0)

Abbreviation: Pl, pharmaceutical intervention.
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counter the imbalance of the training
dataset.

ML models used. Two tree-based
models used for binary classification
machine learning models were tested on
the training dataset: a Random Forest'®
(RF) model and a gradient boosting'®
model  (Light Gradient
Machine® [LGBM]).

A grid search was performed on

Boosting

each training dataset to tune and opti-
mize the hyperparameters used to train
the models. For the RF models, the fol-
lowing hyperparameters were calcu-
lated: number of trees and number of
randomly drawn variables (mtry). As
for the LGBM models, minimal node
size, tree depth, and number of leaves
hyperparameters were determined.

The different models were trained
using R version 4.3.0. The RF and LGBM
models were trained using, respect-
ively, the randomforest (4.6-14) and
Igbm (3.3.5) packages in R.

Model evaluation. Performance
assessment metrics. The models’ per-
formance assessment was carried out
by measuring 6 key metrics that are
used in medical classification prob-
lems, particularly in the evaluation of
ML models for imbalanced datasets***:

o Accuracy—the ratio of correctly clas-
sified instances (true positives and
true negatives) to the total number of
instances in the evaluation set, which
quantifies the overall correctness of
the model’s predictions

« Recall (sensitivity or true positive
rate)—the ability of the model to cor-
rectly identify positive instances (in
our case, PIs) out of all actual positive
instances

« Precision (positive predictive
value)—the accuracy of positive pre-
dictions made by the model (in our
case, the ratio of true-positive PIs to
the total number of positive PI pre-
dictions), which quantifies how well
the model can capture all PIs

o Specificity (true negative rate)—the
ability of the model to correctly iden-
tify negative instances (non-PI pre-
scriptions) out of all actual negative

1242 AM JHEALTH-SYST PHARM |

instances, which quantifies how well
the model can avoid false-positive PIs

o Fl-score—a combined metric that
balances precision and recall. It pro-
vides a single score that considers all
positive predictions. The F1-score is
particularly useful when dealing with
imbalanced datasets, where one class
significantly outnumbers the other

e AUC-ROC—a score measuring the
classification performance using the
relationship between sensitivity and
specificity

The selection of these metrics was
based on best practices in medical
and ML research, as they collectively
provide a comprehensive evaluation
of the models’ performance. While
accuracy is a general indicator, recall
and specificity are crucial in a clinical
context where false negatives (missed
PIs) and false positives (unnecessary
alerts) must be carefully balanced. The
Fl-score is particularly relevant given
the imbalanced nature of the dataset,
and AUC-ROC helps assess the overall
discriminative ability of the models.

Statistical analysis. To compare
the AUC-ROC values of the different
models, we used the DeLong test” a
nonparametric statistical test used to
compare the AUC-ROC values between
different models. It assesses whether
the difference in AUC-ROC between 2
models is statistically significant. A P
value of <0.05 indicates that the differ-
ence is statistically significant.

Additionally, we applied the Youden
index* to assess the maximum potential
effectiveness of the predictive models.
This index helps determine the op-
timal decision threshold by maximizing
the sum of sensitivity and specificity.
A model is considered more effective
when its Youden index is close to 1.

Ethics approval. The local
ethics committee approved this
noninterventional and retrospective
study (reference CE-2022-21).

Results

Datasets characteristics. From
January 2017 through December 2020,

a total of 2,059,847 prescription lines
were reviewed by the clinical pharma-
cists. Of these, 260,611 prescription
lines (12.7%) required a PI. As shown in
Table 1, the demographic distribution
of patients with PIs was compared to
that of those without PIs. The majority
of prescription lines for both groups
were for male patients (53.7% and 53%,
respectively). The median age of pa-
tients with a PI was 67 years. For the
biological data variables, the missing
data rate ranged from 24.2% (for potas-
sium values) to 50.5% (for international
normalized ratio values). Table 2 pro-
vides the distribution of prescription
lines requiring PIs across different care
departments. The percentage of pre-
scription lines requiring PIs varied by
department, with some showing higher
or lower rates than the overall rate of
12.7%. The traumatology department
had the highest percentage of pre-
scription lines with PlIs (16.9%), well
above the global average, followed by
head and neck pathologies (13.8%). In
contrast, the geriatric (7.3%) and oph-
thalmology (9.7%) departments had
lower-than-average percentages.

Comparative performance of both
models on the overall test dataset. The
LGBM model showed better perform-
ance than the RF model (see Table
3 and Figure 2),. outperforming it in
terms of accuracy, precision, specificity,
F1-score, and AUC-ROC. However, it did
not show superior performance for re-
call. This was confirmed by the DeLong
test, which shows a statistically signifi-
cant difference between the AUC-ROC
values (P = 0.002). It is important to
note that these results are based on the
oversampled test data, as performance
metrics may vary when reported for raw
versus oversampled data.

To enhance the performance of the
LGBM model, we determined the op-
timal cut-off point thanks to the Youden
index. As shown in Figure 3, the best
cut-off point was 0.43, giving a Youden
index of 0.67, meaning that 67% of the
predictions were not random, with a
sensitivity of 98% and a specificity of
95%.
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Table 2. Distribution of Prescriptions Requiring a Pharmaceutical Intervention in Selected Care Departments
Prescriptions with Prescriptions

Care department Pl, No. (%) without PI, No. (%)

Ophthalmology 25,250 (9.7) 235,717 (90.3)

Geriatric 13,130 (7.3) 167,699 (92.7)

Cardiovascular pathologies 28,093 (10.2) 247,444 (89.8)

Thoracic pathologies 14,875 (9.3) 145,529 (90.7)

Head and neck pathologies 27,510 (13.8) 171,553 (86.2)

Traumatology 30,049 (16.9) 147,195 (83.1)

Internal medicine 37,584 (10.6) 318,435 (89.4)

Emergency 27,869 (10.5) 237,691 (89.5)

Digestive pathologies and transplantation 32,612 (12.1) 235,984 (87.9)

Abbreviation: Pl, pharmaceutical intervention.

Table 3. Models’ Performance on Testing Dataset (N = 617,955 Prescriptions, 78,282 Pls)?

Model Accuracy Recall Precision Specificity F1-score AUC-ROC

LGBM 86 46 80 97 58 83

RF 85 53 42 89 47 71

Abbreviations: AUC-ROC, area under the receiver operating characteristic curve; LGBM, Light Gradient Boosting Machine; RF, Random Forest.

aAll data are percentages.

Figure 2. Comparison of the receiver operating characteristic (ROC) curves

for the Light Gradient Boosting Machine (LGBM) model (blue curve) and the

Random Forest (RF) model (green curve). True positive rate = recall (%); false
positive rate = 1 — specificity.

1.0

0.6 0.8

False Positive Rate

04

0.2

— LGBM AUC = 0.8308
— RFAUC=0.7126
T T T T T T

0.0 0.2 04 0.6 08 1.0

0.0

True Positive Rate

AM J HEALTH-SYST PHARM | VOLUME 82 | NUMBER22 | NOVEMBER 15, 2025

Comparative variable im-
portance of both models on the
overall test dataset. The analysis of
the variables’ importance showed that
predictors did not have the same im-
portance in the models’ training. The
higher the score, the higher the import-
ance of the predictor in the predictive
model. However, 9 of the 10 most im-
portant features were common to the
LGBM and RF models (Figures 4 and
5). These included ATC5, care unit,
route of administration, age, active sub-
stance, international normalized ratio,
and values for creatinine, potassium,
and leukocytes.

Performance of the LGBM
model (overall test dataset vs
subdivided test datasets). Since
the LGBM model performed better
than the RF model, we chose to pursue
our study with it.

Statistics for the subdivided dataset
performance are presented in Table 4.
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Figure 3. Plot of the optimal cut-off point for the Light Gradient Boosting Machin

e model.
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Figure 4. Relative importance of evaluated variables in predicting pharmaceutical interventions with the Light Gradient

Boosting Machine model.
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International Normalized Ratio
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The results show that the models trained  Discussion
on the total database were, in most cases,
more effective than the models trained

The results presented above on the
overall dataset demonstrated the su-
on the care departments’ databases. periority of the LGBM model when

basing model performance on F1-score
and AUC-ROC values. Indeed, the re-
sults obtained with the LGBM exhib-
ited the highest F1-score and AUC-ROC
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Figure 5. Relative importance of evaluated variables in predicting pharmaceutical interventions with the Random Forest

model.
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Table 4. LGBM Model’s Performance on Overall Dataset and on Selected Care Departments’ Testing Datasets?
Accuracy Recall Precision Specificity F1-score AUC-ROC
Overall dataset 86 46 80 97 58 83
Care department
Ophthalmology 86 41 74 96 53 81
Geriatric 84 30 73 97 43 79
Cardiovascular pathologies 90 53 86 98 66 88
Thoracic pathologies 86 41 76 97 53 82
Head and neck pathologies 87 56 83 96 67 85
Traumatology 80 50 80 94 62 80
Internal medicine 88 49 73 96 57 81
Emergency 84 42 79 97 55 82
Digestive pathologies and transplantation 88 54 82 97 65 85
Abbreviation : AUC-ROC, area under the receiver operating characteristic curve.
aAll data are percentages.

values, which were statistically different
from RF model values according to the
DeLong test.

Going into more detail, the vari-
able importance plots show that both
models gave the greatest importance to
the variables directly linked to the drug
prescription (ATC5, care unit, route of
administration, age, and active sub-
stance). PIs are commonly linked to an
improper dosage prescription or route
of administration,® to being elderly,*

or to high-risk medication.?” Then come
the biological results that complete
the medication review.?® This division
can be explained by the preprocessing
choice of the biological data and the
proportion of missing values, which
made it more difficult for the model to
establish classification rules.

When making predictions on
an imbalanced dataset, it is recom-
mended to assess algorithm perform-
ance based on the F1-score,? as it does

AM J HEALTH-SYST PHARM | VOLUME 82 |

NUMBER 22 |

not consider negative predictions. This
means that the results emphasize the
algorithm’s ability to maximize posi-
tive predictions. In the healthcare field,
this makes sense. It is essential to focus
on true positives rather than true nega-
tives, meaning we aim to highlight
the correctly predicted positive class.
In our study, false positives were rare
(specificity, 97%); however, false nega-
tives should be improved (recall, 46%).
The improvement will allow reduction
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of false negatives and diminish fatigue
due to overalerting.

Prior studies using supervised
ML to detect prescription orders re-
quiring a PI have been published.***
Nonetheless, our study stands out from
the literature by being the first to de-
velop ML predictive models to detect
inappropriate prescriptions on a large
dataset extracted for a 4-year period
and based on PIs formulated by clinical
pharmacists. The lack of results-metric
standardization, the volume of the
databases, and the clinical issues of the
published studies make it hard to com-
pare our results with the literature. Most
of the relevant previously published
studies focused on a specific issue (pre-
diction of adverse drug reactions due
to vancomycin,® for example), and
model development was based on a
small dataset and/or data extracted
from a short period of study. However,
Hu et al* and Van Laere et al** devel-
oped models based on answering a
global issue: prediction of adverse drug
events among older inpatients and risk
prediction of QTc prolongation. Hu et
al developed a gradient boosting model
that had a lower performance than our
model: an Fl-score of 53%, compared
to a score of 58% for our LGBM model.
For their part, Van Laere et al developed
a gradient boosting model and an RF
model. Both of our models performed
better than those of Van Laere et al on
the metrics of accuracy and specificity
metrics: for the LGBM models, 86% vs
82% and 97% vs 87%, respectively; and
for the RF models, 85% vs 82% and 89%
vs 88%, respectively. For both model
types, recall was lower in our study than
in the study of Van Laere et al (LGBM
46% vs 73%; RF 53% vs 76%).

Thus, although our LGBM model
showed lower performance in terms
of recall, our goal of maximizing posi-
tive predictions led to superior speci-
ficity and accuracy, which are crucial
aspects for reducing false positives and
improving confidence in the model’s
predictions. Compared to the works we
cited above, our model makes a signifi-
cant contribution by better balancing
different performance metrics, making

1246 AM J HEALTH-SYST PHARM |

it more suitable for practical clinical
application.

Working with a global model can be
areal asset for clinical pharmacists and
assist them in their medication reviews.
The model will point out inappropriate
situations and accelerate the medi-
cation review process. Clinical phar-
macists will then have more time to
study atypical prescription orders and
share their expertise with other clin-
icians to secure improved drug man-
agement. ML is a technology capable
of adapting to its environment, which is
necessary in healthcare. Reinforcement
learning,* for example, enables ML
models to update themselves by
interacting with their environment
using a reward/punishment system. In
this way, clinical pharmacists will be
able to evaluate the PI alerts from the
algorithms to enhance their relevance
and update the models in accordance
with new scientific advancements.

While the creation of a general pre-
dictive model met our initial objective,
we felt it was important to broaden the
scope of investigation by developing
specific models based on samples from
the overall database. To the best of our
knowledge, this is the first study to
have developed several algorithms for
detecting inappropriate hospital pre-
scriptions based on specific care de-
partments. Training specific models
seemed to be relevant to us, particu-
larly for the implementation of re-
inforced learning, which could have
led to having specialized algorithms for
each care department. However, our
results showed that a model trained on
the overall dataset globally performed
better than models trained on specific
datasets.

Although this study had promising
results, it had notable limitations. First,
the training data was extracted from
a single hospital. The extracted data
was retrospective and collected in real
life, which implies it contained biases,
as the data reflected different prac-
tices and institutional adaptations of
patient management protocols. Data
extraction combined data from dif-
ferent software (DxCare and Clinysys

PRACTICE RESEARCH REPORT

GLIMS), which implied a potential
loss of information, depending on the
parameterization and coding of the
various items of information entered,
and data entry errors could have oc-
curred. These errors and biases could
have found their way into the final pre-
dictive model and been perpetuated.
A critical analysis of the alerts issued
by the algorithm is therefore essential.
This is why a first processing of the data
before model training was necessary
to analyze and prepare the data for the
training. Moreover, external validation
using a similar dataset from other hos-
pitals will help counter these biases
and validate the models before their
generalization.

Further studies must be conducted
on the developed algorithms to test the
models in real life and evaluate the clin-
ical relevance of these approaches. PlIs
detected thanks to the algorithm will be
compared to PIs detected through con-
ventional medication review methods.
Clinical and organizational impacts will
also be studied to estimate the bene-
fits of the use of ML in medication re-
view activities. Finally, the deployment
strategy for use of the model in a CDS
system will need to be anticipated to
avoid technical or organizational hur-
dles. The quality, interoperability, and
seamless flow of data between software
must be ensured, and the pharmacists’
workflow process must evolve.

Conclusion

This study evaluated the perform-
ance of several ML models trained on
a dataset (and subsamples) extracted
from a single hospital to detect inappro-
priate prescription lines. The LGBM
model was demonstrated to have the
best overall performance, achieving
higher accuracy, precision, specificity,
Fl-score, and AUC-ROC values when
compared to the RF model. While
further studies are needed to con-
firm these findings (by validating the
model LGBM in other hospital settings
to assess its generalizability and con-
ducting prospective studies to evaluate
the model’s effectiveness in real-time
clinical practice), the model holds
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significant potential to advance hos-
pital clinical pharmacy and improve
patient care through optimized pre-
scription management.
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