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Objective: Medication errors are a worldwide public health issue. Redu-
cing inappropriate medication use is a daily challenge for clinical pharma-
cists. Computerization of the medication process and the rise of artificial 
intelligence make it possible to develop tools to detect inappropriate pre-
scriptions. Our main goal was to compare the performance of two machine 
learning models capable of predicting the probability of a prescription re-
quiring pharmaceutical intervention (PI) using hospital data.

Methods: The study was conducted in a single hospital, with data col-
lected over 4 years, including 2,059,847 prescription lines (a patient's en-
tire medication regimen consists of multiple prescription lines) associated 
with 260,611 PIs. Two tree-based binary classification machine learning 
models were tested: the Light Gradient Boosting Machine (LGBM) model 
and the Random Forest (RF) model. The dataset was split (70% for training 
and 30% for testing), and training and testing were performed on the global 
dataset and on data stratified by medical care department.

Results: For the global dataset, the LGBM model outperformed the 
RF model in most metrics: accuracy (86% vs 85%), precision (80% vs 
42%), specificity (97% vs 89%), area under the curve (83% vs 71%) and 
F1-score (58% vs 47%). However, the RF model had superior recall (53% 
vs 46%). Furthermore, the LGBM model trained on the global database 
was generally more effective than models trained on the care departments’ 
databases.

Conclusion: The LGBM model showed superior performance in detecting 
inappropriate prescriptions, potentially improving the thoroughness and 
efficiency of prescription review. While further studies are needed to con-
firm these findings, the model holds significant promise for advancing 
hospital clinical pharmacy and enhancing patient care through optimized 
prescription management.

Keywords: artificial intelligence, clinical pharmacy, high-risk prescrip-
tions, inappropriate prescribing, machine learning

Medication errors are a worldwide 
issue. According to the US National 

Coordinating Council for Medication 
Error Reporting and Prevention,1 a 
medication error is “any preventable 
event that may cause or lead to in-
appropriate medication use or patient 
harm while the medication is in the 
control of the healthcare professional, 
patient, or consumer.” It can result from 
a wrong indication for a medication, an 

incorrect dose or treatment duration, 
drug interactions, failure to initiate a 
medication, or initiation of a medica-
tion when not appropriate in a spe-
cific context. In 2017, the World Health 
Organization initiated the Medication 
Without Harm program2 to reduce se-
vere avoidable harm related to medica-
tion use by 50% in 5 years. Worldwide, 
medication-related harm is preventable 
in 50% of cases, and the annual cost of 

Using machine learning to predict pharmaceutical 
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medication errors is estimated at $42 
billion.3

Clinical pharmacists have a pre-
dominant role in limiting errors through 
medication review. Pharmaceutical Care 
Network Europe (PCNE)4 has defined 
medication review as follows: “structured 
evaluation of a patient’s medicines with 
the aim of optimizing medicines use and 
improving health outcomes. This entails 
detecting drug-related problems and re-
commending interventions.” A pharma-
ceutical intervention (PI) is defined as 
“any activity undertaken by the pharma-
cist which benefits the patient.”5 PIs are 
meant to prevent negative outcomes and 
optimize therapy when a medication 
error is detected. Several studies6-8 show 
that PIs have positive clinical, economic, 
and organizational impacts.

Today, the computerization of the 
medication-use process in hospitals 
and the development of clinical deci-
sion support (CDS) systems help hos-
pital pharmacists in the medication 
review process. While well-designed 
CDS systems can offer many bene-
fits, such as improving efficiency and 
decision-making, they may also lead 
to alert fatigue when nonrelevant or 
inappropriate alerts are generated. 
This can reduce the effectiveness of the 
system.9 However, computerization of 
pharmaceutical activities has led to the 
collection of a massive quantity of data. 
The rise of artificial intelligence (AI) in 
pharmacy is an opportunity to leverage 
this data, reduce “noise” by filtering 
out irrelevant alerts, and assist clinical 
pharmacists in prioritizing high-impact 
interventions.10 11,12.

AI, thanks to machine learning 
(ML), has the capacity to predict situ-
ations using retrospective data. ML 
is a subset of AI used for addressing 
classification, regression, clustering, 
dimension reduction, or association 
tasks. ML models determine the rules 
to solve these tasks, thanks to the 
training dataset. The training dataset 
is a retrospective dataset composed of 
data relative to the prediction task. The 
training can be supervised, unsuper-
vised, semisupervised, self-supervised, 
or reinforced. Supervised ML means 

the outcome to predict is labeled in the 
training dataset and is specified to the 
algorithm to facilitate the development 
of the predictive model. Supervised ML 
is finding its way into clinical pharmacy 
as a method to assist pharmacists in 
their activities, such as predicting ad-
verse drug events in older inpatients 
to enhance medication safety,13 
identifying high-risk QTc prolongation 
related to drug-drug interactions,14 and 
reducing medication-related risks15 . 

Objectives. The objectives of this 
study were 2-fold. The first objective 
was to compare the performance of 2 
common supervised ML methods in 
order to generate algorithms (from the 
same dataset) capable of predicting 
the probability that a prescription re-
quires PIs in a hospital setting. The 
performance comparison between the 
models was conducted using 6 met-
rics: accuracy, recall, precision, spe-
cificity, F1-score, and area under the 
receiver operating characteristic curve 
(AUC-ROC). Based on the initial re-
sults, the second study objective was 
to develop additional algorithms using 
selected databases targeting specific 
medical care departments with the aim 
of improving the performance of the 
models.

Methods

Setting. This retrospective study 
was conducted at the University 
Hospital of Strasbourg in France. This 
hospital offers 1,972 beds for med-
ical, surgical, and obstetrics activities 
grouped in more than 20 care depart-
ments. The hospital manages a high pa-
tient volume, with 451 emergency visits 
per day (164,575 annually) and ap-
proximately 46,741 hospital stays each 
year. The average length of stay is 5.9 
days. In all care units except for medical 
and surgical intensive care units, the 
patients’ prescription lines (a patient's 
entire medication regimen consists of 
multiple prescription lines) are pre-
scribed using the prescription assist-
ance software DxCare (Dedalus France, 
Artigues-près-Bordeaux, France), 
while biological orders are filed in the 
Clinysys GLIMS software (Clinisys, Inc., 

Tucson, AZ). Clinical pharmacists per-
form their medication review activity 
on DxCare and notify the clinicians if 
a prescription requires a PI through a 
brief comment explaining the drug-
related issue and suggesting an appro-
priate prescription modification.

Dataset. Data collection. Data 
collected over a 4-year period (2017-
2020) were extracted from the elec-
tronic health record. This study covered 
97,842 patients hospitalized across all 
care units using the DxCare software. 
Prescription lines, PIs generated by the 
clinical pharmacists, biological results, 
and hospitalization and administrative 
data for all inpatients were collected 
to train the ML models. After data 
cleaning and processing (Figure 1), the 
final dataset consisted of 2,059,847 pre-
scription lines associated with 260,611 
PIs.

Data preparation. Before training 
a model, the extracted data was pre-
processed. After a first analysis of the 
data, outliers and duplicates were de-
leted. Clinically irrelevant PIs, such as 
those related to drugs not listed in the 
hospital’s formulary, were also removed. 
To handle missing biological values, 
the main interest was whether the data 
was present or absent and, if present, 
whether it was within the standard range 
or not. To address this, biological re-
sults were dichotomized in 4 categories 
to bypass the large number of missing 
values: 0 (missing value), 1 (value below 
the standard), 2 (value in the standard 
range), 3 (value above the standard). 
Finally, prescription lines were also di-
chotomized (0 = no PI, 1 = presence of 
PI) to simplify the handling of the text 
data.

To satisfy the second objective, the 
extracted and preprocessed data was 
divided into datasets for 9 selected care 
departments: ophthalmology, geriatric, 
cardiovascular pathologies, thoracic 
pathologies, head and neck patholo-
gies, internal medicine, traumatology, 
emergency, and digestive pathologies 
and transplantation.

Model development. Training 
and test sets. The ML models were 
trained on the same dataset, covering 
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all of the care departments. The overall 
dataset was randomly split in 2 sets, 
with 70% of the dataset used to train the 
models and the remaining 30% of the 
dataset used to test the performance of 
the predictive model on untrained data. 
This 70/30 split approach16 was used to 
ensure a sufficient amount of data for 
both model training and evaluation.

The imbalance of the PIs in this 
dataset biased the training of the pre-
dictive models. Due to this imbalance, 
we oversampled the prescription lines 
requiring a PI (randomly duplicating 
instances from the minority class to 
increase their representation) and 
undersampled the prescription lines 
not associated with a PI (randomly 
removing instances from the ma-
jority class to balance the dataset) in 
the training, resulting in an equalized 

dataset.17 The balancing was performed 
using the ovun.sample function from 
the ROSE package in R (R Foundation 
for Statistical Computing, Vienna, 
Austria). This approach ensures that the 
model learns equally from both types of 
prescription lines, improving its ability 
to detect PIs. The training set then in-
cluded 1,441,892 prescription lines, of 
which 720,745 involved PIs. The test 
set was not sampled and included the 
remaining 30% of the original dataset: 
617,955 prescription lines, of which 
78,282 were associated with PIs.

The PIs (a binary 0/1 categorization) 
were the labels used for the training of 
the models, indicating the outcome 
to be predicted. The remaining vari-
ables (age, sex, care department code, 
name of the prescribed drug, fifth-level 
Anatomical Therapeutic Chemical 

[ATC] Classification System code 
[ATC5] for the prescribed drug, route of 
administration, and biological results 
[levels of creatinine, C-reactive protein, 
hemoglobin, leukocytes, potassium, 
platelets, and sodium, as well as inter-
national normalized ratio] associated 
with the prescription were the pre-
dictors necessary to develop and train 
the different models.

Then, the performance of the dif-
ferent models was compared. The ML 
model with the best performance was 
then used to train the ensuing 9 models 
for the selected care departments. The 
models for selected care departments 
were built on the same basis: 70% of 
the dataset was used for the training set 
and the remaining 30% for the test set. 
The same process of equalization used 
for the overall dataset was performed to 

Figure 1. Representation of the steps involved in processing of raw data and presentation of the remaining data after 
preprocessing and removal of outlier values. ATC indicates Anatomical Therapeutic Chemical; NIP, patient identification 
number; WE, weekend.
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Table 1. Descriptive Statistics for Patient Data

PIs
(N = 260,611)

No PIs
(N = 1,799,236)

Sex, No. (%)

Male 140,031 (53.7) 952,702 (53.0)

Female 120,577 (46.3) 846,493 (47.0)

Unknown 3 (<0.001) 41 (<0.001)

Age, years

Mean (SD) 64.3 (17.6) 67.8 (16.9)

Median (range) 67.0 (19.0-108) 70.0 (19.0-108)

Creatinine (mg/dL)

Mean (SD) 1.09 (0.68) 1.08 (0.68)

Median (range) 0.95 (0.34-5.09) 0.93 (0.34-5.09)

Missing data 73,895 (28.4) 416,767 (23.2)

C-reactive protein, mg/L

Mean (SD) 67.0 (77.5) 61.7 (74.0)

Median (range) 35.4 (4.0-450) 31.0 (4.0-450)

Missing data 122,602 (47.0) 717,932 (39,9)

International normalized ratio

Mean (SD) 1.34 (0.633) 1.45 (0.792)

Median (range) 1.14 (0.95-9.69) 1.16 (0.95-9.97)

Missing data 131,687 (50.5) 926,974 (51,5)

Hemoglobin, g/dL

Mean (SD) 11.2 (2.06) 11.3 (2.02)

Median (range) 11.1 (3.4-15.9) 11.2 (3.1-15.9)

Missing data 72,543 (27.8) 455,299 (25.3)

Leukocytes, g/dL

Mean (SD) 9.66 (4.70) 9.40 (4.44)

Median (range) 8.85 (0.21-30.0) 8.58 (0.21-30.0)

Missing data 73,473 (28.2) 446,171 (24.8)

Potassium (mEq/L)

Mean (SD) 4.01 (0.511) 3.99 (0.521)

Median (range) 3.97 (2.7-7.9) 3.94 (2.7-7.9)

Missing data 63,127 (24.2) 360,210 (20.0)

Platelets, ×109/L

Mean (SD) 244 (111) 248 (108)

Median (range) 234 (11.0-599) 236 (11.0-599)

Missing data 75,269 (28.8) 465,704 (25.9)

Sodium, mEq/L

Mean (SD) 138 (4.39) 138 (4.40)

Median (range) 138 (121-159) 138 (121-159)

Missing data 65,278 (25.0) 377,991 (21.0)

Abbreviation: PI, pharmaceutical intervention.
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counter the imbalance of the training 
dataset.

ML models used. Two tree-based 
models used for binary classification 
machine learning models were tested on 
the training dataset: a Random Forest18 
(RF) model and a gradient boosting19 
model (Light Gradient Boosting 
Machine20 [LGBM]).

A grid search was performed on 
each training dataset to tune and opti-
mize the hyperparameters used to train 
the models. For the RF models, the fol-
lowing hyperparameters were calcu-
lated: number of trees and number of 
randomly drawn variables (mtry). As 
for the LGBM models, minimal node 
size, tree depth, and number of leaves 
hyperparameters were determined.

The different models were trained 
using R version 4.3.0. The RF and LGBM 
models were trained using, respect-
ively, the randomforest (4.6-14) and 
lgbm (3.3.5) packages in R.

Model evaluation. Performance 
assessment metrics. The models’ per-
formance assessment was carried out 
by measuring 6 key metrics that are 
used in medical classification prob-
lems, particularly in the evaluation of 
ML models for imbalanced datasets21,22:

•	 Accuracy—the ratio of correctly clas-

sified instances (true positives and 

true negatives) to the total number of 

instances in the evaluation set, which 

quantifies the overall correctness of 

the model’s predictions

•	 Recall (sensitivity or true positive 

rate)—the ability of the model to cor-

rectly identify positive instances (in 

our case, PIs) out of all actual positive 

instances

•	 Precision (positive predictive 

value)—the accuracy of positive pre-

dictions made by the model (in our 

case, the ratio of true-positive PIs to 

the total number of positive PI pre-

dictions), which quantifies how well 

the model can capture all PIs

•	 Specificity (true negative rate)—the 

ability of the model to correctly iden-

tify negative instances (non-PI pre-

scriptions) out of all actual negative 

instances, which quantifies how well 

the model can avoid false-positive PIs

•	 F1-score—a combined metric that 

balances precision and recall. It pro-

vides a single score that considers all 

positive predictions. The F1-score is 

particularly useful when dealing with 

imbalanced datasets, where one class 

significantly outnumbers the other

•	 AUC-ROC—a score measuring the 

classification performance using the 

relationship between sensitivity and 

specificity

The selection of these metrics was 
based on best practices in medical 
and ML research, as they collectively 
provide a comprehensive evaluation 
of the models’ performance. While 
accuracy is a general indicator, recall 
and specificity are crucial in a clinical 
context where false negatives (missed 
PIs) and false positives (unnecessary 
alerts) must be carefully balanced. The 
F1-score is particularly relevant given 
the imbalanced nature of the dataset, 
and AUC-ROC helps assess the overall 
discriminative ability of the models.

Statistical analysis. To compare 
the AUC-ROC values of the different 
models, we used the DeLong test,23 a 
nonparametric statistical test used to 
compare the AUC-ROC values between 
different models. It assesses whether 
the difference in AUC-ROC between 2 
models is statistically significant. A P 
value of <0.05 indicates that the differ-
ence is statistically significant.

Additionally, we applied the Youden 
index24 to assess the maximum potential 
effectiveness of the predictive models. 
This index helps determine the op-
timal decision threshold by maximizing 
the sum of sensitivity and specificity. 
A model is considered more effective 
when its Youden index is close to 1.

Ethics approval. The local 
ethics committee approved this 
noninterventional and retrospective 
study (reference CE-2022-21).

Results

Datasets characteristics. From 
January 2017 through December 2020, 

a total of 2,059,847 prescription lines 
were reviewed by the clinical pharma-
cists. Of these, 260,611 prescription 
lines (12.7%) required a PI. As shown in 
Table 1, the demographic distribution 
of patients with PIs was compared to 
that of those without PIs. The majority 
of prescription lines for both groups 
were for male patients (53.7% and 53%, 
respectively). The median age of pa-
tients with a PI was 67 years. For the 
biological data variables, the missing 
data rate ranged from 24.2% (for potas-
sium values) to 50.5% (for international 
normalized ratio values). Table 2 pro-
vides the distribution of prescription 
lines requiring PIs across different care 
departments. The percentage of pre-
scription lines requiring PIs varied by 
department, with some showing higher 
or lower rates than the overall rate of 
12.7%. The traumatology department 
had the highest percentage of pre-
scription lines with PIs (16.9%), well 
above the global average, followed by 
head and neck pathologies (13.8%). In 
contrast, the geriatric (7.3%) and oph-
thalmology (9.7%) departments had 
lower-than-average percentages.

Comparative performance of both 
models on the overall test dataset.  The 
LGBM model showed better perform-
ance than the RF model (see Table 
3 and Figure 2),. outperforming it in 
terms of accuracy, precision, specificity, 
F1-score, and AUC-ROC. However, it did 
not show superior performance for re-
call. This was confirmed by the DeLong 
test, which shows a statistically signifi-
cant difference between the AUC-ROC 
values (P = 0.002). It is important to 
note that these results are based on the 
oversampled test data, as performance 
metrics may vary when reported for raw 
versus oversampled data.

To enhance the performance of the 
LGBM model, we determined the op-
timal cut-off point thanks to the Youden 
index. As shown in Figure 3, the best 
cut-off point was 0.43, giving a Youden 
index of 0.67, meaning that 67% of the 
predictions were not random, with a 
sensitivity of 98% and a specificity of 
95%.
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Comparative variable im-
portance of both models on the 
overall test dataset.  The analysis of 
the variables’ importance showed that 
predictors did not have the same im-
portance in the models’ training. The 
higher the score, the higher the import-
ance of the predictor in the predictive 
model. However, 9 of the 10 most im-
portant features were common to the 
LGBM and RF models (Figures 4 and 
5). These included ATC5, care unit, 
route of administration, age, active sub-
stance, international normalized ratio, 
and values for creatinine, potassium, 
and leukocytes.

Performance of the LGBM 
model (overall test dataset vs 
subdivided test datasets).  Since 
the LGBM model performed better 
than the RF model, we chose to pursue 
our study with it.

Statistics for the subdivided dataset 
performance are presented in Table 4. 

Table 2. Distribution of Prescriptions Requiring a Pharmaceutical Intervention in Selected Care Departments

Care department
Prescriptions with
PI, No. (%)

Prescriptions
without PI, No. (%)

Ophthalmology 25,250 (9.7) 235,717 (90.3)

Geriatric 13,130 (7.3) 167,699 (92.7)

Cardiovascular pathologies 28,093 (10.2) 247,444 (89.8)

Thoracic pathologies 14,875 (9.3) 145,529 (90.7)

Head and neck pathologies 27,510 (13.8) 171,553 (86.2)

Traumatology 30,049 (16.9) 147,195 (83.1)

Internal medicine 37,584 (10.6) 318,435 (89.4)

Emergency 27,869 (10.5) 237,691 (89.5)

Digestive pathologies and transplantation 32,612 (12.1) 235,984 (87.9)

Abbreviation: PI, pharmaceutical intervention.

Table 3. Models’ Performance on Testing Dataset (N = 617,955 Prescriptions, 78,282 PIs)a

Model Accuracy Recall Precision Specificity F1-score AUC-ROC

LGBM 86 46 80 97 58 83

RF 85 53 42 89 47 71

Abbreviations: AUC-ROC, area under the receiver operating characteristic curve; LGBM, Light Gradient Boosting Machine; RF, Random Forest.
aAll data are percentages.

Figure 2. Comparison of the receiver operating characteristic (ROC) curves 
for the Light Gradient Boosting Machine (LGBM) model (blue curve) and the 
Random Forest (RF) model (green curve). True positive rate = recall (%); false 
positive rate = 1 – specificity.
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The results show that the models trained 
on the total database were, in most cases, 
more effective than the models trained 
on the care departments’ databases.

Discussion

The results presented above on the 
overall dataset demonstrated the su-
periority of the LGBM model when 

basing model performance on F1-score 
and AUC-ROC values. Indeed, the re-
sults obtained with the LGBM exhib-
ited the highest F1-score and AUC-ROC 

Figure 3. Plot of the optimal cut-off point for the Light Gradient Boosting Machine model.

Figure 4. Relative importance of evaluated variables in predicting pharmaceutical interventions with the Light Gradient 
Boosting Machine model.
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values, which were statistically different 
from RF model values according to the 
DeLong test.

Going into more detail, the vari-
able importance plots show that both 
models gave the greatest importance to 
the variables directly linked to the drug 
prescription (ATC5, care unit, route of 
administration, age, and active sub-
stance). PIs are commonly linked to an 
improper dosage prescription or route 
of administration,25 to being elderly,26 

or to high-risk medication.27 Then come 
the biological results that complete 
the medication review.28 This division 
can be explained by the preprocessing 
choice of the biological data and the 
proportion of missing values, which 
made it more difficult for the model to 
establish classification rules.

When making predictions on 
an imbalanced dataset, it is recom-
mended to assess algorithm perform-
ance based on the F1-score,29 as it does 

not consider negative predictions. This 
means that the results emphasize the 
algorithm’s ability to maximize posi-
tive predictions. In the healthcare field, 
this makes sense. It is essential to focus 
on true positives rather than true nega-
tives, meaning we aim to highlight 
the correctly predicted positive class. 
In our study, false positives were rare 
(specificity, 97%); however, false nega-
tives should be improved (recall, 46%). 
The improvement will allow reduction 

Figure 5. Relative importance of evaluated variables in predicting pharmaceutical interventions with the Random Forest 
model.

Table 4. LGBM Model’s Performance on Overall Dataset and on Selected Care Departments’ Testing Datasetsa

Accuracy Recall Precision Specificity F1-score AUC-ROC

Overall dataset 86 46 80 97 58 83

Care department

Ophthalmology 86 41 74 96 53 81

Geriatric 84 30 73 97 43 79

Cardiovascular pathologies 90 53 86 98 66 88

Thoracic pathologies 86 41 76 97 53 82

Head and neck pathologies 87 56 83 96 67 85

Traumatology 80 50 80 94 62 80

Internal medicine 88 49 73 96 57 81

Emergency 84 42 79 97 55 82

Digestive pathologies and transplantation 88 54 82 97 65 85

Abbreviation : AUC-ROC, area under the receiver operating characteristic curve.
aAll data are percentages.
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of false negatives and diminish fatigue 
due to overalerting.

Prior studies using supervised 
ML to detect prescription orders re-
quiring a PI have been published.30–35 
Nonetheless, our study stands out from 
the literature by being the first to de-
velop ML predictive models to detect 
inappropriate prescriptions on a large 
dataset extracted for a 4-year period 
and based on PIs formulated by clinical 
pharmacists. The lack of results-metric 
standardization, the volume of the 
databases, and the clinical issues of the 
published studies make it hard to com-
pare our results with the literature. Most 
of the relevant previously published 
studies focused on a specific issue (pre-
diction of adverse drug reactions due 
to vancomycin,31 for example), and 
model development was based on a 
small dataset and/or data extracted 
from a short period of study. However, 
Hu et al32 and Van Laere et al14 devel-
oped models based on answering a 
global issue: prediction of adverse drug 
events among older inpatients and risk 
prediction of QTc prolongation. Hu et 
al developed a gradient boosting model 
that had a lower performance than our 
model: an F1-score of 53%, compared 
to a score of 58% for our LGBM model. 
For their part, Van Laere et al developed 
a gradient boosting model and an RF 
model. Both of our models performed 
better than those of Van Laere et al on 
the metrics of accuracy and specificity 
metrics: for the LGBM models, 86% vs 
82% and 97% vs 87%, respectively; and 
for the RF models, 85% vs 82% and 89% 
vs 88%, respectively. For both model 
types, recall was lower in our study than 
in the study of Van Laere et al (LGBM 
46% vs 73%; RF 53% vs 76%).

Thus, although our LGBM model 
showed lower performance in terms 
of recall, our goal of maximizing posi-
tive predictions led to superior speci-
ficity and accuracy, which are crucial 
aspects for reducing false positives and 
improving confidence in the model’s 
predictions. Compared to the works we 
cited above, our model makes a signifi-
cant contribution by better balancing 
different performance metrics, making 

it more suitable for practical clinical 
application.

Working with a global model can be 
a real asset for clinical pharmacists and 
assist them in their medication reviews. 
The model will point out inappropriate 
situations and accelerate the medi-
cation review process. Clinical phar-
macists will then have more time to 
study atypical prescription orders and 
share their expertise with other clin-
icians to secure improved drug man-
agement. ML is a technology capable 
of adapting to its environment, which is 
necessary in healthcare. Reinforcement 
learning,36 for example, enables ML 
models to update themselves by 
interacting with their environment 
using a reward/punishment system. In 
this way, clinical pharmacists will be 
able to evaluate the PI alerts from the 
algorithms to enhance their relevance 
and update the models in accordance 
with new scientific advancements.

While the creation of a general pre-
dictive model met our initial objective, 
we felt it was important to broaden the 
scope of investigation by developing 
specific models based on samples from 
the overall database. To the best of our 
knowledge, this is the first study to 
have developed several algorithms for 
detecting inappropriate hospital pre-
scriptions based on specific care de-
partments. Training specific models 
seemed to be relevant to us, particu-
larly for the implementation of re-
inforced learning, which could have 
led to having specialized algorithms for 
each care department. However, our 
results showed that a model trained on 
the overall dataset globally performed 
better than models trained on specific 
datasets.

Although this study had promising 
results, it had notable limitations. First, 
the training data was extracted from 
a single hospital. The extracted data 
was retrospective and collected in real 
life, which implies it contained biases, 
as the data reflected different prac-
tices and institutional adaptations of 
patient management protocols. Data 
extraction combined data from dif-
ferent software (DxCare and Clinysys 

GLIMS), which implied a potential 
loss of information, depending on the 
parameterization and coding of the 
various items of information entered, 
and data entry errors could have oc-
curred. These errors and biases could 
have found their way into the final pre-
dictive model and been perpetuated. 
A critical analysis of the alerts issued 
by the algorithm is therefore essential. 
This is why a first processing of the data 
before model training was necessary 
to analyze and prepare the data for the 
training. Moreover, external validation 
using a similar dataset from other hos-
pitals will help counter these biases 
and validate the models before their 
generalization.

Further studies must be conducted 
on the developed algorithms to test the 
models in real life and evaluate the clin-
ical relevance of these approaches. PIs 
detected thanks to the algorithm will be 
compared to PIs detected through con-
ventional medication review methods. 
Clinical and organizational impacts will 
also be studied to estimate the bene-
fits of the use of ML in medication re-
view activities. Finally, the deployment 
strategy for use of the model in a CDS 
system will need to be anticipated to 
avoid technical or organizational hur-
dles. The quality, interoperability, and 
seamless flow of data between software 
must be ensured, and the pharmacists’ 
workflow process must evolve.

Conclusion

This study evaluated the perform-
ance of several ML models trained on 
a dataset (and subsamples) extracted 
from a single hospital to detect inappro-
priate prescription lines. The LGBM 
model was demonstrated to have the 
best overall performance, achieving 
higher accuracy, precision, specificity, 
F1-score, and AUC-ROC values when 
compared to the RF model. While 
further studies are needed to con-
firm these findings (by validating the 
model LGBM in other hospital settings 
to assess its generalizability and con-
ducting prospective studies to evaluate 
the model’s effectiveness in real-time 
clinical practice), the model holds 
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significant potential to advance hos-
pital clinical pharmacy and improve 
patient care through optimized pre-
scription management.
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