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To assess a physician’s expertise on the basis of whether the doc-
tor checks a patient’s QT interval would be excessive, but the fact remains 
that in many cases, checking it saves lives. The author of a respected text-

book on electrocardiography1 wrote, “The measurement of the QT interval has 
little usefulness” in 1957 — the same year in which Jervell and Lange-Nielsen 
published their first report on the association between QT-interval prolongation 
and sudden death in a family with congenital deafness,2 which was soon followed 
by similar findings reported by Romano and colleagues3 and by Ward4 in patients 
with normal hearing. In 1975, Romano–Ward syndrome and Jervell–Lange-Nielsen 
syndrome were grouped under the name long QT syndrome.5

Long QT syndrome is an uncommon disease of genetic origin with a document-
ed prevalence of 1 in 2000 live births6; however, the actual prevalence is probably 
higher because the original prospective study, which involved 44,000 infants,6 did 
not include genotype-positive–phenotype-negative persons. The syndrome is charac-
terized by prolongation of the QT interval on an electrocardiogram (ECG) obtained 
when the patient was at rest and by a propensity for life-threatening arrhythmias 
that occur mostly under conditions of physical or emotional stress.5,7 The clinical 
importance of the timely diagnosis of the syndrome stems from the fact that sud-
den cardiac death is often the first symptom, which makes remedying diagnostic 
or therapeutic errors impossible. As stated 50 years ago,5 given the high efficacy of 
current therapies, the existence of patients with undiagnosed — and therefore un-
treated — long QT syndrome is nowadays inexcusable; unfortunately, missed diag-
nosis is still too often the case.

Gene tic B a sis  of L ong Q T S y ndrome

The three major genes associated with long QT syndrome (present in approximately 
90% of cases), KCNQ1, KCNH2, and SCN5A, were identified in 1995 and 1996.8-10 Vari-
ants in KCNQ1 and KCNH2 are the cause of long QT syndrome type 1 and type 2 
in approximately 50% and 40% of patients with the syndrome, respectively; these 
genes encode the potassium channels conducting the outward currents IKs and IKr. 
These channels are critically important for cardiac repolarization, and the reduc-
tion in the IKs and IKr currents caused by pathogenic variants prolongs the QT in-
terval and causes long QT syndrome.11 During adrenergic activation, such as dur-
ing physical activity, the IKs current becomes the prevalent repolarization current, and 
this alteration carries major clinical implications — if the QT interval does not ap-
propriately shorten when the heart rate increases, ventricular fibrillation may ensue. 
The third major gene, SCN5A, encodes the voltage-gated sodium channel conducting 
the major depolarizing inward sodium current INa. Pathogenic variants of SCN5A pro-
ducing gain of function prolong repolarization and cause long QT syndrome type 3 
in approximately 10% of cases. Homozygous or compound heterozygous pathogenic 
variants in KCNQ112 and KCNE113 (encoding subunits of the potassium channel IKs) 
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cause the recessive Jervell–Lange-Nielsen syndrome 
associated with congenital deafness.2,14

Additional genes have been linked to long QT 
syndrome, but only a few play important roles.15 
Variants in the calcium-channel gene CACNA1C 
cause the Timothy Syndrome, which is a form of 
long QT syndrome and includes skeletal and 
neurodevelopmental abnormalities.16 Variants of 
CALM 1, CALM 2, and CALM 3, encoding calmodu-
lin, which modulates key cardiac ion channels,17 
cause calmodulinopathies (consequences of vari-
ants in calmodulin genes associated with life-
threatening arrhythmias and other cardiac and 
noncardiac pathologic features).18,19 The calmod-
ulin genes are unique in that they are on differ-
ent chromosomes and encode the same protein. 
Pathogenic variants in these three genes cause 
long QT syndrome by impairing calcium-channel 
inactivation,17 thereby prolonging the QT interval.

Not infrequently, genetic reports in long QT 
syndrome identify variants of uncertain clinical 
significance, which can be puzzling for the man-
aging physician. Such variants are periodically 
reclassified because increasing knowledge, usu-
ally derived from either robustness of the clinical 
phenotype,20,21 evidence of familial cosegrega-
tion, or functional evaluation,22 allows them to 
be reclassified to benign, probably-benign, patho-
genic, or probably-pathogenic status,23 often with 
implications for management. Despite long QT 
syndrome being primarily a monogenic condition, 
the contribution of common genetic variants in 
aggregate (represented by polygenic risk scores) 
could modulate patients’ susceptibility to the syn-
drome, especially in patients who are genotype-
negative.24,25

Modifier Genes

A large South African founder population26 in 
which there was a wide spectrum of the QT inter-
val corrected for heart rate (QTc) among hundreds 
of carriers of the same variant, KCNQ1–A341V, of-
fered a unique opportunity to identify and study 
modifier genes in long QT syndrome.27 The term 
modifier genes describes genetic factors, usually 
common, capable of modifying in either direction 
the consequences of disease-causing variants.27 
During the past 20 years, several modifiers have 
been identified,27-29 with two main implications. 
On one hand, these modifiers allow a refine-
ment of risk stratification to favor a more- or less-
aggressive therapy. On the other hand, the cellular 
mechanism of action shown by modifier genes in 
long QT syndrome27,29,30 paves the way for the de-
sign of new therapies targeting a specific molecu-
lar pathway.

Clinic a l Pr esen tation  
a nd Di agnosis

The key features of long QT syndrome are related 
to the ECG and to arrhythmic events. The QT in-
terval is usually markedly prolonged and is often 
accompanied by bizarre morphologic changes 
with regard to ventricular repolarization (e.g., bi-
phasic and notched T waves) that should arouse 
diagnostic suspicion even before measurements 
are taken; indeed, when dealing with long QT 
syndrome, pattern recognition is extremely impor-
tant (Fig. 1 and Table 1). The upper limits of the 
normal values of the QTc (with correction for heart 
rate according to Bazett’s formula31) are 440 msec 
and 460 msec for men and women, respectively. 

Key Points

Long QT Syndrome

•	 Long QT syndrome is a leading cause of sudden death in young persons, with a prevalence exceeding 
1 in 2000.

•	 It is characterized by prolongation of the QT interval, aberrant T-wave morphologic features, and the 
propensity toward life-threatening arrhythmias triggered mostly by adrenergic activation.

•	 Long QT syndrome is caused by variants in genes encoding primarily for potassium-ion and sodium-
ion channels. Common genetic variants (in modifier genes) increase or decrease the arrhythmic risk 
linked to the disease-causing variants and can contribute to risk stratification.

•	 The current therapies — including treatment with beta-blockers, left cardiac sympathetic denervation, 
and mexiletine — are extremely effective and limit the need for an implantable cardioverter–defibrillator 
to a small percentage of patients. Genotype-specific management is important. Gene therapy is 
promising but is not yet ready for clinical use.

•	 Arrhythmic risk and the approach to therapy need to be reassessed at yearly visits to allow optimization 
of therapy.
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Despite limitations, correction according to Ba-
zett’s formula usefully discriminates between nor-
mal and abnormal values, even in infants.32 The 
QT interval should be measured from the Q wave 
to the return to baseline of the T wave: the tan-
gent method, largely used because it saves time, 
often underestimates the actual length of ven-
tricular repolarization, whereas the longest QT 
interval is the most important value to consider 
when assessing arrhythmic risk.33 A QTc greater 
than 500 msec helps in discriminating between 
patients who are at moderate or high arrhythmic 
risk.34 Notches on the T wave (Fig. 1), often ac-
companied by mechanical alterations,35-37 are a 
marker of arrhythmic risk38 owing to early after-
depolarizations, and are particularly frequent in 
patients with long QT syndrome type 2. T-wave 

alternans (Fig. 1), experimentally reproduced to-
gether with QT prolongation by stimulation of 
the left stellate ganglion in cats,39 is an important 
prefibrillatory sign and a marker of major cardiac 
electrical instability. The T-wave morphologic fea-
tures may help predict the specific genotype but 
cannot substitute for actual genetic screening.

The arrhythmic events are due to torsades de 
pointes ventricular tachycardia, which often degen-
erates into ventricular fibrillation, causing car-
diac arrest and sudden death. The symptoms 
and outcome depend on the duration of torsades 
de pointes. In subjects with QT prolongation, the 
occurrence of short-duration syncope or vertigo 
should alert the physician to the possibility of tor-
sades de pointes, often a harbinger of life-threat-
ening arrhythmic episodes.

Figure 1. ECG Patterns Suggestive of Long QT Syndrome.

Some electrocardiographic (ECG) patterns are suggestive of long QT syndrome independent of the actual length of the QT interval. Panel A 
shows a normal ECG and a QT interval corrected for heart rate (QTc) of 417 msec. Panel B shows broad-based T waves and T-wave 
notches and a QTc of 615 msec. Panel C shows biphasic T waves and a QTc of 577 msec. Panel D shows T-wave alternans, a typical ECG 
feature of long QT syndrome and a marker of high electrical instability and a QTc of 776 msec. Panel E shows deep negative T waves 
and a QTc of 673 msec. Panel F shows notched T waves, typical of long QT syndrome type 2, with a QTc of 483 msec. Panel G and Panel 
H are from the same patient and show QTc prolongation in the recovery phase at the end of an exercise stress test with a QTc of 640 
msec (Panel H) as compared with the baseline (Panel G) QTc of 472 msec. The QTc was measured by using the point of return to the 
baseline of the T wave, and an approximate 10-msec measurement error should be taken into account.

A Normal ECG B Broad-Based T Waves and T-Wave Notches

D T-Wave Alternans E Deep Negative T WavesC Biphasic T Waves

G QTc at Baseline H QTc Prolongation in Recovery
Phase

F Notched T Waves
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Gene-specific triggers for arrhythmic events in 
long QT syndrome have been identified.40 Persons 
with long QT syndrome type 1 are at increased 
risk whenever sympathetic activity increases, as 
during emotional or physical stresses, especially 
swimming.40 Persons with long QT syndrome 
type 2 are at increased risk when exposed to sud-
den noises, especially if they are at rest or asleep 
and are woken abruptly40; they are also exquisitely 
sensitive to low plasma potassium levels and to 
QT-interval–prolonging drugs, and female patients 
are at high risk during the postpartum period, 
probably owing to sleep disruption causing re-
bounds of the arrhythmogenic rapid-eye-move-

ment sleep. Persons with long QT syndrome 
type 3 are at risk primarily at rest or when asleep 
(Table 2). Independent of genotype, infants with 
a cardiac event in the first year of life are at very 
high risk for death and are seldom protected by 
traditional therapies.41 Long QT syndrome contrib-
utes to sudden death in infancy.42 Up to 10% of 
infants who die suddenly in the first year of life43 
or in utero44 carry long QT syndrome–causing 
variants, and in newborns a prolonged QTc in-
creases the risk for sudden death.45 Without ge-
netic testing, the sudden death of an infant in the 
first months of life would be labeled as sudden 
infant death syndrome. This overly simplistic ap-
proach strengthens the rationale for widespread 
ECG screening in the first month of life,46 with 
the objective of identifying infants with long QT 
syndrome who are at risk for death in the first 
year of life or later.46 These considerations also 
call for restraint before assuming that sudden 
deaths in infancy among multiple siblings imply 
infanticide.47

In typical cases, such as syncope associated 
with clear QTc prolongation, diagnosis should be 
straightforward. In borderline cases (e.g., mod-
est QTc prolongation and no symptoms) genetic 
screening may help, as well as the use of a 12-lead, 
24-hour Holter recording, which often unmasks 
typical changes, especially at night. Prolongation 
of the QTc in the recovery phase of an exercise 
stress test or the appearance of a complete fusion 
of the T and P waves at peak exercise48 can con-
tribute to the diagnosis. Not every medical doc-
tor is expected to diagnose long QT syndrome with 
certainty; however, when confronted with a child 
or teenager with a QT interval prolongation, with 
or without fainting episodes, once secondary 
causes are excluded, the syndrome should be sus-
pected and the patient referred to a center with 
specific expertise. For doctors without specific 
experience in diagnosing long QT syndrome, a 
diagnostic score has been developed over the years 
and represents a useful tool for use in a prelimi-
nary assessment of the probability of the syn-
drome (Table 1).49

A number of tests have been suggested to fa-
cilitate the diagnosis of long QT syndrome in 
ambiguous cases.50 The exercise stress test is the 
only one that is truly useful, because a marked 
QT prolongation at the 4th minute of recovery is 
highly specific for long QT syndrome.49,51 The 

Table 1. Diagnostic Criteria for LQTS, 1993–2011.*

Criteria Points†

Electrocardiographic results‡

QTc§

≥480 msec 3

460 to 479 msec 2

450 to 459 msec, in male patients 1

QTc ≥480 msec at 4 min of recovery from exercise stress 
test§

1

Torsades de pointes¶ 2

T-wave alternans 1

Notched T wave in three leads 1

Low heart rate for age‖ 0.5

Clinical history

Syncope¶

With stress 2

Without stress 1

Congenital deafness 0.5

Family history**

≥1 Family member with confirmed LQTS 1

Unexplained sudden cardiac death in immediate family 
member younger than 30 years of age

0.5

*	� Modified from Schwartz et al.49 with permission. LQTS denotes long QT 
syndrome.

†	� Total points indicate the probability of LQTS as follows: 0 to 1 point, low 
probability; 1.5 to 3 points, intermediate probability; 3.5 points or more, 
high probability.

‡	� Electrocardiographic data shown were from patients who were not receiving 
medications and who did not have conditions that prolong the QT interval.

§	� QT interval corrected for heart rate (QTc) is calculated according to Bazett’s 
formula.27

¶	� Torsades de pointes and syncope are mutually exclusive.
‖	� Low heart rate for age is defined as a resting heart rate that is below the 2nd 

percentile for age.
**	� The same family member cannot be counted twice.
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stand-up test52 is of limited value.50 The epineph-
rine challenge, proposed when genetic screening 
was seldom available,53 has dangerous arrhyth-
mogenic potential and can profoundly alter ven-
tricular repolarization in persons with a normal 
ECG, and can thus misleadingly suggest the pres-
ence of long QT syndrome. As confirmed by the 
European Society of Cardiology guidelines,54 epi-
nephrine testing should not be used to make the 
diagnosis.

Ther a py

The four cornerstones of therapy are beta-blockers, 
mexiletine, left cardiac sympathetic denervation, 
and an implantable cardioverter–defibrillator (ICD). 
These therapies reflect the understanding of 
the underlying pathophysiology of long QT syn-
drome. In addition, lifestyle modification, in-
cluding avoidance of QT-prolonging drugs (a 
list of these drugs is available at https://www​
.crediblemeds​.org/​) and use of potassium supple-
ments (to maintain adequate plasma potassium 

levels), can contribute substantially to lowering 
arrhythmic risk.54

Beta-Blockers

Since the mid-1970s, beta-blockers have repre-
sented the mainstay of therapy for patients with 
long QT syndrome,5,55 and their efficacy has been 
repeatedly confirmed7,56 independent of the gen-
otype.57 The only two beta-blockers that have been 
confirmed to be effective in the syndrome are 
propranolol (at a dose of 2.0 to 3.5 mg per ki-
lograms of body weight per day) and nadolol 
(1.0 to 1.5 mg per kilogram per day).7 Metopro-
lol should not be used.58 Nonadherence to beta-
blocker therapy and the use of QT-prolonging 
drugs are responsible for most life-threatening 
failures of beta-blocker therapy in persons with 
long QT syndrome.59

Beta-blockers should be prescribed also for 
persons who are genotype-positive–phenotype-
negative,25 with few gene-specific exceptions (e.g., 
men with long QT syndrome type 1 who are still 
asymptomatic without therapy at age 25).40 In 

Table 2. Genotype-Specific Management.*

Aspect of Management LQT1 LQT2 LQT3

Response†

Beta-blockers +++ ++ ++

Left cardiac sympathetic 
denervation

+++ ++ ++

Mexiletine Unknown ++ +++

Triggers or associated events Adrenergic — strenuous exercise, 
swimming, and strong emotion

Startle (e.g., sudden, loud noises; 
alarm clock; telephone ring-
ing), low serum potassium 
level, in postpartum period

Sleep or rest

Recommendations Limit strenuous exercise (swim-
ming allowed with supervision 
by an adult who can swim), 
avoid verbal or physical con-
frontations, yearly visit for risk 
reassessment

Preserve serum potassium level 
at ≥4 mmol per liter; avoid use 
of alarm clocks and telephone 
in the bedroom; beta-blockers 
taken morning and evening; in 
postpartum period, share bed-
room to provide sleep protec-
tion by partner‡; yearly visit for 
risk reassessment

Potential benefit with home auto-
matic external defibrillator‡ and 
with bedroom sharing§; yearly 
visits for risk reassessment

*	�LQTS type 1 (LQT1) is characterized by a propensity of arrhythmias to develop during physical or emotional stress; type 2 (LQT2) is char-
acterized by a propensity for arrhythmias to develop after loud noises, especially when the person is at rest, and after sleep disruption; and 
type 3 (LQT3) is characterized by a propensity for arrhythmias to develop when the person is at rest or asleep. Exceptions exist.

†	�Magnitude of response is indicated by + symbols, ranging from + (the least magnitude of response) to +++ (the greatest magnitude of re-
sponse).

‡	�Access to an automatic external defibrillator at home could be important in severe cases because most events occur when the person is at 
rest or asleep.

§	� Given the horizontal position during sleep and the progressive fall of oxygen perfusion during ventricular tachycardia and ventricular fibrilla-
tion, most patients have the time to emit agonic sounds that often allow prompt resuscitation.
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genotype-negative patients with borderline QT 
prolongation in whom the diagnosis is uncer-
tain, the decision is problematic because once 
beta-blocker therapy has been started, with-
drawing it is difficult, largely for medicolegal 
reasons.

Left Cardiac Sympathetic Denervation

Left cardiac sympathetic denervation, now most-
ly performed by means of thoracoscopy,60,61 in-
volves the removal of the lower half of the stellate 
ganglion to prevent Horner’s syndrome61,62 and 
of the first four thoracic ganglia (T1 to T4). The 
rationale for performing left cardiac sympathetic 
denervation, supported by strong experimental61

and clinical evidence,61-63 is largely based on its 
striking antifibrillatory effect,64 and includes a 
major reduction in norepinephrine release at the 
ventricular level without postdenervation super-
sensitivity61 and without heart-rate reduction.61

Left cardiac sympathetic denervation in a large 
series of patients consistently showed63,65,66 an 
extremely high success rate and, when performed 

in response to electrical storms (multiple epi-
sodes of ventricular tachycardia–fibrillation re-
sulting in appropriate ICD interventions), re-
duced the annual incidence of ICD shocks by 
90%63,65,67 (Fig. 2), thus preserving a good qual-
ity of life.68 There is a clinically significant QTc 
shortening in most patients, and this effect is 
associated with greater long-term protection.63

The conclusion is that whenever syncopal epi-
sodes recur despite full-dose beta-blocker thera-
py, left cardiac sympathetic denervation should 
be considered and implemented without hesita-
tion. Given the constantly growing number of 
centers worldwide that are performing the pro-
cedure,66,69,70 there is no longer justification to 
implant an ICD in these patients without having 
first informed them of the pros and cons of left 
cardiac sympathetic denervation as compared 
with an ICD.71,72

Mexiletine

In 1995, shortly after the discovery that the SCN5A
variants causing long QT syndrome were increas-
ing the sodium current,9,11 the sodium-channel 
blocker mexiletine was proposed as the first gene-
specific therapy for long QT syndrome type 3,73

and it is now widely used in these patients with 
the main goal of shortening the QTc and thereby 
reducing the risk of arrhythmia.74 Most, but not 
all, long QT syndrome type 3 variants respond 
to mexiletine.75 Recent data show that in almost 
70% of patients with long QT syndrome type 2, 
the QTc is shortened with mexiletine,76 thus sub-
stantially broadening its clinical use. We assess 
its effect by using the acute oral drug test, which 
involves the oral administration of mexiletine at 
a dose of 6 to 8 mg per kilogram, which, within 
2 hours, allows the physician to see whether the 
QTc shortens meaningfully (>40 msec). In this 
way, only patients in whom there is a positive 
response to mexiletine are started on long-term 
therapy.76

ICDs

There are large differences in the use of ICDs 
across the world,77 with some centers in the United 
States implanting ICDs in almost 50% of their 
patients with long QT syndrome, whereas two of 
the largest clinics in the world treating patients 
with the syndrome (Mayo Clinic and the Center 
for Cardiac Arrhythmias of Genetic Origin, Isti-
tuto Auxologico Italiano) implant ICDs in approxi-

M
ea

n 
N

o.
 o

f I
C

D
 S

ho
ck

s 
pe

r 
Ye

ar

30

10

20

0
Before LCSD After LCSD

Figure 2. Effects of Left Cardiac Sympathetic Dener-
vation.

Shown are the effects of left cardiac sympathetic de-
nervation (LCSD) on the annual rate of implantable 
cardioverter–defibrillator (ICD) shocks in 14 patients 
with long QT syndrome who had recurrent ICD shocks 
or arrhythmic storms before undergoing LCSD. All 14 
patients had more than 1 year of follow-up after under-
going LCSD, 10 (71%) had received at least 10 ICD 
shocks before LCSD and 11 (79%) were younger than 
16 years of age at the time of LCSD.63,65 These data re-
flect an overall 90% reduction in the mean yearly num-
ber of ICD shocks per patient and a major effect on 
the patients’ quality of life. The number of ICD shocks 
shown for two patients was capped at 30.
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mately 5% of patients with long QT syndrome.78 
An intravenous ICD is preferable to a subcutane-
ous one because it allows for pacing, which be-
comes essential whenever an increase in the beta-
blocker dose is necessary, either in patients with 
a very low heart rate or during arrhythmic storms. 
Implantation of an ICD immediately after a 
documented cardiac arrest, either with or without 
beta-blocker therapy, is reasonable. A study that 
included 233 patients with long QT syndrome 
who had received an ICD67 provided critical in-
formation and showed that most of the patients 
had not suffered a cardiac arrest and, moreover, 
that many had not had a failure of beta-blocker 
therapy. Asymptomatic patients, almost absent 
in the long QT syndrome type 1 and type 2 
groups, represented 45% of the patient group 
with type 3, a finding that indicates that the 
presence of a pathogenic variant in SCN5A, even 
in asymptomatic persons, was deemed to be suf-
ficient for implantation of an ICD. During a mean 
follow-up of 5 years, an adverse event occurred 
in 25% of patients.

There is an excessive use of ICDs in patients 
with long QT syndrome, and it has been stated 
that most patients with this disease do not need 
and should not receive an ICD.62 Indeed, data on 
almost 1000 patients with the syndrome show 
that practically all patients can survive with a 
minimal use of ICDs when triple therapy (beta-
blockers, mexiletine, and left cardiac sympa-
thetic denervation) is implemented with yearly 
therapeutic optimization.56 Implantation of an 
ICD should be recommended in all patients who 
survive a cardiac arrest while adhering to ade-
quate drug therapy; in patients who have syn-
cope despite receiving full-dose beta-blockers 
when therapeutic optimization with left cardiac 
sympathetic denervation and mexiletine is not 
available; and in all patients with syncope despite 
receiving a full dose of beta-blockers and left 
cardiac sympathetic denervation.

New Pharmacologic Therapies?

On the basis of experimental evidence, including 
testing using induced pluripotent stem-cell car-
diomyocytes,79-81 two compounds to treat long 
QT syndrome are undergoing clinical evaluation. 
As a result of encouraging preliminary observa-
tions,82 the combination therapy lumacaftor–
ivacaftor, already used in the treatment of pa-
tients with cystic fibrosis, is being evaluated in 

the treatment of patients who have long QT 
syndrome type 2 with trafficking defects. The 
serum–glucocorticoid regulated kinase 1 regu-
lates cardiac sodium channels, and its inhibition 
has shortened ventricular repolarization mainly 
in long QT syndrome type 2 and type 3 mod-
els.80,81 The potential clinical relevance of any of 
these new therapies will require QTc changes not 
only to occur in the right direction but also to be 
of a clinically meaningful magnitude (i.e., short-
ened by >40 msec).7,54

M a nagemen t

Besides the straightforward implementation of 
established treatments, the management of long 
QT syndrome has been substantially refined. 
Genetic testing offers confirmation and further 
guidance for gene-specific treatment40 (Table 2); 
however, results of genetic screening tests are 
negative in 10 to 15% of the patients who have 
long QT syndrome, thus raising questions about 
their arrhythmic risk and approaches to treatment. 
Data from 832 patients showed that patients 
who are genotype-negative–phenotype-positive 
should be treated in the same way as patients 
who are genotype-positive–phenotype-positive be-
cause their arrhythmic risks are similar.25

When results of genetic screening are nega-
tive or inconclusive, every effort should be made 
to ensure that the diagnosis of long QT syn-
drome is correct. Confirmation should be made 
by also evaluating QTc behavior during an exer-
cise stress test and 12-lead Holter recording, 
assessing whether there is the appearance in the 
T-wave morphologic features of notched or di-
phasic T waves or of T-wave alternans, and per-
forming a complete cardiac evaluation of the 
parents, and by suggesting to physically active 
patients that they adopt a period of detraining to 
rule out an exercise-induced QTc prolongation.83

Important aspects of the clinical management 
of long QT syndrome are genotype-independent. 
Long QT syndrome is a moving target in the 
sense that arrhythmic risk may vary over time 
and thus require optimization of medical thera-
py, which usually means the addition of mexi-
letine or left cardiac sympathetic denervation to 
beta-blockers (i.e., triple therapy) or implantation 
of an ICD. Patients should have follow-up visits 
at least once a year to allow for therapeutic op-
timization. Recently, the long-term outcomes of 
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946 patients with long QT syndrome were as-
sessed along with the outcomes that would have 
resulted if treatment had been based strictly on 
one of the risk-stratification scores previously 
proposed to guide treatment in patients with the 
syndrome.56,67 On the basis of that risk-stratifica-
tion score, ICDs should have been implanted in 
142 of the 946 patients; however, ICDs were 
implanted in 22 patients. Only 3 of the patients 
who received ICDs received an appropriate shock, 
and no patient died or had a cardiac arrest. Con-
versely, during follow-up, some patients appeared 
to be at increased risk for arrhythmias; their 
therapy was intensified, thereby preventing any 
arrhythmic episodes. Warnings have been issued84 
about the potential danger in applying risk scores 
at a patient’s initial visit or before the start of 
therapy (as recommended by the 2022 European 
Society of Cardiology guidelines54), because of the 
likelihood of excessive and potentially unjustified 
use of ICDs.56 Because the initiation of therapy 
modifies the propensity for arrhythmia, a deci-
sion to implant an ICD before a reassessment of 
risk after therapeutic optimization is not justifi-
able.85 Recent data from 2861 patients with long 
QT syndrome indeed showed that only a minority 
of those who were candidates for ICD implanta-
tion according to the guidelines54 actually needed 
an ICD.78

An issue especially important for young pa-
tients with long QT syndrome is related to par-
ticipation in sports, which can have a significant 
psychological effect. The initial very conservative 
approach is being progressively modified toward 
a more liberal one,86 especially for patients with 
long QT syndrome type 2 or type 3. Decisions 
regarding participation in sports must include 
consideration of the fact that in some European 
countries, participation in sports is regulated by 
specific laws that sports physicians cannot ignore.

Care should also be exercised to avoid pre-
scribing either one of the least effective beta-
blockers or a placebo dose. Bilateral denervation 
may be necessary in a very small number of pa-
tients, but this fact does not justify performing 
it without first determining whether left cardiac 
sympathetic denervation is sufficient.87 Epicardial 
catheter ablation has been proposed as treatment88 
but has been strongly discouraged89 because of a 
lack of substantial and convincing evidence. In-

deed, the current availability of therapies that are 
extremely effective and safe over the long term 
leaves little room for experimental approaches 
with weak rationales.

Gene Ther a py

The possibility that gene therapy might help in 
the treatment of patients with long QT syn-
drome is an obvious and major interest. How-
ever, not all the approaches currently available are 
feasible.90 Long QT syndrome involves mainly 
single-nucleotide variants that affect ion-channel 
function in different ways, and a successful gene-
therapy approach should either silence the vari-
ant allele or correct the specific variant through 
a direct-editing approach.90 Gene silencing uses 
several nucleic acids, mainly small RNAs, to target 
the specific region where the pathogenic vari-
ant is present and block the expression of the 
variant allele. This approach, successfully ad-
opted in vitro in long QT syndrome type 1 and 
type 2 cellular models,91-93 has the major limita-
tion of being variant-specific, and the hundreds 
of variants that cause long QT syndrome would 
limit its applicability in clinical practice. The 
same limitation applies to the direct-editing 
approach.

The recently developed strategy of suppres-
sion–replacement therapy90,94 successfully correct-
ed the long QT syndrome phenotype independent 
of the disease-causing variant in a number of 
different cellular models of long QT syndrome 
type 194 and type 2,90 overcoming a major limi-
tation of the other approaches, and was also 
validated in a long QT syndrome rabbit model.95 
More recently, the same strategy was used in the 
treatment of calmodulinopathies.96

Major challenges still need to be overcome for 
the successful translation and implementation 
of gene therapy into clinical practice for long QT 
syndrome. Suppression–replacement therapy re-
quires identification of the right dose to be deliv-
ered, because undertreatment would not correct 
the long QT syndrome phenotype and overtreat-
ment could be proarrhythmic. Gene therapies 
rarely yield a homogeneous population of trans-
duced cells and are associated with a potential 
for proarrhythmia, owing to the increased het-
erogeneity of repolarization. There have been 
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some safety concerns with gene therapy, given 
the occurrences of adverse events — some lethal 
— in patients who have received it.97-99 An addi-
tional necessary consideration relevant to the 
implementation of gene therapy is that long  
QT syndrome does not increase in arrhythmic 
risk over time and that current therapy has been 
associated with extremely low mortality.56,78 The 
effectiveness of current therapy greatly reduces 
the number of patients in need of experimental 
approaches such as gene therapy, which might 
be better suited to patients at extremely high 
risk (e.g., infants who have cardiac events in 
the first year of life, some with calmodulin vari-
ants19 or variants that cause severe disease 
[e.g., the p.R1623Q variant in SCN5A]) who con-
tinue to have appropriate ICD shocks despite full 
therapy.41,56

Acquir ed L ong Q T S y ndrome

The QT interval may become prolonged under 
several conditions, including hypokalemia, bra-
dycardia, heart block,100 and, especially, the in-
take of drugs that share IKr blocking activity.101 
Acquired long QT syndrome is clinically impor-
tant because it carries a significant risk for tor-
sades de pointes and sudden cardiac death.102 
Correction of the offending factor prevents re-
currences.

The probability of the development of ac-
quired long QT syndrome depends on the in-
trinsic risk conferred by a given drug, a risk that 
is mainly dependent on the strength of the IKr 
block, and on the individual level of the repolar-
ization reserve,103 which is modulated by genetic 
factors.104-106 This genetic predisposition involves 
ultrarare,104 rare,105 and common genetic vari-
ants.106 The probability of identifying a patho-
genic or likely pathogenic variant in patients with 
acquired long QT syndrome is mainly dependent 
on three variables: age less than 40 years, QTc 
(at baseline) greater than 440 msec, and arrhyth-
mic episodes,104 variables that suggest that some-
times acquired long QT syndrome could unmask 
a latent congenital long QT syndrome with a low 
penetrance, as hypothesized in 1982.107 In the 
presence of the above-mentioned factors, mo-
lecular genetic testing of the definitive disease-
associated genes should be offered to patients 

with acquired long QT syndrome.23 In addition, 
two rare variants with functional effect, p.D85N 
in KCNE1 and p.S1103Y in SCN5A, are consistently 
associated with acquired long QT syndrome.108,109 
The combination of 61 common genetic variants, 
all of which influence the QT interval, explains 
up to 30% of the variability in acquired long 
QT syndrome.106 Testing for the presence of 
common variants is not currently recommended 
outside of the research setting. Acquired long 
QT syndrome exemplifies how the combination 
of genetic and acquired factors can impair re-
polarization reserve and precipitate arrhythmic 
events.

Excessive physical training has the potential 
to induce a marked QT prolongation mimicking 
long QT syndrome, especially in teenagers, thus 
favoring diagnostic errors with long-term conse-
quences.83 Typically, these persons have no family 
history of long QT syndrome and are asymptom-
atic and genotype-negative. These abnormalities 
of ventricular repolarization are reversible with 
3 to 4 months of detraining.83 The arrhythmo-
genic potential associated with these abnormali-
ties is not clear, but a reduction in the intensity 
of physical training is needed in order to prevent 
QT prolongation. Sports physicians should be 
aware of this phenomenon to avoid prema-
turely labeling youngsters as having long QT 
syndrome.

Conclusions

Long QT syndrome remains an often-lethal dis-
order for which effective and safe therapies cur-
rently exist, thus allowing normal quality of life 
for almost all patients. Correct management of 
the syndrome requires specific expertise, and 
clinicians should be able to suspect the presence 
of the disease in order to refer patients to a high-
volume center with specific experience in treat-
ing patients with long QT syndrome.
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