European Journal of Neurology

| REVIEW ARTICLE CETTED

Update on Genetic Chorea

| Gonzalo Olmedo-Saural-234
| Jaime Kulisevsky!2:34

Jesus Pérez-Pérez!-23#
Javier Pagonabarragal-?3+

| Saiil Martinez-Hortal:23#

european journal
of neurology

| Sara Bernal?*>¢ |

!Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain | 2Medicine Department, Universitat Autonoma de Barcelona
(UAB), Barcelona, Spain | 3Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos 111, Madrid,
Spain | “Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain | 3Genetics Deparment, Sant Pau Hospital, Barcelona, Spain | ®Center for
Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain

Correspondence: Jesus Pérez-Pérez (jperezp@santpau.cat)

Received: 18 December 2024 | Revised: 21 July 2025 | Accepted: 2 September 2025

Funding: The authors received no specific funding for this work.

Keywords: benign hereditary chorea | hereditary chorea | Huntington disease-like | Huntington's disease | neuroacanthocytosis

ABSTRACT

Hereditary choreas are a clinically and genetically heterogeneous group of monogenic disorders in which chorea constitutes the

core or an early-dominant feature. These conditions result from various genetic mutations affecting the structures and pathways

involved in movement control, primarily the caudate and putamen, ultimately impairing the basal ganglia circuits involved in

the regulation of movement, cognition, and behavior. This review focuses on the main forms of hereditary choreas, including

Huntington's disease, neuroacanthocytosis syndromes, Huntington's disease phenocopies, benign hereditary chorea, and other
less common genetic disorders presenting with chorea. We discuss the clinical, genetic, and pathophysiological features of each
condition, alongside key aspects of phenomenology, examination, and complementary tests—including laboratory findings—to
guide phenotype-driven genetic testing. We detail the characteristic features of key disorders while also highlighting less com-

mon but emerging conditions. This review aims to assist neurologists in recognizing and diagnosing hereditary choreas effi-

ciently, including guidance on the selection of appropriate genetic tests, thereby reducing diagnostic delays, informing accurate

counseling, and facilitating access to disease-specific interventions and clinical trials.

1 | Introduction

Hereditary choreas are a clinically and genetically heterogeneous
group of monogenic disorders in which chorea constitutes the
core or an early-dominant feature. Chorea is a movement disorder
characterized by involuntary, rapid, and irregular movements that
unpredictably shift from one part of the body to another. These
movements, often described as flowing or dance-like, can inter-
fere significantly with daily activities and are the hallmark of the
neurological dysfunction seen in these conditions [1]. Hereditary
choreas arise from genetic mutations that impair the function of

proteins highly expressed in key brain regions involved in motor
control—most notably the caudate nucleus and putamen—Iead-
ing to dysfunction of the basal ganglia circuits [2, 3].

In addition to the motor symptoms, most hereditary choreas are
frequently associated with a range of cognitive and behavioral
alterations, adding further complexity to their clinical presen-
tation. Cognitive decline, psychiatric symptoms such as depres-
sion and anxiety, and personality changes are common features
that can emerge alongside the movement disorder, often compli-
cating both diagnosis and management.
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Differential diagnosis of adult-onset chorea can be challeng-
ing, and one of the most informative clinical clues is the
temporal pattern of symptom onset. Hereditary choreas typ-
ically manifest as slowly progressive, generalized choreic
syndromes, whereas acquired etiologies—most often phar-
macological, autoimmune, metabolic, or infectious—tend
to present with a subacute onset [1, 4, 5]. The distribution of
involuntary movements also contributes to diagnostic orien-
tation. Hemichorea-hemiballism syndromes are commonly
linked to structural brain lesions, such as vascular events or
non-ketotic hyperglycemia. In contrast, hereditary choreas are
usually generalized, although specific regions—such as the
upper face in Huntington's disease (HD)—may show earlier or
more prominent involvement. Age at onset may also help guide
the differential diagnosis. A childhood onset presenting as a
non-progressive choreic syndrome is more suggestive of one of
the benign hereditary chorea (BHC) conditions, whereas par-
oxysmal choreo-dystonic episodes during childhood are more
consistent with paroxysmal dyskinesias (see Table 1) [4-7].
Given the diagnostic complexity of these disorders and the
growing number of implicated genes, some patients may reach
adulthood without a definitive diagnosis.

The pattern of inheritance, the presence of anticipation due
to trinucleotide repeat expansions within a family, and the
geographic origin of the patient may also provide valuable di-
agnostic clues. Among autosomal dominant (AD) forms with
anticipation, HD is the most frequent; among autosomal re-
cessive disorders, chorea-acanthocytosis is the most frequent
cause, whereas McLeod syndrome is the main representative
of X-linked choreas [1, 4, 5]. A number of additional clini-
cal features and neuroimaging findings can further support
the diagnostic process, as summarized in Tables 2, 3, 5 and
Figure 1.

This article provides a comprehensive review of the primary
forms of hereditary choreas with a particular focus on adult-
onset presentations. Childhood-onset choreas are not the pri-
mary focus of this review, but are briefly discussed when relevant
to adult neurology practice. The search methodology is detailed
in the Supporting Information. We discuss the clinical, genetic,
and pathophysiological aspects of each disorder, highlighting the
importance of detailed patient history, thorough neurological ex-
amination, and the use of complementary diagnostic tests—in-
cluding neuroimaging and laboratory studies—to guide genetic
diagnosis. For each disorder, we indicate the most appropriate
genetic test, emphasizing that many adult-onset choreas cannot
be reliably diagnosed through next-generation whole-exome se-
quencing (NGS-WES) alone, as they are often caused by repeat
expansions not detectable by standard WES pipelines. Advanced
technologies such as whole-genome sequencing (NGS-WGS) with
specific tools like ExpansionHunter, or long-read sequencing, may
overcome most of these limitations; however, their availability in
routine clinical settings remains limited. These approaches are
expected to become increasingly accessible in the near future, po-
tentially enabling faster and more accurate diagnoses. Given the
clinical overlap and genetic heterogeneity of these disorders, ac-
curate diagnosis is essential for appropriate management, genetic
counseling, and timely access to disease-specific treatments and
potential clinical trials.

TABLE1 | Differential diagnosis of chorea.

Differential diagnosis of chorea

Pattern of onset
Acute: Vascular, metabolic

Subacute: Autoimmune (e.g., antiphospholipid syndrome,
Sydenham chorea, IGLONS disease), paraneoplastic (e.g.,
anti-CV2, anti-Hu), deficiency-related (e.g., nutritional or
metabolic deficiencies), pharmacological

Chronic: Typically genetic
Progression
Progressive: Degenerative (HD, NA)
Non-progressive: HBC, ADCY35, dyskinetic cerebral palsy
Paroxismal: Paroxismal dykinesias
Distribution

Hemichorea/hemiballismus: Often associated with
structural lesions (e.g., stroke, non-ketotic hyperglycemia,
infections)

Generalized: HD, NA, BHC
Frontal-predominant: Early stages of HD

BOL: Common in NA, iron accumulation disorders,
tardive dyskinesias

Age of onset

Childhood: Benign hereditary chorea (e.g., NKX2-1/TITF1,
ADCY5 mutations)

Adulthood: HD, NA, HD-like syndromes (e.g., C90rf72
expansions, SCA17, DRPLA, HDL1, HDL2)

Note: Differential diagnosis of chorea according to the pattern of onset, clinical
course, distribution of involuntary movements, and age at presentation.
Abbreviations: BHC, benign hereditary chorea; BOL, bucco-orolingual; HD,
Huntington's disease; NA, neuroacanthocytosis.

2 | Huntington's Disease (HD)

HD is the most common cause of hereditary chorea with a prev-
alence of approximately 5-12 cases per 100,000 people [8, 9] in
populations of European descent, being less prevalent in Asia
and Africa.

This neurodegenerative disease is caused by an abnormal expan-
sion of CAG triplets in exon 1 of the HTT gene with an AD inher-
itance pattern [6, 10, 11]. The greater the number of CAG repeats,
the earlier the age of onset, which is associated with a worse prog-
nosis. There is a phenomenon of CAG-triplet expansion that can
occur in successive generations, particularly when the disease is
inherited paternally. The penetrance of the disease is related to the
number of CAG repeats, being incomplete with 36-39 repeats and
complete with 40 or more repeats. Juvenile-onset (JHD) forms are
typically associated with 55 or more repeats [6, 12-14].

The typical onset of HD occurs between the ages of 35 and
50, although up to 25% of cases manifest after the age of 60. It
leads to a reduced life expectancy, with an average course from
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TABLE 2 | Diagnostic clues that can guide genetic testing.

Diagnostic clues

Clinical characteristics—Physical examination
Upper face involvement/frontal corea: HD

Oro-buco-lingual dystonia: NA (ChAc, McLeod
syndrome), NBIA, Lubag disease, Wilson's disease, Lesch—
Nyhan syndrome

Self-mutilating behavior: ChAc, Lesch-Nyhan syndrome,
SCA17

Pyramidal signs and signs of lower motor neuron
involvement: C9orf72

Polyneuropathy, areflexia: ChAc, McLeod

Myopathy: McLeod, mitochondrial

Seizures: ChAc, DPRLA, SCA17, mitochondrial

Ataxia: SCA17, DRPLA, SCAs and recessive ataxias
Ethnicity

Asians DRPLA; Sub-Saharan Africans HDL2—JHP3;
Philippines origin, Lubag disease; Northern England,
neuroferritinopathy

Neuroimaging
Caudate atrophy: HD, ChAc, McLeod
Cerebellar atrophy: SCA17, DRPLA, SCAs
Cortical atrophy

Fronto-temporal: C9orf72 expansions, occipital atrophy:
HDL2-JPH3

Diffusion restriction: HDL1

Leukoencephalopathy: DPRLA

Inherited disorders with metal or mineral deposition
PKAN2: Eye of the tiger
Wilson's disease: Panda eyes
Neuroferrinopathy: Cystic lesions
Aceruloplasminemia: Basal ganglia hypointensity
Farh syndrome: Calcifications on CT scan

Basal ganglia hyperintensity: Glutaric aciduria, HDL1
(diffusion restriction)

Laboratory findings

Acanthocytes: ChAc, McLeod, JPH3, PKANZ2,
aceruloplasminemia

CKs elevation: ChAc, McLeod syndrome, mitochondrial
AST, ALT elevation: ChAc, McLeod syndrome

Ceruloplasmin: Low levels in Wilson disease, absence in
aceruloplasminemia

Ferritin: Low ferritin levels in neuroferritinopathy

Alpha-fetoprotein: Ataxia telangiectasia, ataxia with
oculomotor apraxia

symptom onset to death ranging 15-20years [6, 13]. Between 2%
and 5% of cases present before the age of 21 and are classified as
JHD. The phenotype differs from the classic forms of HD, with a
clinical picture dominated by dystonia and parkinsonism from
the early stage of the disease [15-17].

HD is characterized by a clinical triad of motor, cognitive, and
neuropsychiatric symptoms that can manifest at various stages
throughout the course of the disease [6]. Before the onset of es-
tablished symptoms, there is a prodromal phase characterized
by subtle signs of the disease [18, 19].

2.1 | Motor Symptoms

Chorea is the hallmark motor symptom of HD. It typically be-
gins in the facial region, often with a frontal predominance, and
progressively generalizes. Tics and vocalizations may also be
present [1, 20]. Motor impersistence often co-occurs with cho-
rea [1, 21]. As the disease progresses, chorea will gradually be
replaced by dystonia and parkinsonism [22-24]. Hyperreflexia
with hung-up knee jerk is characteristic [25, 26]. Oculomotor ab-
normalities are common, particularly the inability to inhibit the
head impulse during eye movements [27, 28]. Gait abnormalities
in HD are often difficult to categorize as they typically present
with a combination of chorea, motor impersistence, dystonia,
parkinsonism, and cerebellar ataxia [29, 30].

2.2 | Cognitive Impairment

The most frequent cognitive alteration is a dysexecutive-
attentional syndrome. Although cortical impairment is also
common, it is often overshadowed by the prominent impairment
of executive functions. Anosognosia is a frequent and clinically
significant feature. As the disease progresses, most patients de-
velop dementia [31-35].

2.3 | Neuropsychiatric Symptoms

Neuropsychiatric symptoms are highly prevalent in HD. Apathy
is particularly characteristic and tends to progress linearly with
the disease. Depression, anxiety, irritability, and aggression are
also very common. Less frequently, obsessive-compulsive traits
or psychosis may occur. Suicidal ideation and attempts are fre-
quent in HD [36-41].

2.4 | Diagnosis

The genetic diagnosis is based on the detection of an abnormal
CAG trinucleotide repeat expansion in the HTT gene [42]. This is
typically performed using targeted molecular techniques such as
triplet-primed PCR (TP-PCR), also referred to as repeat-primed
PCR (RP-PCR), which are specifically designed to identify large
or interrupted repeat expansions. Although a biological classifi-
cation system (Huntington's Disease Integrated Staging System
[HD-ISS]) [19] has been proposed recently, clinical diagnosis in
routine practice still relies primarily on the unequivocal pres-
ence of motor symptoms consistent with HD in patients with
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TABLE 3 | Main clinical and ancillary test findings in hereditary chorea.

Disease Gene Main and characteristic clinical features Ancillary test
Autosomal dominant
Huntington's disease HTT (IT15) Frontal chorea, motor impersistence, MRI: Caudate atrophy
CAG expansion oculomotor dysfunction, psychiatric and
cognitive symptoms, hung up reflexes
C9orf72 C9orf72 Association with DLFT and ALS, MRI: Fronto-
GGGGCC expansion pyramidalism, motor neuron symptoms temporal atrophy
SCA 17 (HDL-4) TPB Cerebellar ataxia, dystonia, psychiatric MRI: Cerebellar and
CAG expansion symptoms and cognitive impairment cortical atrophy,
putaminal rim
DRPLA ATNI Chorea if onset >20years, often MRI: Olivo-ponto-
CAG expansion accompanied by ataxia, dystonia, cerebellar atrophy
parkinsonism, and dementia, <20years: Leukoencephalopathy
progressive myoclonic epilepsy
More frequent in Asia
HDL-2 JPH3 Parkinsonism, dementia, psychiatric MRI: Cortical
CTG/CAG expansion disturbances, Sub-Saharan ancestry atrophy—occipital
Acanthocytes (< 1)
HDL-1 PRPP Rapidly progressive course, RMTI: cortical ribbon
Octapeptide myoclonus, dementia 14.3.3 protein
expansion
Neuroferritinopathy FTLm Oro-buco-lingual dystonia Low ferritin levels
(NBIA) MRI: cystic
degeneration in the
caudate and putamen;
and “pencil sign”
Benign hereditary NKX2-1 (TITF-1) Non-progressive, may be accompanied Thyroid hormone

chorea NKX2-1 related
disorderes

by developmental delay, lung
and thyroid alterations

abnormalities

ADCY-5 related ADCY5 Chorea, dystonia, myoclonus, Caffeine response
movement disorders and facial dyskinesias, movement
disorder can be paroxysmal
Autosomal recessive
Chorea-acanthocytosis VPSI3A Bucco-oro-lingual dystonia, feeding dystonia, MRI: Caudate atrophy
PNP, myopathy, psychiatric symptoms, Acanthocytes
epilepsy, self-mutilation behaviors, areflexia Elevated CK levels,
AST, ALT
Aceruloplasminemia cp Dystonia, ataxia, diabetes, retinal Absence of
(NBIA) degeneration, and anemia ceruloplasmin
Wilson's disease ATP7B Parkinsonism, wing beating, dystonia, MRI: Panda sign
psychiatric disturbances, hepatic Low ceruloplasmin
failure, Kayser-Fleischer ring levels, elevated copper
levels in 24-h urine
X-linked
McLeod syndrome XK Myopathy, cardiomyopathy (2/3), MRI: Caudate atrophy
OCB, tics, hepatosplenomegaly Acanthocytes
Elevated CK levels,
AST, ALT
(Continues)
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TABLE 3 | (Continued)

Disease Gene Main and characteristic clinical features Ancillary test
Lesch-Nyhan HPRT1 Dystonia predominantly of the lower Elevation of uric
syndrome facial part, self-mutilation behaviors acid in the blood
Lubag disease TAF1 Hemidystonia, oromandibular dystonia, Dopa responsive

parkinsonism, Philippines ancestry

Other genetic conditions

Genetic ataxias SCAL, 2,3,8,48
(ATXNI1, ATXN2,
ATXN3), ATXNS

(STUBI), AF
(FXN), AT (ATM),
AOA1 (APTX),
AOA2 (SETX),

CANVAS (RFCI)...

Glutaric aciduria
(GCDH)
Mitochondrial
disease

Metabolic conditions

Predominant cerebellar ataxia, Chorea is
more commonly reported in SCA48, AT, AOA,
whereas in other ataxias it is uncommon and
typically emerges later in the disease course

Acute onset, in childhood
triggers—infections, fever
Myopathy, seizures, ophthalmoparesis,
movement disorders are present in 20%-30%

parkinsonism

MRI: Cerebellar atrophy

Characteristic MRI

CKs, GDF15 elevation

patients although chorea is uncommon

confirmed genetic mutations or a family history of genetic con-
firmation [19, 43, 44]. Neuroimaging tests can assist in the dif-
ferential diagnosis. In classic forms of HD, brain MRI typically
reveals atrophy of the caudate and putamen. In JHD forms, a
characteristic hyperintensity in the putamen on T2/FLAIR se-
quences may be observed (Figure 1). PET-FDG scans can show
hypometabolism in the caudate and putamen [12, 19, 45-47].

2.5 | Treatment

The management of HD should be multidisciplinary, addressing
the treatment of motor, cognitive, and psychiatric symptoms in
an integrated manner. Chorea is primarily managed with vesic-
ular monoamine transporter type 2 (VMAT?2) inhibitors [48, 49],
although antipsychotics are commonly used in routine clinical
practice to manage both chorea and psychiatric symptoms,
while antidepressants are frequently employed to treat psychi-
atric disorders [48, 49].

3 | Neuroacanthocytosis

Neuroacanthocytosis refers to a group of disorders that present
neurological symptoms and acanthocytes in peripheral blood
(Table 4) [50-52]. These syndromes can be categorized into “core”
neuroacanthocytosis syndromes—such as chorea-acanthocytosis
and McLeod syndrome—where chorea is a key clinical feature,
and other neurological conditions in which acanthocytes may also
appear but chorea is not the predominant manifestation.

3.1 | Chorea-Acanthocytosis
(ChAc)—Levine-Critchley Syndrome

It is the most common cause of neuroacanthocytosis, as well as
the most frequent form of autosomal recessive (AR) hereditary

chorea [51]. It is caused by variants in the VPS13A gene, which
leads to the absence of chorein—a protein expressed in both
neurons and erythrocytes [51, 53, 54]. The estimated prevalence
is less than one case per million. Symptom onset typically oc-
curs in the third or fourth decade of life, and the life expectancy
is approximately 15-20years from onset [55].

The phenotype closely resembles that of HD, presenting with a
pattern of generalized chorea [52, 54, 56]. However, several dis-
tinctive features help differentiate it from HD. There is a marked
predilection for involvement of the buccolingual region, includ-
ing oromandibular dystonia and the characteristic “feeding
dystonia.” Self-injurious behaviors—particularly tongue and lip
biting—are common and may lead to significant mutilation. Tics
are very common, particularly vocalizations, grunting, belching,
and echolalia. A particularly distinctive motor symptom is inter-
mittent head drop [52, 54, 56]. Additional neurological findings
include axonal sensorimotor polyneuropathy and myopathy with
hypo- or areflexia [57]. The gait is described as “rubber-person”
attributed to a combination of motor impersistence, dystonia,
and myopathy. Parkinsonism may also occur. Approximately
one-third of patients also experience generalized epileptic sei-
zures [29]. Neuropsychiatric symptoms include prominent OCD,
along with apathy and frontal behavioral changes. Cognitively,
patients experience progressive deterioration, primarily with ex-
ecutive dysfunction, which may ultimately progress to dementia
[54, 56, 58].

The genetic diagnosis is based on the identification of biallelic
pathogenic variants in the VPSI3A gene. Full gene sequencing
using targeted NGS panels or WES is commonly employed and
can detect most point mutations. However, up to 20%-30% of
pathogenic VPS13A alleles correspond to large deletions or du-
plications that may escape detection by standard sequencing.
In such cases, complementary techniques such as multiplex
ligation-dependent probe amplification (MLPA) or WGS may be
necessary.
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FIGURE1 | MRIimages from patients with genetic choreas (A-I). (A) T1-weighted MRI of a patient with early-stage Huntington's disease show-

ing mild caudate atrophy (arrows). (B) T2-weighted MRI of a patient with the Westphal variant of Huntington's disease showing characteristic hyper-

intensity in the putamen associated with caudate atrophy. (C) FLAIR MRI demonstrating caudate atrophy in a patient with neuroacanthocytosis due

to a VPS13A mutation. (D, E) Coronal T1-weighted and axial T2-weighted images showing asymmetric atrophy, predominantly in the right frontal

lobe, in a patient with a C9orf72 mutation, chorea, and frontotemporal cognitive decline. (F) FLAIR MRI of a patient with SCA17 presenting with

ataxia, parkinsonism, and chorea, showing a right putaminal rim and cerebellar and caudate atrophy. (G-I) MRI of a patient with DRPLA: (G) T1-

weighted image showing hypointensity in the pons and cerebellar atrophy, (H) FLAIR image showing characteristic white matter hyperintensities,

and (I) FLAIR image showing hyperintensity in the superior cerebellar peduncle and brainstem pathways.

Western blot analysis of erythrocyte proteins can be performed
to demonstrate chorein deficiency, providing supportive di-
agnostic evidence [53, 59]. Additional laboratory findings that
may assist in diagnosis include creatine kinase (CK) and liver
enzymes. Acanthocytes may be present on a peripheral blood

6of 17

smear, although sensitivity is limited and repeated testing (ide-
ally three times) on freshly prepared samples is recommended
to improve detection. Brain MRI reveals atrophy of the caudate
and putamen, while ¥F-FDG PET may show corresponding stri-
atal hypometabolism (Figure 1) [54, 57, 60].
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TABLE 4 | Neuroacanthocytosis syndromes.

“Core” neuroacanthocytosis syndromes
Choreoacanthocytosis (ChAc)
McLeod syndrome

Neurodegenerative diseases that may present with
acanthocytes in peripheral blood and chorea

Pantothenate kinase-associated neurodegeneration
(PKAN)

Aceruloplasminemia
Huntington like-2 (HDL-2)

Diseases with decreased lipoproteins in the blood and
acanthocytes

Abetalipoproteinemia

Hypobetalipoproteinemia

Note: Acanthocytes are spiculated red blood cells that acquire this shape due to
alterations in the membrane proteins of erythrocytes.

Pharmacological management is similar to HD, with the par-
ticularity that good responses to deep brain stimulation in the
internal globus pallidus (DBS-GPi) have been described, as well
as botulinum toxin injections for the management of oroman-
dibular dystonia [61, 62].

3.2 | McLeod Syndrome

It primarily affects males due to its X-linked recessive inheri-
tance, although there have been some cases reported in homozy-
gous women or those with X chromosome inactivation, who tend
to have milder symptoms. The syndrome is caused by a mutation
in the XK gene that contains a single coding exon and encodes the
Kell protein responsible for carrying the Kx antigen on red blood
cells [63, 64]. The prevalence of this condition is even lower than
ChAc, with fewer than 1000 cases reported worldwide.

The onset of symptoms usually occurs later in life, typically be-
tween the ages 0of40 and 60 [55]. The phenotype includes general-
ized chorea. Tics may be predominant. Self-injurious behaviors
are less common than in ChAc. Axial myopathy, sensory-motor
axonal polyneuropathy with areflexia, and epileptic seizures are
common [63, 65]. OCD and other neuropsychiatric symptoms,
such as perseveration, behavioral changes, and cognitive de-
cline, may also be present [58, 64, 66]. Regarding systemic symp-
toms, the presence of cardiomyopathy (up to 70% of patients),
arrhythmias, and the risk of sudden death should be considered
[55, 67]. These patients may experience severe adverse reactions
after receiving a blood transfusion without the McLeod pheno-
type starting from the second exposure [66].

The genetic diagnosis of McLeod syndrome relies on the identi-
fication of pathogenic variants in the XK gene. XK is covered in
most neuroacanthocytosis gene panels and WES. However, as
previously mentioned for ChAc, large deletions may also escape
detection by WES; in such cases, confirmation with MLPA or
array-CGH focused on Xp21 is recommended.

The absence of the Kx antigen and weakened Kell antigen ex-
pression in red blood cells provides a useful hematological clue
that supports the diagnosis and should prompt genetic confir-
mation. As for ChAc, blood tests may show elevated CK levels,
and acanthocytes may be present [68]. MRI shows caudate atro-
phy. The electromyogram may reveal a pattern consistent with
sensory-motor axonal polyneuropathy and myopathy, which can
also be confirmed through muscle biopsy or muscle MRI [69].

4 | Phenocopies of Huntington's Disease:
Huntington Disease-Like (HD-Like or HDL)

The term “HD-like” generally refers to patients presenting a
phenotype resembling HD, characterized by the triad of motor,
cognitive, and neuropsychiatric symptoms, but testing negative
for CAG repeat expansion in the HTT gene [4, 7, 70].

4.1 | C9orf72-Associated Disease

It is considered the most common genetic cause of HD-like
syndromes in the Western population [71, 72]. It is caused by
a GGGGCC hexanucleotide repeat expansion (> 60 repeats) lo-
cated in the first intron and promoter region of the C9orf72 gene.
It follows an AD inheritance with age-dependent incomplete
penetrance [73, 74].

The average age at onset is 55-60years. The disease is charac-
terized by a combination of motor, cognitive, and psychiatric
symptoms with frontotemporal dementia (FTD) and amyotrophic
lateral sclerosis (ALS) as the most frequent phenotypes. From a
motor perspective, signs of both upper and lower motor neuron in-
volvement are typically present, with pyramidal signs on examina-
tion. Parkinsonism is also common, while chorea is a less frequent
symptom, primarily affecting the buccolingual region. Cognitive
decline is accompanied by pronounced behavioral symptoms, al-
though suicidal ideation is less frequent than in HD [72, 73, 75].

The genetic diagnosis, as with HD, requires specific techniques
such as TP-PCR. Neuroimaging typically reveals frontotempo-
ral atrophy and frontotemporal hypometabolism on PET-'*FDG
scans (Figure 1) [72, 73, 75].

4.2 | SCA17 (HDL-4)

It is considered the second most common cause of HD-like syn-
drome in Western populations [71]. It is caused by a CAG/CAA
polyglutamine expansion in the TBP gene and follows an AD
inheritance pattern. Alleles with 41-45 repeats exhibit reduced
penetrance while those with 46-66 repeats are fully penetrant
[76-78]. Recent evidence suggests that mutations in the STUBI
gene may modify disease expression in individuals carrying
TBP alleles within the reduced penetrance range, resulting in a
digenic inheritance pattern [76, 79, 80].

The usual age at onset ranges from 30 to 50years, with later
onset observed in carriers of reduced penetrance alleles [76, 77].
Clinical presentation is dominated by a progressive ataxia syn-
drome [76, 79]. Up to one-third of patients present with chorea;
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they can also present with parkinsonism, dystonia, and myoc-
lonus. Progressive cognitive decline and psychiatric symptoms
are common, especially the presence of schizophrenia-like de-
lusional ideation and depression. Additionally, patients may ex-
perience epileptic seizures [76-78].

Genetic diagnosis requires specific techniques such as TP-
PCR. In cases with intermediate repeat lengths, sequencing of
the STUBI gene by NGS or Sanger methods is recommended.
Brain MRI shows cerebellar, basal ganglia, and cortical atro-
phy; a hyperintense rim in the putamen has also been described
(Figure 1) [76, 81, 82].

4.3 | Dentato-Rubro-Pallido-Luysian Atrophy
(DRPLA)—Naito-Oyanagi Disease

Is the main differential diagnosis of HD in the Asian population,
particularly in Japan. It is caused by a CAG repeat expansion in
the ATNI gene and follows an AD inheritance pattern. It exhib-
its a significant phenomenon of meiotic expansion, particularly
with paternal inheritance. Alleles with 35 and 47 repeats exhibit
reduced penetrance, while those with >48 are fully penetrant.
Juvenile-onset cases, often presenting as progressive myoclonic
epilepsy, are typically associated with more than 70 CAG repeats
[83-86].

Typical age at onset ranges from 30 to 50years [84, 87].
Cerebellar ataxia is the hallmark feature, along with other
motor symptoms such as chorea, dystonia, parkinsonism,
spasticity, and myoclonus. Chorea and cognitive decline tend
to predominate in adult-onset cases with fewer repeats, while
myoclonus, epilepsy, and psychomotor delay are more common
in juvenile forms with larger expansions [84, 85, 88]. Behavioral
disturbances, psychosis, confabulation, depression, and apathy
can occur. Seizures are also commonly present [87, 88].

As in other polyglutamine disorders, the genetic diagnosis relies
on specific techniques such as TP-PCR. MRI shows cerebellar and
pontine tegmentum atrophy with hypointensity in T1-weighted
sequences. Additionally, symmetric and diffuse hyperintensities
in the white matter, corona radiata, centrum semiovale, and supe-
rior cerebellar pedunculus on T2-weighted sequences and ventric-
ular dilatation are characteristics (Figure 1) [82, 85, 87].

4.4 | Huntington Disease-Like 1 (HDL-1)-Familial
Prion Disease

HDL-1 is a rare AD prionopathy [89] caused by an octapeptide
repeat expansion in the prion protein gene (PRNP). The number
of repeats influences the phenotype, disease onset, and progres-
sion. Expansions of 2-5 repeats are associated with later onset
and rapidly progressive Creutzfeldt-Jakob-like disease evolving
in less than 24 months (point mutations in PRNP can also re-
sult in this Creutzfeldt-Jakob-like phenotype). Insertions of 6-12
repeats lead to the HDL-1 phenotype with earlier onset (20-
40years) and slower progression (>24months) [90, 91]. Fewer
than 200 cases have been reported globally, with predominance
in Scandinavian populations [90].

The phenotype includes rapidly progressive cognitive decline
with cortical features—apraxia, amnesia, and executive dys-
function—accompanied by early behavioral changes, psychosis,
depression, and apathy. Motor signs include ataxia, parkinson-
ism, chorea, and myoclonus [90, 92].

As in other repeat expansion disorders, genetic diagnosis re-
quires targeted analysis of the PRNP gene using specific TP-
PCR. Supportive diagnostic tools include CSF 14-3-3 protein
test—although this may be negative in HDL-1—and real-time
quaking-induced conversion (RT-QulC), which offers superior
sensitivity. Brain MRI may show cortical and basal ganglia
hyperintensities or diffuse atrophy, although imaging may be
normal or reveal cerebellar atrophy in longer expansions.

4.5 | Huntington Disease-Like 2 (HDL-2)

HDL-2 is an AD form of HD-Like caused by a CTG repeat ex-
pansion in the JPH3 (Junctophilin-3) gene. It is the most fre-
quent HD phenocopy in individuals of sub-Saharan African
ancestry [93, 94].

Symptom onset typically occurs between 40 and 45years [93, 95].
Regarding motor aspects, patients may experience chorea, dys-
tonia, and parkinsonism. Chorea tends to predominate in indi-
viduals with smaller expansions, whereas higher repeat sizes
may be associated with dystonia and parkinsonian features. A
progressive subcortical dementia is observed, and neuropsychi-
atric disturbances such as depression, anxiety, and apathy may
occur [93, 95, 96].

Genetic confirmation requires detection of the JPH3 CTG ex-
pansion. TP-PCR or Southern blot is required for accurate sizing.
Additional diagnostic clues include the presence of acanthocytes
(in 10% of cases) and the MRI pattern, showing striatal and pre-
dominantly occipital atrophy [51, 95, 96].

4.6 | Huntington Disease Like 3 (HDL-3)

HDL-3 is a rare AR disorder mapped to chromosome 4p.15.3
and described in a single consanguineous Saudi Arabian fam-
ily [97]. Symptom onset is in early childhood (4-5years) with a
clinical presentation resembling JHD. Features include chorea,
dystonia, spasticity, pyramidal signs, psychomotor regression,
mutism, and epileptic seizures [97].

Brain MRI shows caudate and frontal lobe atrophy [7, 97].

5 | Childhood-Onset Chorea Formerly Labeled as
‘Benign Hereditary Chorea’ (BHC)

The term benign hereditary chorea (BHC) has been historically
used to describe childhood-onset, non-neurodegenerative cho-
reas with stable or slowly progressive courses. However, this
term is misleading, as some patients may develop significant
disability related to motor symptoms, psychiatric comorbidities,
cognitive dysfunction, or systemic involvement.
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Several genes have been described that can result in a benign
hereditary chorea (BHC) phenotype. However, BHC classically
refers to patients with mutations in the NKX2-1/TITF-1 gene
[98]. Mutations in the ADCY5 gene have been more recently de-
scribed as a cause of benign hereditary chorea [99]. Other genes
associated with paroxysmal dyskinesias can also manifest as
non-progressive chorea [100].

5.1 | NKX2-1-Related Disorders (“Classic” BHC)

NKX2-1 mutations, formerly TITF-1, cause an AD childhood-
onset chorea that often improves with age. With a prevalence of
less than one case per million, it is characterized by choreiform
movements, often accompanied by respiratory and endocrine
involvement [98, 101]. It belongs to the brain-lung-thyroid syn-
drome spectrum, although only 30%-40% of patients exhibit the
full triad. Congenital hypothyroidism, recurrent respiratory in-
fections, obstructive lung disease, and increased neoplastic risk
have been reported [101-103].

The neurological clinical picture includes hypotonia associated
with hyperkinetic movement disorders such as chorea, myoclo-
nus, ataxia, tremor, and dystonia. Patients usually present with
mild, non-progressive psychomotor delay and psychiatric disor-
ders within the spectrum of attention-deficit/hyperactivity dis-
order (ADHD) and OCD.

Pathogenic variants include point mutations and larger dele-
tions; the latter may be missed by standard NGS and require
complementary techniques such as MLPA or array-CGH for de-
tection [101]. Neuroimaging frequently reveals pituitary abnor-
malities, although it can also be normal. Blood tests may reveal
thyroid hormone abnormalities [102].

Some patients may respond to treatment with levodopa [104].

5.2 | ADCY5-Related Movement Disorders

ADCYS5 mutations cause AD hyperkinetic movement disor-
ders [99, 105] often arising de novo, with high penetrance and
marked phenotypic variability. Described phenotypes include
BHC, nocturnal paroxysmal dyskinesia, and kinesigenic and
non-kinesigenic dyskenisias [105, 106]. The estimated preva-
lence is below one case per million [99, 106]. Patients may also
present with some degree of psychomotor delay [99, 106].

The onset age is typically in childhood, although there are mildly
symptomatic cases diagnosed in adulthood. The phenotype in-
cludes facial chorea, dystonia, and myoclonus with paroxysmal
exacerbations, often triggered by sleep-wake transitions (espe-
cially early morning), stress, or fatigue [99, 107]. During exac-
erbations, patients may exhibit orofacial and cervical dystonia,
generalized chorea, and ballism.

Somatic mosaicism is frequent and may influence severity. It can
go undetected by standard NGS requiring high-depth sequenc-
ing when suspected [108]. Neuroimaging is usually normal. A
sustained response to caffeine or theophylline has been reported

in up to 40% of patients [109]. Selected cases may benefit from
DBS-GPi [110, 111].

5.3 | Other Genes With BHC-Like Phenotypes

- PDE2A: AR early onset chorea with paroxysmal exacerba-
tions, progressive cognitive symptoms, and epilepsy [112].

- PDEIOA: AD childhood chorea (ages 5-10), associated with
bilateral striatal hyperintensity on MRI and intellectual
disability [113].

- GNAOI: AD gain-of-function mutations lead to non-
progressive childhood chorea; loss-of-function mutations
are associated with Ohtahara syndrome [114].

6 | Paroxysmal Dyskinesias

These are a group of genetic disorders characterized by sudden
episodes of hyperkinetic choreo-dystonic movements triggered by
specific factors. Patients typically exhibit a normal interictal ex-
amination, and symptoms often improve with age. Although these
disorders typically present with paroxysmal symptoms beginning
in childhood, there is increasing recognition of their overlap with
choreic syndromes. A single gene can give rise to a spectrum of
phenotypes, including forms that resemble hereditary chorea.
Moreover, many cases remain undiagnosed until adulthood, and
these disorders should therefore be considered in the differential
diagnosis of genetic choreas, particularly in cases with paroxysmal
or fluctuating symptoms [115, 116]. A comprehensive review of all
genetic causes of paroxysmal dyskinesias exceeds the scope of this
article and is addressed in detail in dedicated reviews [115, 116].

7 | Inherited Disorders With Metal or Mineral
Deposition

This group includes rare genetic conditions characterized by ab-
normal accumulation of metals or minerals in the brain, often
producing distinctive neuroimaging findings that can guide
diagnosis. Chorea may be present, although often as part of a
broader movement disorder spectrum.

7.1 | Primary Familial Brain Calcification (PFBC)

PFBC, formerly known as Fahr disease, is defined by bilateral
calcium deposition in the basal ganglia and cerebellum best vi-
sualized on CT scan [117]. It is most frequently caused by AD
mutations in the SLC20A2 gene, with variable penetrance and
expressivity. Other AD genes include PDGFB, PDGFRB, and
XRPI [117, 118]. Clinically, the syndrome is primarily character-
ized by parkinsonism and ataxia, although choreoathetosis may
also be present in up to 12%-16% of genetically confirmed cases.
Additionally, neuropsychiatric alterations and cognitive decline
are observed [117]. Genetic diagnosis relies on NGS or WES pan-
els including both AD and AR PFBC genes, with CNV analysis,
after excluding metabolic mimics such as hypoparathyroidism
or vitamin D deficiency.

European Journal of Neurology, 2025

9o0f 17



7.2 | Wilson's Disease

Wilson's disease (AR, ATP7B) is a treatable disorder of copper
metabolism. Neurological presentations include parkinsonism,
dystonia (often with risus sardonicus), tremor (“wing-beating”
tremor), psychiatric symptoms [119, 120] with chorea in only
5%-10% of cases [121] The Kayser- Fleischer ring is a hallmark
finding in patients with neurological symptoms [119, 120, 122].
Diagnosis begins with low serum ceruloplasmin and elevated
24-h urinary copper excretion. Genetic confirmation requires

(A) Step 1 - Differential diagnosis of adult-onset chorea.

full sequencing of ATP7B with MLPA if needed. Brain MRI may
show the classic “face-of-the-panda” midbrain sign [119, 122].

7.3 | Neurodegeneration With Brain Iron
Accumulation (NBIA)

NBIA syndromes are genetically heterogeneous disorders char-
acterized by basal ganglia iron accumulation visible on brain
MRIusing T2-weighted gradient-echo or susceptibility-weighted

Adult onset-chorea

No g cally confirmed family history

Guide diagnostic work-up based on:
Age at onset
Discase course
Suspected inheritance pattern
Associated clinical features

Chorea work-up
To exclude secondary causes and identify clues for genetic diagnosis.
Brain imaging - Blood tests (as summarized in table 5)
If high suspection of secondary cause, CSF analysis

/\

Evidence of acquired cause? I

-/\-

Suggestive family history or
specific diagnostic clues identified?

AN

Proceed with genetic
chorea work-up

Confirm diagnosis
and treatment if available

Proceed with genetic
chorea work-up

Targeted
genetic testing

(B) Step 2 — Work-up of suspected genetic chorea.

Adult-onset chorea

Genetic work-up

HTT testing

using TP-PCR or other appropriate technologies

If negative

Targeted repeat expansion testing

using TP-PCR or other appropriate technologies

CYorf72, TBP (SCA17), ATNI (DRPLA)

(especially in suspected AD cases)

If negative

WES or NGS panel
Preferably HPO-guided (especially in suspected AR cases)

If negative

Consider, based on test availability,
geographic origin, and clinical suspicion.

l

l

Consider WGS or
Long-read sequencing

Techniques to detect missed variants
(e.g. MLPA for VPS134, NKX2-1)

Study other repeat expansions
(e.g. JPH3, PRNP, other SCAs,)

Mitochondrial
DNA analysis

Reanalysis of prior NGS data
Consider every 2-3 years or if phenotype evolves

FIGURE2 |

Diagnostic approach to adult-onset chorea. Stepwise diagnostic algorithm for patients presenting with chorea. The initial evaluation

focuses on excluding acquired causes through clinical history, laboratory studies, neuroimaging, and cerebrospinal fluid analysis when appropriate.
In chronic or progressive cases, a genetic etiology should be suspected [(A) Step 1—Differential diagnosis of adult-onset chorea]. Targeted genetic
testing is recommended in the presence of specific diagnostic clues (e.g., acanthocytosis, MRI findings, systemic involvement). In the absence of such

clues, broader approaches including repeat expansion testing and phenotype-guided next-generation sequencing panels should be considered [(B)

Step 2—Work-up of suspected genetic chorea]. See Tables 1, 3, and 5 for detailed clinical and ancillary test correlations.
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imaging (SWI) sequences [123-125]. Chorea is rare overall but
may be a prominent feature in specific forms such as neuro-
ferritinopathy, aceruloplasminemia, and pantothenate kinase-
associated neurodegeneration (PKAN) [126].

Other NBIA subtypes (e.g., PLA2G6, FA2H, C19orf12) rarely
cause chorea and are not detailed here. Hypermagnesemia syn-
dromes (SLC30A10, SLC39A14), which may include chorea and
are treatable with chelation, can be considered in selected cases
with compatible imaging and systemic findings.

7.3.1 | Neuroferritinopathy

Mutation of the FTL gene, being the only iron deposition disor-
der transmitted in a dominant manner. It is more prevalent in
the north of England, specifically in the Cumbria region [127].
Chorea, dystonia with orofacial component, cognitive decline,
and neuropsychiatric alterations starting in middle age, around
50years old. On MRI, we may observe pallidal necrosis with
cystic degeneration. In laboratory tests, low plasma ferritin lev-
els can be found [127].

7.3.2 | Aceruloplasminemia

Mutation in the CP gene, AR inheritance that leads to a defi-
ciency of the protein ceruloplasmin, which is essential for
copper metabolism [128]. The clinical spectrum may include
cranio-cervical dystonia, parkinsonism, chorea, ataxia, diabetes
mellitus, hemolytic anemia, and retinal degeneration. Cognitive
decline and psychiatric disturbances are also commonly ob-
served [128, 129]. In MRI, hypointensity will be observed in the
striatum and dentate nucleus. In laboratory tests, low or unde-
tectable ceruloplasmin levels, elevated ferritin, and anemia with
hemolytic characteristics will be noted [129].

7.3.3 | Pantothenate Kinase-Associated
Neurodegeneration (PKAN)

Mutations in the PKANZ2 gene with AR inheritance. Disease
generally begins in childhood or adolescence, although it can
also manifest in adulthood. Symptoms include chorea (al-
though this is an uncommon presentation) in the head and
upper limbs, which may then generalize. However, dystonia
with orofacial involvement and parkinsonism are more com-
mon [123, 124]. On MRI, the characteristic “tiger eye sign”
can be observed. Additionally, approximately 10% of pa-
tients present acanthocytes in peripheral blood examination
[51, 123, 124].

8 | Other Genetic Neurological Disorders That
May Present With Chorea

To date, up to 249 genes have been associated with the chorea
phenotype according to the Human Phenotype Ontology da-
tabase (https://hpojax.org/browse/term/HP:0002072). Many
genetic disorders may present with chorea, although it is often

not the primary clinical feature. In most of these conditions,
chorea may emerge in the context of a broader neurological or
multisystemic syndrome, underscoring the importance of care-
ful phenotyping and targeted genetic testing in the diagnostic
workup. Examples include genetic ataxias beyond the more
common SCA17 and DRPLA, such as SCA48, ataxia telangi-
ectasia, ataxia with oculomotor apraxia, RFCI related diseases;
mitochondrial diseases due to mitochondrial DNA mutations
(e.g., MELAS) or nuclear DNA gene defects (e.g., POLG); in-
born errors of metabolism (e.g., glutaric aciduria type I, Lesch-
Nyham syndrome); and nucleotide excision repair disorders
(NERDND). A comprehensive review of all these genetic enti-
ties exceeds the scope of this article. However, Table 3 provides
a brief overview of some of the most relevant and prevalent

TABLE 5 | Recommended diagnostic workup for potentially
treatable causes of chorea and hereditary chorea.

Category Recommended tests

Blood tests Complete blood count, liver enzymes
(AST, ALT), renal function tests
(creatinine, urea) creatine kinase (CK),
thyroid and parathyiroid function
tests, ceruloplasmin, copper (serum

and 24h urine), ferritin, acanthocytes

ANA, anti-dsDNA, ASLO,
antiphospholipid antibodies,
ENA panel (SSA, SSB, ACE...)

Autoimmune

Paraneoplastic Autoimmune encephalitis and
onconeural antibody panel
(commonly associated antibodies
include: anti-CV2, anti-NMDA,
anti-Hu, anti-Ri, anti-GAD, anti-

IgLONS5, LGI1, CASPR2, etc.)

Metabolic/
nutritional/
pharmacological

Electrolyte panel (Nat, K,
calcium, magnesium), vitamin
B12, folate, homocysteine,
ammonia, lactate, glucose, renal
function tests (creatinine, urea),
alpha-fetoprotein, GDF15 (if
mitochondrial disease is suspected)
Toxicology screen (including
antipsychotics, stimulants)

Infectious HIV, VDRL/TPHA, hepatitis B/C
serologies, tuberculosis (quantiferon
or PPD), toxoplasma IgG/IgM,

herpesvirus serologies (HSV, VZV, ...)

MRI brain with T1, T2, FLAIR,
DWI, SWI/BOLD sequences;
CT brain (calcifications, non-

ketotic hyperglycemia)

Neuroimaging

CSF analysis Cell count, protein, glucose, oligoclonal
bands, 14-3-3 protein/RT-QulIC (if
prion disease suspected), surface

neuronal antibodies and onconeural
antibody panel, PCR and serologies

if CNS infection is suspected
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disorders in which chorea may be part of the clinical pheno-
type [4, 117, 125, 130-146].

9 | Discussion

The spectrum of genetic disorders associated with chorea is
broad, with HD being the most common cause worldwide. In
clinical practice, the diagnostic approach for a patient present-
ing with chorea and no previously genetically confirmed family
diagnosis should be guided by several factors: age at onset (child-
hood vs. adult), disease course (acute, subacute, or chronic),
family history, suspected inheritance pattern, and associated
clinical features (Table 1) [1, 4, 5]. A chronic and progressive
course is more suggestive of a hereditary etiology. In cases with
a genetically confirmed family history, confirmatory testing for
the known pathogenic variant is indicated [1, 4]. Furthermore,
genetic testing of asymptomatic individuals at risk requires
thorough genetic counseling to address the psychological, eth-
ical, and medical implications of predictive testing [42].

The first step in the workup patients without a genetically
confirmed family history, as detailed in Figure 2, involves rul-
ing out acquired causes through neuroimaging, blood tests,
and, when clinically indicated, cerebrospinal fluid analysis,
particularly in cases with subacute onset. Differential diag-
nosis should consider autoimmune and paraneoplastic, vas-
cular, metabolic, or infectious etiologies [1, 4, 5]. Laboratory
screening should also include CK, peripheral blood smear for
acanthocytes, serum ceruloplasmin and 24 h urinary cooper,
thyroid function tests and plasma manganese, that may pro-
vide diagnostic clues suggestive of hereditary choreas (Table 5

TABLE 6 | Treatment of hereditary chorea.

summarizes the recommended laboratory tests and neuro-
imaging findings). Similarly, brain MRI may reveal disease-
specific patterns such as caudate nucleus atrophy (commonly
observed in HD and neuroacanthocytosis), iron deposition in
the globus pallidus (“eye of the tiger” sign in PKAN), or cer-
ebellar atrophy suggestive of SCA17, DRPLA, or other ataxic
disorders [1, 5, 82]. These clinical, biochemical, and radiologi-
cal features are summarized in Tables 3 and 4, and can serve as
key elements to orient the differential diagnosis.

When specific diagnostic indicators are identified (e.g., acantho-
cytosis, Kayser-Fleischer rings, or disease-specific MRI find-
ings), targeted genetic testing should be prioritized.

In the absence of such findings, a stepwise approach is rec-
ommended. This should begin with analysis of HTT, followed
by testing for the most frequent known repeat expansions in
C9orf72, TBP, ATN1,JPH3 using RP-PCR or TP-PCR. If negative,
broader sequencing strategies should be considered. NGS-WES
is commonly employed, although it may fail to detect CN'Vs,
such as those found in VPS13A, NKX2-1, or PDGFB, as well as
variants in mitochondrial DNA (mtDNA), or deep intronic vari-
ants which require specific complementary assays (e.g., MLPA,
mtDNA analysis, WGS) [4, 7, 70].

In specialized centers, WGS with tailored bioinformatic pipe-
lines (as ExpansionHunter) is increasingly available. WGS en-
ables simultaneous interrogation of SNVs, CNVs, deep intronic
variants, and, when appropriately analyzed, repeat expansions.
However, long-read sequencing technologies remain the only
approach capable of fully resolving complex tandem repeats and
structural rearrangements in a single continuous read. While

Etiology First-line treatment Second-line adjunct options Comments
HD VMAT-2 inhibitors (e.g., Atypical antipsychotics Consider psychiatric profile;
tetrabenazine, deutetrabenazine, (e.g., aripiprazole, antipsychotics useful if comorbid
valvenazine) olanzapine, risperidone) psychosis or agitation
Avoid tetrabenazine if
depression/suicide risk
NA (ChAc, VMAT-2 inhibitors, GPi deep brain stimulation Self-injury and orolingual dystonia
McLeod) antipsychotics (DBS), botulinum toxin for may respond to focal botulinum
oromandibular dystonia toxin, use antipsychotics with caution
and feeding dystonia if associated cardiomyopathy
Benign Levodopa (in NKX2-1), caffeine/ DBS in selected cases Often non-progressive; treat comorbid
hereditary theophylline (in ADCY5) Levetiracetam may be ADHD/OCD symptoms if present
chorea considered in patients with
(NKX2-1, associated myoclonus
ADCYS5, etc.)
Paroxysmal Responsive to anticonvulsants Lifestyle adjustment Episodes often decrease with
chorea/ (carbamazepine, clonazepam) (e.g., avoid triggers) age without treatment
dyskinesias
Wilson's Chelation (D-penicillamine, Symptomatic therapy for Avoid dopamine antagonists early due
disease trientine), zinc supplementation chorea (e.g., tetrabenazine, to risk of worsening parkinsonism

antipsychotics)

Note: Therapeutic approaches for the management of chorea according to etiology and clinical context. The table summarizes pharmacological and interventional
strategies for chorea, based primarily on the available evidence from clinical experience and trials conducted in HD. Where applicable, disease-specific therapeutic
recommendations are included for other causes. Treatment decisions should be individualized based on symptom severity, comorbidities, and underlying etiology.
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currently restricted to research settings, long-read platforms are
expected to become integral to clinical diagnostics in the near
future.

In unresolved cases, periodic reanalysis of WES/WGS data
is recommended every 2-5years, or earlier if the phenotype
evolves, as both gene discovery and bioinformatic pipelines
continue to advance. Selected cases may benefit from referral
to research programs offering long-read sequencing to improve
diagnostic yield. When a genetic diagnosis is reached, genetic
counseling should be offered to the patient and family members
to plan their lives and future offspring.

Due to the constellation of cognitive, psychiatric, and systemic
symptoms that often accompany genetic choreas, management
requires a multidisciplinary approach. Chorea treatment de-
pends on etiology, comorbidities, and severity. While evidence
is limited beyond HD, VMAT?2 inhibitors and antipsychotics are
commonly used; DBS may help in refractory cases. Specific rec-
ommendations are summarized in Table 6, and detailed reviews
are available elsewhere [48, 49, 147].
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