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ABSTRACT
Hereditary choreas are a clinically and genetically heterogeneous group of monogenic disorders in which chorea constitutes the 
core or an early-dominant feature. These conditions result from various genetic mutations affecting the structures and pathways 
involved in movement control, primarily the caudate and putamen, ultimately impairing the basal ganglia circuits involved in 
the regulation of movement, cognition, and behavior. This review focuses on the main forms of hereditary choreas, including 
Huntington's disease, neuroacanthocytosis syndromes, Huntington's disease phenocopies, benign hereditary chorea, and other 
less common genetic disorders presenting with chorea. We discuss the clinical, genetic, and pathophysiological features of each 
condition, alongside key aspects of phenomenology, examination, and complementary tests—including laboratory findings—to 
guide phenotype-driven genetic testing. We detail the characteristic features of key disorders while also highlighting less com-
mon but emerging conditions. This review aims to assist neurologists in recognizing and diagnosing hereditary choreas effi-
ciently, including guidance on the selection of appropriate genetic tests, thereby reducing diagnostic delays, informing accurate 
counseling, and facilitating access to disease-specific interventions and clinical trials.

1   |   Introduction

Hereditary choreas are a clinically and genetically heterogeneous 
group of monogenic disorders in which chorea constitutes the 
core or an early-dominant feature. Chorea is a movement disorder 
characterized by involuntary, rapid, and irregular movements that 
unpredictably shift from one part of the body to another. These 
movements, often described as flowing or dance-like, can inter-
fere significantly with daily activities and are the hallmark of the 
neurological dysfunction seen in these conditions [1]. Hereditary 
choreas arise from genetic mutations that impair the function of 

proteins highly expressed in key brain regions involved in motor 
control—most notably the caudate nucleus and putamen—lead-
ing to dysfunction of the basal ganglia circuits [2, 3].

In addition to the motor symptoms, most hereditary choreas are 
frequently associated with a range of cognitive and behavioral 
alterations, adding further complexity to their clinical presen-
tation. Cognitive decline, psychiatric symptoms such as depres-
sion and anxiety, and personality changes are common features 
that can emerge alongside the movement disorder, often compli-
cating both diagnosis and management.
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Differential diagnosis of adult-onset chorea can be challeng-
ing, and one of the most informative clinical clues is the 
temporal pattern of symptom onset. Hereditary choreas typ-
ically manifest as slowly progressive, generalized choreic 
syndromes, whereas acquired etiologies—most often phar-
macological, autoimmune, metabolic, or infectious—tend 
to present with a subacute onset [1, 4, 5]. The distribution of 
involuntary movements also contributes to diagnostic orien-
tation. Hemichorea–hemiballism syndromes are commonly 
linked to structural brain lesions, such as vascular events or 
non-ketotic hyperglycemia. In contrast, hereditary choreas are 
usually generalized, although specific regions—such as the 
upper face in Huntington's disease (HD)—may show earlier or 
more prominent involvement. Age at onset may also help guide 
the differential diagnosis. A childhood onset presenting as a 
non-progressive choreic syndrome is more suggestive of one of 
the benign hereditary chorea (BHC) conditions, whereas par-
oxysmal choreo-dystonic episodes during childhood are more 
consistent with paroxysmal dyskinesias (see Table  1) [4–7]. 
Given the diagnostic complexity of these disorders and the 
growing number of implicated genes, some patients may reach 
adulthood without a definitive diagnosis.

The pattern of inheritance, the presence of anticipation due 
to trinucleotide repeat expansions within a family, and the 
geographic origin of the patient may also provide valuable di-
agnostic clues. Among autosomal dominant (AD) forms with 
anticipation, HD is the most frequent; among autosomal re-
cessive disorders, chorea-acanthocytosis is the most frequent 
cause, whereas McLeod syndrome is the main representative 
of X-linked choreas [1, 4, 5]. A number of additional clini-
cal features and neuroimaging findings  can further support 
the diagnostic process, as summarized in Tables  2, 3, 5 and 
Figure 1.

This article provides a comprehensive review of the primary 
forms of hereditary choreas with a particular focus on adult-
onset presentations. Childhood-onset choreas are not the pri-
mary focus of this review, but are briefly discussed when relevant 
to adult neurology practice. The search methodology is detailed 
in the Supporting Information. We discuss the clinical, genetic, 
and pathophysiological aspects of each disorder, highlighting the 
importance of detailed patient history, thorough neurological ex-
amination, and the use of complementary diagnostic tests—in-
cluding neuroimaging and laboratory studies—to guide genetic 
diagnosis. For each disorder, we indicate the most appropriate 
genetic test, emphasizing that many adult-onset choreas cannot 
be reliably diagnosed through next-generation whole-exome se-
quencing (NGS-WES) alone, as they are often caused by repeat 
expansions not detectable by standard WES pipelines. Advanced 
technologies such as whole-genome sequencing (NGS-WGS) with 
specific tools like ExpansionHunter, or long-read sequencing, may 
overcome most of these limitations; however, their availability in 
routine clinical settings remains limited. These approaches are 
expected to become increasingly accessible in the near future, po-
tentially enabling faster and more accurate diagnoses. Given the 
clinical overlap and genetic heterogeneity of these disorders, ac-
curate diagnosis is essential for appropriate management, genetic 
counseling, and timely access to disease-specific treatments and 
potential clinical trials.

2   |   Huntington's Disease (HD)

HD is the most common cause of hereditary chorea with a prev-
alence of approximately 5–12 cases per 100,000 people [8, 9] in 
populations of European descent, being less prevalent in Asia 
and Africa.

This neurodegenerative disease is caused by an abnormal expan-
sion of CAG triplets in exon 1 of the HTT gene with an AD inher-
itance pattern [6, 10, 11]. The greater the number of CAG repeats, 
the earlier the age of onset, which is associated with a worse prog-
nosis. There is a phenomenon of CAG-triplet expansion that can 
occur in successive generations, particularly when the disease is 
inherited paternally. The penetrance of the disease is related to the 
number of CAG repeats, being incomplete with 36–39 repeats and 
complete with 40 or more repeats. Juvenile-onset (JHD) forms are 
typically associated with 55 or more repeats [6, 12–14].

The typical onset of HD occurs between the ages of 35 and 
50, although up to 25% of cases manifest after the age of 60. It 
leads to a reduced life expectancy, with an average course from 

TABLE 1    |    Differential diagnosis of chorea.

Differential diagnosis of chorea

Pattern of onset

Acute: Vascular, metabolic

Subacute: Autoimmune (e.g., antiphospholipid syndrome, 
Sydenham chorea, IGLON5 disease), paraneoplastic (e.g., 
anti-CV2, anti-Hu), deficiency-related (e.g., nutritional or 
metabolic deficiencies), pharmacological

Chronic: Typically genetic

Progression

Progressive: Degenerative (HD, NA)

Non-progressive: HBC, ADCY5, dyskinetic cerebral palsy

Paroxismal: Paroxismal dykinesias

Distribution

Hemichorea/hemiballismus: Often associated with 
structural lesions (e.g., stroke, non-ketotic hyperglycemia, 
infections)

Generalized: HD, NA, BHC

Frontal-predominant: Early stages of HD

BOL: Common in NA, iron accumulation disorders, 
tardive dyskinesias

Age of onset

Childhood: Benign hereditary chorea (e.g., NKX2-1/TITF1, 
ADCY5 mutations)

Adulthood: HD, NA, HD-like syndromes (e.g., C9orf72 
expansions, SCA17, DRPLA, HDL1, HDL2)

Note: Differential diagnosis of chorea according to the pattern of onset, clinical 
course, distribution of involuntary movements, and age at presentation.
Abbreviations: BHC, benign hereditary chorea; BOL, bucco-orolingual; HD, 
Huntington's disease; NA, neuroacanthocytosis.
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symptom onset to death ranging 15–20 years [6, 13]. Between 2% 
and 5% of cases present before the age of 21 and are classified as 
JHD. The phenotype differs from the classic forms of HD, with a 
clinical picture dominated by dystonia and parkinsonism from 
the early stage of the disease [15–17].

HD is characterized by a clinical triad of motor, cognitive, and 
neuropsychiatric symptoms that can manifest at various stages 
throughout the course of the disease [6]. Before the onset of es-
tablished symptoms, there is a prodromal phase characterized 
by subtle signs of the disease [18, 19].

2.1   |   Motor Symptoms

Chorea is the hallmark motor symptom of HD. It typically be-
gins in the facial region, often with a frontal predominance, and 
progressively generalizes. Tics and vocalizations may also be 
present [1, 20]. Motor impersistence often co-occurs with cho-
rea [1, 21]. As the disease progresses, chorea will gradually be 
replaced by dystonia and parkinsonism [22–24]. Hyperreflexia 
with hung-up knee jerk is characteristic [25, 26]. Oculomotor ab-
normalities are common, particularly the inability to inhibit the 
head impulse during eye movements [27, 28]. Gait abnormalities 
in HD are often difficult to categorize as they typically present 
with a combination of chorea, motor impersistence, dystonia, 
parkinsonism, and cerebellar ataxia [29, 30].

2.2   |   Cognitive Impairment

The most frequent cognitive alteration is a dysexecutive-
attentional syndrome. Although cortical impairment is also 
common, it is often overshadowed by the prominent impairment 
of executive functions. Anosognosia is a frequent and clinically 
significant feature. As the disease progresses, most patients de-
velop dementia [31–35].

2.3   |   Neuropsychiatric Symptoms

Neuropsychiatric symptoms are highly prevalent in HD. Apathy 
is particularly characteristic and tends to progress linearly with 
the disease. Depression, anxiety, irritability, and aggression are 
also very common. Less frequently, obsessive-compulsive traits 
or psychosis may occur. Suicidal ideation and attempts are fre-
quent in HD [36–41].

2.4   |   Diagnosis

The genetic diagnosis is based on the detection of an abnormal 
CAG trinucleotide repeat expansion in the HTT gene [42]. This is 
typically performed using targeted molecular techniques such as 
triplet-primed PCR (TP-PCR), also referred to as repeat-primed 
PCR (RP-PCR), which are specifically designed to identify large 
or interrupted repeat expansions. Although a biological classifi-
cation system (Huntington's Disease Integrated Staging System 
[HD-ISS]) [19] has been proposed recently, clinical diagnosis in 
routine practice still relies primarily on the unequivocal pres-
ence of motor symptoms consistent with HD in patients with 

TABLE 2    |    Diagnostic clues that can guide genetic testing.

Diagnostic clues

Clinical characteristics—Physical examination

Upper face involvement/frontal corea: HD

Oro-buco-lingual dystonia: NA (ChAc, McLeod 
syndrome), NBIA, Lubag disease, Wilson's disease, Lesch–
Nyhan syndrome

Self-mutilating behavior: ChAc, Lesch–Nyhan syndrome, 
SCA17

Pyramidal signs and signs of lower motor neuron 
involvement: C9orf72

Polyneuropathy, areflexia: ChAc, McLeod

Myopathy: McLeod, mitochondrial

Seizures: ChAc, DPRLA, SCA17, mitochondrial

Ataxia: SCA17, DRPLA, SCAs and recessive ataxias

Ethnicity

Asians DRPLA; Sub-Saharan Africans HDL2—JHP3; 
Philippines origin, Lubag disease; Northern England, 
neuroferritinopathy

Neuroimaging

Caudate atrophy: HD, ChAc, McLeod

Cerebellar atrophy: SCA17, DRPLA, SCAs

Cortical atrophy

Fronto-temporal: C9orf72 expansions, occipital atrophy: 
HDL2-JPH3

Diffusion restriction: HDL1

Leukoencephalopathy: DPRLA

Inherited disorders with metal or mineral deposition

PKAN2: Eye of the tiger

Wilson's disease: Panda eyes

Neuroferrinopathy: Cystic lesions

Aceruloplasminemia: Basal ganglia hypointensity

Farh syndrome: Calcifications on CT scan

Basal ganglia hyperintensity: Glutaric aciduria, HDL1 
(diffusion restriction)

Laboratory findings

Acanthocytes: ChAc, McLeod, JPH3, PKAN2, 
aceruloplasminemia

CKs elevation: ChAc, McLeod syndrome, mitochondrial

AST, ALT elevation: ChAc, McLeod syndrome

Ceruloplasmin: Low levels in Wilson disease, absence in 
aceruloplasminemia

Ferritin: Low ferritin levels in neuroferritinopathy

Alpha-fetoprotein: Ataxia telangiectasia, ataxia with 
oculomotor apraxia
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TABLE 3    |    Main clinical and ancillary test findings in hereditary chorea.

Disease Gene Main and characteristic clinical features Ancillary test

Autosomal dominant

Huntington's disease HTT (IT15)
CAG expansion

Frontal chorea, motor impersistence, 
oculomotor dysfunction, psychiatric and 

cognitive symptoms, hung up reflexes

MRI: Caudate atrophy

C9orf72 C9orf72
GGGGCC expansion

Association with DLFT and ALS, 
pyramidalism, motor neuron symptoms

MRI: Fronto-
temporal atrophy

SCA 17 (HDL-4) TPB
CAG expansion

Cerebellar ataxia, dystonia, psychiatric 
symptoms and cognitive impairment

MRI: Cerebellar and 
cortical atrophy, 
putaminal rim

DRPLA ATN1
CAG expansion

Chorea if onset > 20 years, often 
accompanied by ataxia, dystonia, 

parkinsonism, and dementia, < 20 years: 
progressive myoclonic epilepsy

More frequent in Asia

MRI: Olivo-ponto-
cerebellar atrophy

Leukoencephalopathy

HDL-2 JPH3
CTG/CAG expansion

Parkinsonism, dementia, psychiatric 
disturbances, Sub-Saharan ancestry

MRI: Cortical 
atrophy—occipital
Acanthocytes (< 1)

HDL-1 PRPP
Octapeptide 
expansion

Rapidly progressive course, 
myoclonus, dementia

RMI: cortical ribbon 
14.3.3 protein

Neuroferritinopathy 
(NBIA)

FTLm Oro-buco-lingual dystonia Low ferritin levels
MRI: cystic 

degeneration in the 
caudate and putamen; 

and “pencil sign”

Benign hereditary 
chorea NKX2-1 related 
disorderes

NKX2-1 (TITF-1) Non-progressive, may be accompanied 
by developmental delay, lung 

and thyroid alterations

Thyroid hormone 
abnormalities

ADCY-5 related 
movement disorders

ADCY5 Chorea, dystonia, myoclonus, 
and facial dyskinesias, movement 

disorder can be paroxysmal

Caffeine response

Autosomal recessive

Chorea-acanthocytosis VPS13A Bucco-oro-lingual dystonia, feeding dystonia, 
PNP, myopathy, psychiatric symptoms, 

epilepsy, self-mutilation behaviors, areflexia

MRI: Caudate atrophy
Acanthocytes

Elevated CK levels, 
AST, ALT

Aceruloplasminemia 
(NBIA)

CP Dystonia, ataxia, diabetes, retinal 
degeneration, and anemia

Absence of 
ceruloplasmin

Wilson's disease ATP7B Parkinsonism, wing beating, dystonia, 
psychiatric disturbances, hepatic 

failure, Kayser–Fleischer ring

MRI: Panda sign 
Low ceruloplasmin 

levels, elevated copper 
levels in 24-h urine

X-linked

McLeod syndrome XK Myopathy, cardiomyopathy (2/3), 
OCB, tics, hepatosplenomegaly

MRI: Caudate atrophy
Acanthocytes

Elevated CK levels, 
AST, ALT

(Continues)
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confirmed genetic mutations or a family history of genetic con-
firmation [19, 43, 44]. Neuroimaging tests can assist in the dif-
ferential diagnosis. In classic forms of HD, brain MRI typically 
reveals atrophy of the caudate and putamen. In JHD forms, a 
characteristic hyperintensity in the putamen on T2/FLAIR se-
quences may be observed (Figure 1). PET-FDG scans can show 
hypometabolism in the caudate and putamen [12, 19, 45–47].

2.5   |   Treatment

The management of HD should be multidisciplinary, addressing 
the treatment of motor, cognitive, and psychiatric symptoms in 
an integrated manner. Chorea is primarily managed with vesic-
ular monoamine transporter type 2 (VMAT2) inhibitors [48, 49], 
although antipsychotics are commonly used in routine clinical 
practice to manage both chorea and psychiatric symptoms, 
while antidepressants are frequently employed to treat psychi-
atric disorders [48, 49].

3   |   Neuroacanthocytosis

Neuroacanthocytosis refers to a group of disorders that present 
neurological symptoms and acanthocytes in peripheral blood 
(Table 4) [50–52]. These syndromes can be categorized into “core” 
neuroacanthocytosis syndromes—such as chorea-acanthocytosis 
and McLeod syndrome—where chorea is a key clinical feature, 
and other neurological conditions in which acanthocytes may also 
appear but chorea is not the predominant manifestation.

3.1   |   Chorea-Acanthocytosis  
(ChAc)—Levine-Critchley Syndrome

It is the most common cause of neuroacanthocytosis, as well as 
the most frequent form of autosomal recessive (AR) hereditary 

chorea [51]. It is caused by variants in the VPS13A gene, which 
leads to the absence of chorein—a protein expressed in both 
neurons and erythrocytes [51, 53, 54]. The estimated prevalence 
is less than one case per million. Symptom onset typically oc-
curs in the third or fourth decade of life, and the life expectancy 
is approximately 15–20 years from onset [55].

The phenotype closely resembles that of HD, presenting with a 
pattern of generalized chorea [52, 54, 56]. However, several dis-
tinctive features help differentiate it from HD. There is a marked 
predilection for involvement of the buccolingual region, includ-
ing oromandibular dystonia and the characteristic “feeding 
dystonia.” Self-injurious behaviors—particularly tongue and lip 
biting—are common and may lead to significant mutilation. Tics 
are very common, particularly vocalizations, grunting, belching, 
and echolalia. A particularly distinctive motor symptom is inter-
mittent head drop [52, 54, 56]. Additional neurological findings 
include axonal sensorimotor polyneuropathy and myopathy with 
hypo- or areflexia [57]. The gait is described as “rubber-person” 
attributed to a combination of motor impersistence, dystonia, 
and myopathy. Parkinsonism may also occur. Approximately 
one-third of patients also experience generalized epileptic sei-
zures [29]. Neuropsychiatric symptoms include prominent OCD, 
along with apathy and frontal behavioral changes. Cognitively, 
patients experience progressive deterioration, primarily with ex-
ecutive dysfunction, which may ultimately progress to dementia 
[54, 56, 58].

The genetic diagnosis is based on the identification of biallelic 
pathogenic variants in the VPS13A gene. Full gene sequencing 
using targeted NGS panels or WES is commonly employed and 
can detect most point mutations. However, up to 20%–30% of 
pathogenic VPS13A alleles correspond to large deletions or du-
plications that may escape detection by standard sequencing. 
In such cases, complementary techniques such as multiplex 
ligation-dependent probe amplification (MLPA) or WGS may be 
necessary.

Disease Gene Main and characteristic clinical features Ancillary test

Lesch–Nyhan 
syndrome

HPRT1 Dystonia predominantly of the lower 
facial part, self-mutilation behaviors

Elevation of uric 
acid in the blood

Lubag disease TAF1 Hemidystonia, oromandibular dystonia, 
parkinsonism, Philippines ancestry

Dopa responsive 
parkinsonism

Other genetic conditions

Genetic ataxias SCA1, 2, 3, 8, 48 
(ATXN1, ATXN2, 
ATXN3), ATXN8 

(STUB1), AF 
(FXN), AT (ATM), 

AOA1 (APTX), 
AOA2 (SETX), 

CANVAS (RFC1)…

Predominant cerebellar ataxia, Chorea is 
more commonly reported in SCA48, AT, AOA, 
whereas in other ataxias it is uncommon and 
typically emerges later in the disease course

MRI: Cerebellar atrophy

Metabolic conditions Glutaric aciduria 
(GCDH)

Mitochondrial 
disease

Acute onset, in childhood 
triggers—infections, fever

Myopathy, seizures, ophthalmoparesis, 
movement disorders are present in 20%–30% 

patients although chorea is uncommon

Characteristic MRI

CKs, GDF15 elevation

TABLE 3    |    (Continued)
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Western blot analysis of erythrocyte proteins can be performed 
to demonstrate chorein deficiency, providing supportive di-
agnostic evidence [53, 59]. Additional laboratory findings that 
may assist in diagnosis include creatine kinase (CK) and liver 
enzymes. Acanthocytes may be present on a peripheral blood 

smear, although sensitivity is limited and repeated testing (ide-
ally three times) on freshly prepared samples is recommended 
to improve detection. Brain MRI reveals atrophy of the caudate 
and putamen, while 18F-FDG PET may show corresponding stri-
atal hypometabolism (Figure 1) [54, 57, 60].

FIGURE 1    |    MRI images from patients with genetic choreas (A–I). (A) T1-weighted MRI of a patient with early-stage Huntington's disease show-
ing mild caudate atrophy (arrows). (B) T2-weighted MRI of a patient with the Westphal variant of Huntington's disease showing characteristic hyper-
intensity in the putamen associated with caudate atrophy. (C) FLAIR MRI demonstrating caudate atrophy in a patient with neuroacanthocytosis due 
to a VPS13A mutation. (D, E) Coronal T1-weighted and axial T2-weighted images showing asymmetric atrophy, predominantly in the right frontal 
lobe, in a patient with a C9orf72 mutation, chorea, and frontotemporal cognitive decline. (F) FLAIR MRI of a patient with SCA17 presenting with 
ataxia, parkinsonism, and chorea, showing a right putaminal rim and cerebellar and caudate atrophy. (G–I) MRI of a patient with DRPLA: (G) T1-
weighted image showing hypointensity in the pons and cerebellar atrophy, (H) FLAIR image showing characteristic white matter hyperintensities, 
and (I) FLAIR image showing hyperintensity in the superior cerebellar peduncle and brainstem pathways.
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Pharmacological management is similar to HD, with the par-
ticularity that good responses to deep brain stimulation in the 
internal globus pallidus (DBS-GPi) have been described, as well 
as botulinum toxin injections for the management of oroman-
dibular dystonia [61, 62].

3.2   |   McLeod Syndrome

It primarily affects males due to its X-linked recessive inheri-
tance, although there have been some cases reported in homozy-
gous women or those with X chromosome inactivation, who tend 
to have milder symptoms. The syndrome is caused by a mutation 
in the XK gene that contains a single coding exon and encodes the 
Kell protein responsible for carrying the Kx antigen on red blood 
cells [63, 64]. The prevalence of this condition is even lower than 
ChAc, with fewer than 1000 cases reported worldwide.

The onset of symptoms usually occurs later in life, typically be-
tween the ages of 40 and 60 [55]. The phenotype includes general-
ized chorea. Tics may be predominant. Self-injurious behaviors 
are less common than in ChAc. Axial myopathy, sensory-motor 
axonal polyneuropathy with areflexia, and epileptic seizures are 
common [63, 65]. OCD and other neuropsychiatric symptoms, 
such as perseveration, behavioral changes, and cognitive de-
cline, may also be present [58, 64, 66]. Regarding systemic symp-
toms, the presence of cardiomyopathy (up to 70% of patients), 
arrhythmias, and the risk of sudden death should be considered 
[55, 67]. These patients may experience severe adverse reactions 
after receiving a blood transfusion without the McLeod pheno-
type starting from the second exposure [66].

The genetic diagnosis of McLeod syndrome relies on the identi-
fication of pathogenic variants in the XK gene. XK is covered in 
most neuroacanthocytosis gene panels and WES. However, as 
previously mentioned for ChAc, large deletions may also escape 
detection by WES; in such cases, confirmation with MLPA or 
array-CGH focused on Xp21 is recommended.

The absence of the Kx antigen and weakened Kell antigen ex-
pression in red blood cells provides a useful hematological clue 
that supports the diagnosis and should prompt genetic confir-
mation. As for ChAc, blood tests may show elevated CK levels, 
and acanthocytes may be present [68]. MRI shows caudate atro-
phy. The electromyogram may reveal a pattern consistent with 
sensory-motor axonal polyneuropathy and myopathy, which can 
also be confirmed through muscle biopsy or muscle MRI [69].

4   |   Phenocopies of Huntington's Disease: 
Huntington Disease-Like (HD-Like or HDL)

The term “HD-like” generally refers to patients presenting a 
phenotype resembling HD, characterized by the triad of motor, 
cognitive, and neuropsychiatric symptoms, but testing negative 
for CAG repeat expansion in the HTT gene [4, 7, 70].

4.1   |   C9orf72-Associated Disease

It is considered the most common genetic cause of HD-like 
syndromes in the Western population [71, 72]. It is caused by 
a GGGGCC hexanucleotide repeat expansion (> 60 repeats) lo-
cated in the first intron and promoter region of the C9orf72 gene. 
It follows an AD inheritance with age-dependent incomplete 
penetrance [73, 74].

The average age at onset is 55–60 years. The disease is charac-
terized by a combination of motor, cognitive, and psychiatric 
symptoms with frontotemporal dementia (FTD) and amyotrophic 
lateral sclerosis (ALS) as the most frequent phenotypes. From a 
motor perspective, signs of both upper and lower motor neuron in-
volvement are typically present, with pyramidal signs on examina-
tion. Parkinsonism is also common, while chorea is a less frequent 
symptom, primarily affecting the buccolingual region. Cognitive  
decline is accompanied by pronounced behavioral symptoms, al-
though suicidal ideation is less frequent than in HD [72, 73, 75].

The genetic diagnosis, as with HD, requires specific techniques 
such as TP-PCR. Neuroimaging typically reveals frontotempo-
ral atrophy and frontotemporal hypometabolism on PET-18FDG 
scans (Figure 1) [72, 73, 75].

4.2   |   SCA17 (HDL-4)

It is considered the second most common cause of HD-like syn-
drome in Western populations [71]. It is caused by a CAG/CAA 
polyglutamine expansion in the TBP gene and follows an AD 
inheritance pattern. Alleles with 41–45 repeats exhibit reduced 
penetrance while those with 46–66 repeats are fully penetrant 
[76–78]. Recent evidence suggests that mutations in the STUB1 
gene may modify disease expression in individuals carrying 
TBP alleles within the reduced penetrance range, resulting in a 
digenic inheritance pattern [76, 79, 80].

The usual age at onset ranges from 30 to 50 years, with later 
onset observed in carriers of reduced penetrance alleles [76, 77]. 
Clinical presentation is dominated by a progressive ataxia syn-
drome [76, 79]. Up to one-third of patients present with chorea; 

TABLE 4    |    Neuroacanthocytosis syndromes.

“Core” neuroacanthocytosis syndromes

Choreoacanthocytosis (ChAc)

McLeod syndrome

Neurodegenerative diseases that may present with 
acanthocytes in peripheral blood and chorea

Pantothenate kinase-associated neurodegeneration 
(PKAN)

Aceruloplasminemia

Huntington like-2 (HDL-2)

Diseases with decreased lipoproteins in the blood and 
acanthocytes

Abetalipoproteinemia

Hypobetalipoproteinemia

Note: Acanthocytes are spiculated red blood cells that acquire this shape due to 
alterations in the membrane proteins of erythrocytes.
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they can also present with parkinsonism, dystonia, and myoc-
lonus. Progressive cognitive decline and psychiatric symptoms 
are common, especially the presence of schizophrenia-like de-
lusional ideation and depression. Additionally, patients may ex-
perience epileptic seizures [76–78].

Genetic diagnosis requires specific techniques such as TP-
PCR. In cases with intermediate repeat lengths, sequencing of 
the STUB1 gene by NGS or Sanger methods is recommended. 
Brain MRI shows cerebellar, basal ganglia, and cortical atro-
phy; a hyperintense rim in the putamen has also been described 
(Figure 1) [76, 81, 82].

4.3   |   Dentato-Rubro-Pallido-Luysian Atrophy 
(DRPLA)—Naito-Oyanagi Disease

Is the main differential diagnosis of HD in the Asian population, 
particularly in Japan. It is caused by a CAG repeat expansion in 
the ATN1 gene and follows an AD inheritance pattern. It exhib-
its a significant phenomenon of meiotic expansion, particularly 
with paternal inheritance. Alleles with 35 and 47 repeats exhibit 
reduced penetrance, while those with > 48 are fully penetrant. 
Juvenile-onset cases, often presenting as progressive myoclonic 
epilepsy, are typically associated with more than 70 CAG repeats 
[83–86].

Typical age at onset ranges from 30 to 50 years [84, 87]. 
Cerebellar ataxia is the hallmark feature, along with other 
motor symptoms such as chorea, dystonia, parkinsonism, 
spasticity, and myoclonus. Chorea and cognitive decline tend 
to predominate in adult-onset cases with fewer repeats, while 
myoclonus, epilepsy, and psychomotor delay are more common 
in juvenile forms with larger expansions [84, 85, 88]. Behavioral 
disturbances, psychosis, confabulation, depression, and apathy 
can occur. Seizures are also commonly present [87, 88].

As in other polyglutamine disorders, the genetic diagnosis relies 
on specific techniques such as TP-PCR. MRI shows cerebellar and 
pontine tegmentum atrophy with hypointensity in T1-weighted 
sequences. Additionally, symmetric and diffuse hyperintensities 
in the white matter, corona radiata, centrum semiovale, and supe-
rior cerebellar pedunculus on T2-weighted sequences and ventric-
ular dilatation are characteristics (Figure 1) [82, 85, 87].

4.4   |   Huntington Disease-Like 1 (HDL-1)-Familial 
Prion Disease

HDL-1 is a rare AD prionopathy [89] caused by an octapeptide 
repeat expansion in the prion protein gene (PRNP). The number 
of repeats influences the phenotype, disease onset, and progres-
sion. Expansions of 2–5 repeats are associated with later onset 
and rapidly progressive Creutzfeldt-Jakob-like disease evolving 
in less than 24 months (point mutations in PRNP can also re-
sult in this Creutzfeldt-Jakob-like phenotype). Insertions of 6–12 
repeats lead to the HDL-1 phenotype with earlier onset (20–
40 years) and slower progression (> 24 months) [90, 91]. Fewer 
than 200 cases have been reported globally, with predominance 
in Scandinavian populations [90].

The phenotype includes rapidly progressive cognitive decline 
with cortical features—apraxia, amnesia, and executive dys-
function—accompanied by early behavioral changes, psychosis, 
depression, and apathy. Motor signs include ataxia, parkinson-
ism, chorea, and myoclonus [90, 92].

As in other repeat expansion disorders, genetic diagnosis re-
quires targeted analysis of the PRNP gene using specific TP-
PCR. Supportive diagnostic tools include CSF 14-3-3 protein 
test—although this may be negative in HDL-1—and real-time 
quaking-induced conversion (RT-QuIC), which offers superior 
sensitivity. Brain MRI may show cortical and basal ganglia 
hyperintensities or diffuse atrophy, although imaging may be 
normal or reveal cerebellar atrophy in longer expansions.

4.5   |   Huntington Disease-Like 2 (HDL-2)

HDL-2 is an AD form of HD-Like caused by a CTG repeat ex-
pansion in the JPH3 (Junctophilin-3) gene. It is the most fre-
quent HD phenocopy in individuals of sub-Saharan African 
ancestry [93, 94].

Symptom onset typically occurs between 40 and 45 years [93, 95]. 
Regarding motor aspects, patients may experience chorea, dys-
tonia, and parkinsonism. Chorea tends to predominate in indi-
viduals with smaller expansions, whereas higher repeat sizes 
may be associated with dystonia and parkinsonian features. A 
progressive subcortical dementia is observed, and neuropsychi-
atric disturbances such as depression, anxiety, and apathy may 
occur [93, 95, 96].

Genetic confirmation requires detection of the JPH3 CTG ex-
pansion. TP-PCR or Southern blot is required for accurate sizing. 
Additional diagnostic clues include the presence of acanthocytes 
(in 10% of cases) and the MRI pattern, showing striatal and pre-
dominantly occipital atrophy [51, 95, 96].

4.6   |   Huntington Disease Like 3 (HDL-3)

HDL-3 is a rare AR disorder mapped to chromosome 4p.15.3 
and described in a single consanguineous Saudi Arabian fam-
ily [97]. Symptom onset is in early childhood (4–5 years) with a 
clinical presentation resembling JHD. Features include chorea, 
dystonia, spasticity, pyramidal signs, psychomotor regression, 
mutism, and epileptic seizures [97].

Brain MRI shows caudate and frontal lobe atrophy [7, 97].

5   |   Childhood-Onset Chorea Formerly Labeled as 
‘Benign Hereditary Chorea’ (BHC)

The term benign hereditary chorea (BHC) has been historically 
used to describe childhood-onset, non-neurodegenerative cho-
reas with stable or slowly progressive courses. However, this 
term is misleading, as some patients may develop significant 
disability related to motor symptoms, psychiatric comorbidities, 
cognitive dysfunction, or systemic involvement.
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Several genes have been described that can result in a benign 
hereditary chorea (BHC) phenotype. However, BHC classically 
refers to patients with mutations in the NKX2-1/TITF-1 gene 
[98]. Mutations in the ADCY5 gene have been more recently de-
scribed as a cause of benign hereditary chorea [99]. Other genes 
associated with paroxysmal dyskinesias can also manifest as 
non-progressive chorea [100].

5.1   |   NKX2-1-Related Disorders (“Classic” BHC)

NKX2-1 mutations, formerly TITF-1, cause an AD childhood-
onset chorea that often improves with age. With a prevalence of 
less than one case per million, it is characterized by choreiform 
movements, often accompanied by respiratory and endocrine 
involvement [98, 101]. It belongs to the brain–lung–thyroid syn-
drome spectrum, although only 30%–40% of patients exhibit the 
full triad. Congenital hypothyroidism, recurrent respiratory in-
fections, obstructive lung disease, and increased neoplastic risk 
have been reported [101–103].

The neurological clinical picture includes hypotonia associated 
with hyperkinetic movement disorders such as chorea, myoclo-
nus, ataxia, tremor, and dystonia. Patients usually present with 
mild, non-progressive psychomotor delay and psychiatric disor-
ders within the spectrum of attention-deficit/hyperactivity dis-
order (ADHD) and OCD.

Pathogenic variants include point mutations and larger dele-
tions; the latter may be missed by standard NGS and require 
complementary techniques such as MLPA or array-CGH for de-
tection [101]. Neuroimaging frequently reveals pituitary abnor-
malities, although it can also be normal. Blood tests may reveal 
thyroid hormone abnormalities [102].

Some patients may respond to treatment with levodopa [104].

5.2   |   ADCY5-Related Movement Disorders

ADCY5 mutations cause AD hyperkinetic movement disor-
ders [99, 105] often arising de novo, with high penetrance and 
marked phenotypic variability. Described phenotypes include 
BHC, nocturnal paroxysmal dyskinesia, and kinesigenic and 
non-kinesigenic dyskenisias [105, 106]. The estimated preva-
lence is below one case per million [99, 106]. Patients may also 
present with some degree of psychomotor delay [99, 106].

The onset age is typically in childhood, although there are mildly 
symptomatic cases diagnosed in adulthood. The phenotype in-
cludes facial chorea, dystonia, and myoclonus with paroxysmal 
exacerbations, often triggered by sleep–wake transitions (espe-
cially early morning), stress, or fatigue [99, 107]. During exac-
erbations, patients may exhibit orofacial and cervical dystonia, 
generalized chorea, and ballism.

Somatic mosaicism is frequent and may influence severity. It can 
go undetected by standard NGS requiring high-depth sequenc-
ing when suspected [108]. Neuroimaging is usually normal. A 
sustained response to caffeine or theophylline has been reported 

in up to 40% of patients [109]. Selected cases may benefit from 
DBS-GPi [110, 111].

5.3   |   Other Genes With BHC-Like Phenotypes

–	 PDE2A: AR early onset chorea with paroxysmal exacerba-
tions, progressive cognitive symptoms, and epilepsy [112].

–	 PDE10A: AD childhood chorea (ages 5–10), associated with 
bilateral striatal hyperintensity on MRI and intellectual 
disability [113].

–	 GNAO1: AD gain-of-function mutations lead to non-
progressive childhood chorea; loss-of-function mutations 
are associated with Ohtahara syndrome [114].

6   |   Paroxysmal Dyskinesias

These are a group of genetic disorders characterized by sudden 
episodes of hyperkinetic choreo-dystonic movements triggered by 
specific factors. Patients typically exhibit a normal interictal ex-
amination, and symptoms often improve with age. Although these 
disorders typically present with paroxysmal symptoms beginning 
in childhood, there is increasing recognition of their overlap with 
choreic syndromes. A single gene can give rise to a spectrum of 
phenotypes, including forms that resemble hereditary chorea. 
Moreover, many cases remain undiagnosed until adulthood, and 
these disorders should therefore be considered in the differential 
diagnosis of genetic choreas, particularly in cases with paroxysmal 
or fluctuating symptoms [115, 116]. A comprehensive review of all 
genetic causes of paroxysmal dyskinesias exceeds the scope of this  
article and is addressed in detail in dedicated reviews [115, 116].

7   |   Inherited Disorders With Metal or Mineral 
Deposition

This group includes rare genetic conditions characterized by ab-
normal accumulation of metals or minerals in the brain, often 
producing distinctive neuroimaging findings that can guide 
diagnosis. Chorea may be present, although often as part of a 
broader movement disorder spectrum.

7.1   |   Primary Familial Brain Calcification (PFBC)

PFBC, formerly known as Fahr disease, is defined by bilateral 
calcium deposition in the basal ganglia and cerebellum best vi-
sualized on CT scan [117]. It is most frequently caused by AD 
mutations in the SLC20A2 gene, with variable penetrance and 
expressivity. Other AD genes include PDGFB, PDGFRB, and 
XRP1 [117, 118]. Clinically, the syndrome is primarily character-
ized by parkinsonism and ataxia, although choreoathetosis may 
also be present in up to 12%–16% of genetically confirmed cases. 
Additionally, neuropsychiatric alterations and cognitive decline 
are observed [117]. Genetic diagnosis relies on NGS or WES pan-
els including both AD and AR PFBC genes, with CNV analysis, 
after excluding metabolic mimics such as hypoparathyroidism 
or vitamin D deficiency.
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7.2   |   Wilson's Disease

Wilson's disease (AR, ATP7B) is a treatable disorder of copper 
metabolism. Neurological presentations include parkinsonism, 
dystonia (often with risus sardonicus), tremor (“wing-beating” 
tremor), psychiatric symptoms [119, 120] with chorea in only 
5%–10% of cases [121] The Kayser- Fleischer ring is a hallmark 
finding in patients with neurological symptoms [119, 120, 122]. 
Diagnosis begins with low serum ceruloplasmin and elevated 
24-h urinary copper excretion. Genetic confirmation requires 

full sequencing of ATP7B with MLPA if needed. Brain MRI may 
show the classic “face-of-the-panda” midbrain sign [119, 122].

7.3   |   Neurodegeneration With Brain Iron 
Accumulation (NBIA)

NBIA syndromes are genetically heterogeneous disorders char-
acterized by basal ganglia iron accumulation visible on brain 
MRI using T2-weighted gradient-echo or susceptibility-weighted 

FIGURE 2    |    Diagnostic approach to adult-onset chorea. Stepwise diagnostic algorithm for patients presenting with chorea. The initial evaluation 
focuses on excluding acquired causes through clinical history, laboratory studies, neuroimaging, and cerebrospinal fluid analysis when appropriate. 
In chronic or progressive cases, a genetic etiology should be suspected [(A) Step 1—Differential diagnosis of adult-onset chorea]. Targeted genetic 
testing is recommended in the presence of specific diagnostic clues (e.g., acanthocytosis, MRI findings, systemic involvement). In the absence of such 
clues, broader approaches including repeat expansion testing and phenotype-guided next-generation sequencing panels should be considered [(B) 
Step 2—Work-up of suspected genetic chorea]. See Tables 1, 3, and 5 for detailed clinical and ancillary test correlations.
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imaging (SWI) sequences [123–125]. Chorea is rare overall but 
may be a prominent feature in specific forms such as neuro-
ferritinopathy, aceruloplasminemia, and pantothenate kinase-
associated neurodegeneration (PKAN) [126].

Other NBIA subtypes (e.g., PLA2G6, FA2H, C19orf12) rarely 
cause chorea and are not detailed here. Hypermagnesemia syn-
dromes (SLC30A10, SLC39A14), which may include chorea and 
are treatable with chelation, can be considered in selected cases 
with compatible imaging and systemic findings.

7.3.1   |   Neuroferritinopathy

Mutation of the FTL gene, being the only iron deposition disor-
der transmitted in a dominant manner. It is more prevalent in 
the north of England, specifically in the Cumbria region [127]. 
Chorea, dystonia with orofacial component, cognitive decline, 
and neuropsychiatric alterations starting in middle age, around 
50 years old. On MRI, we may observe pallidal necrosis with 
cystic degeneration. In laboratory tests, low plasma ferritin lev-
els can be found [127].

7.3.2   |   Aceruloplasminemia

Mutation in the CP gene, AR inheritance that leads to a defi-
ciency of the protein ceruloplasmin, which is essential for 
copper metabolism [128]. The clinical spectrum may include 
cranio-cervical dystonia, parkinsonism, chorea, ataxia, diabetes 
mellitus, hemolytic anemia, and retinal degeneration. Cognitive 
decline and psychiatric disturbances are also commonly ob-
served [128, 129]. In MRI, hypointensity will be observed in the 
striatum and dentate nucleus. In laboratory tests, low or unde-
tectable ceruloplasmin levels, elevated ferritin, and anemia with 
hemolytic characteristics will be noted [129].

7.3.3   |   Pantothenate Kinase-Associated 
Neurodegeneration (PKAN)

Mutations in the PKAN2 gene with AR inheritance. Disease 
generally begins in childhood or adolescence, although it can 
also manifest in adulthood. Symptoms include chorea (al-
though this is an uncommon presentation) in the head and 
upper limbs, which may then generalize. However, dystonia 
with orofacial involvement and parkinsonism are more com-
mon [123, 124]. On MRI, the characteristic “tiger eye sign” 
can be observed. Additionally, approximately 10% of pa-
tients present acanthocytes in peripheral blood examination 
[51, 123, 124].

8   |   Other Genetic Neurological Disorders That 
May Present With Chorea

To date, up to 249 genes have been associated with the chorea 
phenotype according to the Human Phenotype Ontology da-
tabase (https://​hpo.​jax.​org/​browse/​term/​HP:​0002072). Many 
genetic disorders may present with chorea, although it is often 

not the primary clinical feature. In most of these conditions, 
chorea may emerge in the context of a broader neurological or 
multisystemic syndrome, underscoring the importance of care-
ful phenotyping and targeted genetic testing in the diagnostic 
workup. Examples include genetic ataxias beyond the more 
common SCA17 and DRPLA, such as SCA48, ataxia telangi-
ectasia, ataxia with oculomotor apraxia, RFC1 related diseases; 
mitochondrial diseases due to mitochondrial DNA mutations 
(e.g., MELAS) or nuclear DNA gene defects (e.g., POLG); in-
born errors of metabolism (e.g., glutaric aciduria type I, Lesch-
Nyham syndrome); and nucleotide excision repair disorders 
(NERDND). A comprehensive review of all these genetic enti-
ties exceeds the scope of this article. However, Table 3 provides 
a brief overview of some of the most relevant and prevalent 

TABLE 5    |    Recommended diagnostic workup for potentially 
treatable causes of chorea and hereditary chorea.

Category Recommended tests

Blood tests Complete blood count, liver enzymes 
(AST, ALT), renal function tests 

(creatinine, urea) creatine kinase (CK), 
thyroid and parathyiroid function 

tests, ceruloplasmin, copper (serum 
and 24 h urine), ferritin, acanthocytes

Autoimmune ANA, anti-dsDNA, ASLO, 
antiphospholipid antibodies, 

ENA panel (SSA, SSB, ACE…)

Paraneoplastic Autoimmune encephalitis and 
onconeural antibody panel 

(commonly associated antibodies 
include: anti-CV2, anti-NMDA, 

anti-Hu, anti-Ri, anti-GAD, anti-
IgLON5, LGI1, CASPR2, etc.)

Metabolic/
nutritional/
pharmacological

Electrolyte panel (Na+, K+, 
calcium, magnesium), vitamin 

B12, folate, homocysteine, 
ammonia, lactate, glucose, renal 
function tests (creatinine, urea), 

alpha-fetoprotein, GDF15 (if 
mitochondrial disease is suspected)

Toxicology screen (including 
antipsychotics, stimulants)

Infectious HIV, VDRL/TPHA, hepatitis B/C 
serologies, tuberculosis (quantiferon 

or PPD), toxoplasma IgG/IgM, 
herpesvirus serologies (HSV, VZV, …)

Neuroimaging MRI brain with T1, T2, FLAIR, 
DWI, SWI/BOLD sequences; 
CT brain (calcifications, non-

ketotic hyperglycemia)

CSF analysis Cell count, protein, glucose, oligoclonal 
bands, 14-3-3 protein/RT-QuIC (if 
prion disease suspected), surface 

neuronal antibodies and onconeural 
antibody panel, PCR and serologies 

if CNS infection is suspected

https://hpo.jax.org/browse/term/HP:0002072
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disorders in which chorea may be part of the clinical pheno-
type [4, 117, 125, 130–146].

9   |   Discussion

The spectrum of genetic disorders associated with chorea is 
broad, with HD being the most common cause worldwide. In 
clinical practice, the diagnostic approach for a patient present-
ing with chorea and no previously genetically confirmed family 
diagnosis should be guided by several factors: age at onset (child-
hood vs. adult), disease course (acute, subacute, or chronic), 
family history, suspected inheritance pattern, and associated 
clinical features (Table  1) [1, 4, 5]. A chronic and progressive 
course is more suggestive of a hereditary etiology. In cases with 
a genetically confirmed family history, confirmatory testing for 
the known pathogenic variant is indicated [1, 4]. Furthermore, 
genetic testing of asymptomatic individuals at risk requires 
thorough genetic counseling to address the psychological, eth-
ical, and medical implications of predictive testing [42].

The first step in the workup patients without a genetically 
confirmed family history, as detailed in Figure 2, involves rul-
ing out acquired causes through neuroimaging, blood tests, 
and, when clinically indicated, cerebrospinal fluid analysis, 
particularly in cases with subacute onset. Differential diag-
nosis should consider autoimmune and paraneoplastic, vas-
cular, metabolic, or infectious etiologies [1, 4, 5]. Laboratory 
screening should also include CK, peripheral blood smear for 
acanthocytes, serum ceruloplasmin and 24 h urinary cooper, 
thyroid function tests and plasma manganese, that may pro-
vide diagnostic clues suggestive of hereditary choreas (Table 5 

summarizes the recommended laboratory tests and neuro-
imaging findings). Similarly, brain MRI may reveal disease-
specific patterns such as caudate nucleus atrophy (commonly 
observed in HD and neuroacanthocytosis), iron deposition in 
the globus pallidus (“eye of the tiger” sign in PKAN), or cer-
ebellar atrophy suggestive of SCA17, DRPLA, or other ataxic 
disorders [1, 5, 82]. These clinical, biochemical, and radiologi-
cal features are summarized in Tables 3 and 4, and can serve as 
key elements to orient the differential diagnosis.

When specific diagnostic indicators are identified (e.g., acantho-
cytosis, Kayser–Fleischer rings, or disease-specific MRI find-
ings), targeted genetic testing should be prioritized.

In the absence of such findings, a stepwise approach is rec-
ommended. This should begin with analysis of HTT, followed 
by testing for the most frequent known repeat expansions in 
C9orf72, TBP, ATN1, JPH3 using RP-PCR or TP-PCR. If negative, 
broader sequencing strategies should be considered. NGS-WES 
is commonly employed, although it may fail to detect CNVs, 
such as those found in VPS13A, NKX2-1, or PDGFB, as well as 
variants in mitochondrial DNA (mtDNA), or deep intronic vari-
ants which require specific complementary assays (e.g., MLPA, 
mtDNA analysis, WGS) [4, 7, 70].

In specialized centers, WGS with tailored bioinformatic pipe-
lines (as ExpansionHunter) is increasingly available. WGS en-
ables simultaneous interrogation of SNVs, CNVs, deep intronic 
variants, and, when appropriately analyzed, repeat expansions. 
However, long-read sequencing technologies remain the only 
approach capable of fully resolving complex tandem repeats and 
structural rearrangements in a single continuous read. While 

TABLE 6    |    Treatment of hereditary chorea.

Etiology First-line treatment Second-line adjunct options Comments

HD VMAT-2 inhibitors (e.g., 
tetrabenazine, deutetrabenazine, 

valvenazine)

Atypical antipsychotics 
(e.g., aripiprazole, 

olanzapine, risperidone)

Consider psychiatric profile; 
antipsychotics useful if comorbid 

psychosis or agitation
Avoid tetrabenazine if 
depression/suicide risk

NA (ChAc, 
McLeod)

VMAT-2 inhibitors, 
antipsychotics

GPi deep brain stimulation 
(DBS), botulinum toxin for 

oromandibular dystonia 
and feeding dystonia

Self-injury and orolingual dystonia 
may respond to focal botulinum 

toxin, use antipsychotics with caution 
if associated cardiomyopathy

Benign 
hereditary 
chorea 
(NKX2-1, 
ADCY5, etc.)

Levodopa (in NKX2-1), caffeine/
theophylline (in ADCY5)

DBS in selected cases
Levetiracetam may be 

considered in patients with 
associated myoclonus

Often non-progressive; treat comorbid 
ADHD/OCD symptoms if present

Paroxysmal 
chorea/
dyskinesias

Responsive to anticonvulsants 
(carbamazepine, clonazepam)

Lifestyle adjustment 
(e.g., avoid triggers)

Episodes often decrease with 
age without treatment

Wilson's 
disease

Chelation (d-penicillamine, 
trientine), zinc supplementation

Symptomatic therapy for 
chorea (e.g., tetrabenazine, 

antipsychotics)

Avoid dopamine antagonists early due 
to risk of worsening parkinsonism

Note: Therapeutic approaches for the management of chorea according to etiology and clinical context. The table summarizes pharmacological and interventional 
strategies for chorea, based primarily on the available evidence from clinical experience and trials conducted in HD. Where applicable, disease-specific therapeutic 
recommendations are included for other causes. Treatment decisions should be individualized based on symptom severity, comorbidities, and underlying etiology.
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currently restricted to research settings, long-read platforms are 
expected to become integral to clinical diagnostics in the near 
future.

In unresolved cases, periodic reanalysis of WES/WGS data 
is recommended every 2–5 years, or earlier if the phenotype 
evolves, as both gene discovery and bioinformatic pipelines 
continue to advance. Selected cases may benefit from referral 
to research programs offering long-read sequencing to improve 
diagnostic yield. When a genetic diagnosis is reached, genetic 
counseling should be offered to the patient and family members 
to plan their lives and future offspring.

Due to the constellation of cognitive, psychiatric, and systemic 
symptoms that often accompany genetic choreas, management 
requires a multidisciplinary approach. Chorea treatment de-
pends on etiology, comorbidities, and severity. While evidence 
is limited beyond HD, VMAT2 inhibitors and antipsychotics are 
commonly used; DBS may help in refractory cases. Specific rec-
ommendations are summarized in Table 6, and detailed reviews 
are available elsewhere [48, 49, 147].
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