Clinical & Translational Immunology 2025; 14: e70055. doi: 10.1002/cti2.70055 www.wileyonlinelibrary.com/journal/cti

RFVIFW

T-cell subsets in *Pneumocystis* pneumonia

Yuxi Chen^{1,a}, Hengmo Rong^{2,a}, Ting Li², Chao Zhang², Huqin Yang², Han Sun², Dong Wang², Xiaoxia Zhou^{2,3}, Kan Zhai² (b) & Zhaohui Tong^{1,2}

- 1 Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- 2 Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- 3 Department of General Medicine, Fu Xing Hospital, Capital Medical University, Beijing, China

Correspondence

K Zhai, Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.

E-mails: zhaikan@ccmu.edu.cn

Z Tong, Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.

E-mail: tongzhaohuicy@sina.com

^aEqual contributors.

Received 26 May 2025; Revised 2 October 2025; Accepted 10 October 2025

doi: 10.1002/cti2.70055

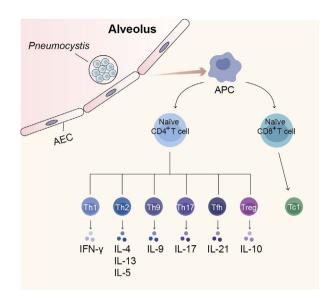
Clinical & Translational Immunology

2025; 14: e70055

Abstract

Pneumocystis pneumonia (PCP), caused by the opportunistic fungal pathogen *Pneumocystis*, remains a common fungal infection among immunosuppressed individuals. T cells are known to play a critical role in host defences against *Pneumocystis*. Two functional groups of T cells exist: CD4⁺ T and CD8⁺ T. Distinct subsets of CD4⁺ and CD8⁺ T cells have been shown to participate in PCP development through specific cytokines and interactions with other immune cells, significantly influencing the pulmonary fungal burden and disease severity. However, the host T-cell responses required for an effective adaptive immune response to PCP remain incompletely defined. In this review, we explore how an in-depth understanding of the integrated and well-defined functions of different T-cell subsets in the immune defence against Pneumocystis could provide insights into facilitating the development of anti-Pneumocystis treatment.

Keywords: Adaptive immune response, CD4⁺ T cells, CD8⁺ T cells, Pneumocystis pneumonia


Pneumocystis was thought to be a protozoan for approximately a century; however, it was reclassified as a fungus in 1988. Despite this reclassification, the species' obligate dependence on the mammalian lung environment makes it difficult to cultivate in vitro, hindering research into its biology and treatment strategies.² As an opportunistic fungus, *Pneumocystis* can cause lethal pneumonia, particularly in individuals with compromised immune systems,³ including those with congenital or acquired immunodeficiencies,

such as human immunodeficiency virus (HIV),4 individuals non-HIV undergoing immunosuppressive therapies.^{5–7} According to global burden research, Pneumocystis pneumonia (PCP) causes approximately 505 000 illnesses and 214 000 deaths worldwide per year. 8 Importantly, Pneumocystis is now recognised as one of the most common invasive fungal infections in infants worldwide, 9,10 as highlighted by the landmark Pediatric Emergency Research Network study. 11 The clinical symptoms of PCP are nonspecific and

commonly include dry cough, low-grade fever, progressive dyspnoea and chest pain. Pneumocystis jirovecii remains to be a prevalent opportunistic pathogen, especially among immunocompromised individuals.

immunocompromised individuals PCP, there is a substantial reduction in T cells and B cells in the lungs, contrasting with the more robust immune cell presence in immunocompetent individuals; however, the proportion of myeloid cells remains relatively stable in these compromised hosts. 13 Innate immune cells, such as antigen-presenting cells, serve as the first line of defence and contribute to T-cell priming in response to *Pneumocystis*. ¹⁴ Over the past two decades, T cells have emerged as central players in PCP pathogenesis, acting as both drivers and regulators of the immune response. 14,15 Peripheral CD4+ T cell counts are now routinely used to stratify infection risk in HIV-positive patients. 16-18 It was observed that the percentage of T cells gradually increased in the lungs during *Pneumocystis* infection. 19,20 We previously delineated the dynamic landscape of the host immune environment Pneumocystis-infected mice from 0 to 5 weeks, revealing that T cells consistently represent one of the most predominant immune cell populations in the lungs.²¹ A subsequent study has confirmed that pre-depletion of CD4⁺ and CD8⁺ T cells effectively prevents respiratory dysfunction and mortality in mice with PCP, even during progressive lung infection.²² Our findings revealed that clonal CD4⁺ T cells, characterised by elevated activation-related gene expression, constitute the primary responders to Pneumocystis infection. Additionally, a reduction in T-cell receptor (TCR) diversity among CD4⁺ T cells and an increase in CD8⁺ T-cell diversity have been observed in *Pneumocystis*-infected mice.²³ These findings underscore the critical role of T cells in orchestrating the immune response Pneumocystis infection and highlight their potential as therapeutic targets.

T-cell heterogeneity has been shown to significantly influence disease progression and severity. CD4+ T cells have been extensively studied in the context of T-cell-mediated adaptive immunity to PCP, whereas fewer investigations have been conducted on the role of CD8+ T cells. This review focuses on the role of $\alpha\beta$ T-cell subsets as evidenced in recent studies and summarises their central functions in adaptive

Figure 1. Graphical representation of T cells in PCP. Upon arrival in the lungs, *Pneumocystis* is recognised by APCs, which subsequently induce the differentiation of naïve T cells. Naïve CD4⁺ T cells differentiate into more specialised functional subsets and exert immune responses by through the secretion of specific cytokines. Naïve CD8⁺ T cells contribute to host defence a Tc1-type response. AEC, alveolar epithelia cell; APC, antigen presenting cell; Tc1, cytotoxic CD8⁺ T cell; Tfh, follicular helper T cell; Th, T helper cell; Treg, regulatory T cell.

immunity against *Pneumocystis* infection (Figure 1 and Table 1).

CD4⁺ T CELLS

CD4⁺ T cells serve as central regulators in the immune response by assisting other immune cells, such as B cells, macrophages, neutrophils, eosinophils, and basophils, through the secretion of various cytokines and chemokines. CD4⁺ T cells differentiate into distinct functional subsets that orchestrate immune responses, exerting effects that either enhance or suppress the activity of other immune cells while directly mediating pro-inflammatory or anti-inflammatory influences on resident cells. This functional diversity underscores the vital role of CD4⁺ T cells in PCP.

Clinical studies have highlighted the importance of CD4⁺ T cells in PCP.^{16,47} HIV-infected patients with CD4⁺ T-cell counts below 200 per cubic millimetre are at a significantly higher risk of developing PCP.²⁷ Additionally, the *Pneumocystis* burden is negatively correlated with the level of circulating CD4⁺ T cells.⁴⁸ Furthermore, the depletion of CD4⁺ T cells, whether genetically or

Table 1. T - cell subsets and key cytokines that participate in PCP progression

T-cell subsets	Animal model of immunosuppression	Treatment	Final fungal burden	Lung inflammation	References
CD4 ⁺ T cell	Reconstituted SCID mice	Anti-CD4 mAb	↑	n.d.	28
	Balb/c mice	Anti-CD4 mAb	↑	\uparrow	31
	Reconstituted SCID mice	Anti-CD4 mAb	↑	\uparrow	32
Th1	Stat4-deficient mice	_	\downarrow	n.d.	33
	<i>Ifn</i> -γ-deficient mice	_	†	n.d.	34
	Ifn- γ receptor-deficient mice	_	†	\uparrow	35
	$\gamma \delta$ -TCR ⁺ T-cell-deficient mice	IFN-γ neutralisation	†	n.d.	36
	Reconstituted SCID mice	IFN-γ neutralisation	†	\uparrow	37
Th2	Stat6-deficient mice	_	↓	n.d.	33
	<i>II-4</i> -deficient mice	_	†	†	38
Th9	Il-9-deficient mice	_	†	n.d.	39
Th17	<i>Il-17</i> -deficient mice	-	†	\uparrow	40
	C57BL/6 mice	IL-17 neutralisation	↑	n.d.	41
	Stat3 ^{fl/fl} Cd4 ^{Cre} transgenic mice	_	↑	n.d.	33
Tfh	<i>Il-21</i> -deficient mice/ <i>Il-21</i> receptor-deficient mice	_	↑	n.d.	33
Treg	<i>Il-10</i> -deficient mice	_	†	\downarrow	42,43
	C57BL/6 mice	Anti-CD25 mAb	†	\uparrow	44
CD8 ⁺ T	Balb/c mice	Anti-CD8 mAb	†	†	31

^{†,} not significant; mAb, monoclonal antibody; n.d., not done; SCID, severe combined immunodeficiency; *Stat*, signal transducer and activator of transcription; TCR, T-cell receptor; Tfh, follicular helper T cell; Th, T helper cell; Treg, regulatory T cell.

via antibody treatment, suppresses Pneumocystis infection progression. 28,31,32 This is most definitively demonstrated in humans by genetic conditions such as MHC class II deficiency (Bare Lymphocyte Syndrome), where the absence of antigen-specific CD4⁺ T-cell responses invariably leads to PCP, as illustrated by clinical case reports of affected children. 49-51 Notably, anti-CD4 monoclonal antibodies significantly diminish the ability to control the fungal burden in severe combined immunodeficiency (SCID) mice with naturally acquired PCP that were previously transferred spleen cells to enable infection clearance, emphasising the critical role of CD4⁺ T cells in immune defences.²⁸ In summary, the aforementioned studies highlight the pivotal function of CD4⁺ T cells in PCP, demonstrating that identifying key mechanisms is crucial for further understanding the immunopathogenesis of this disease.

Th1

Th1 cells mediated inflammation and pathogen clearance. ⁵² The hallmark features of Th1 cells include high expression of T-box expressed in T cells and the presence of chemokine receptors CXC-chemokine receptor 3 and CC-chemokine receptor 5. ⁵³ Cytokines produced by Th1 cells, such as IFN- γ and IL-2, have been found to play a significant role in influencing the course of

PCP.^{54–56} The proportion of pulmonary Th1 cells is significantly higher in infected lungs than in uninfected controls, ⁵⁷ and a low Th1 cell frequency is associated with a poor prognosis. ^{57,58} Numerous studies have demonstrated that the proportion of Th1 cells among CD4⁺ T cells increased following *Pneumocystis* infection. ^{23,57,59} Research focussing on intrinsic signal transducer and activator of transcription (STAT) family members that control T-cell differentiation has indicated that *Stat4*-deficient (Th1) cells show only a modest impairment in their ability to clear *Pneumocystis* infection. ³³

IFN-γ, a key cytokine produced by Th1 cells, has been implicated in conferring protection against immunopathogenesis while delaying fungal clearance during PCP. 60,61 Studies in rodent models have demonstrated that IFN-y reduces the fungal burden. 62-64 IFN-γ acts directly by macrophages. stimulating alveolar triggers the L-arginine-dependent cytocidal pathway, 65 and by priming CD8⁺ T cells. 62 However, IFN-γ is not essential for *Pneumocystis* clearance, as mice deficient in IFN- γ or its receptor unimpaired clearance. 34,35 fungal Furthermore, IFN-y neutralisation does not affect Pneumocystis elimination.^{36,37} In contrast, IFN-γ plays an important regulatory role in controlling inflammation.³⁷ In a mouse model of graftversus-host disease, anti-IFN-γ treatment exacerbated *Pneumocystis*-driven interstitial

pneumonia.³⁷ Consistent with this observation, SCID mice inoculated with *Pneumocystis* and reconstituted with splenocytes from IFN- $\gamma^{-/-}$ mice exhibited prolonged and exacerbated inflammatory responses compared with those reconstituted with splenocytes from wild-type (WT) mice.³⁷ Although IFN- γ is the most extensively studied Th1 cytokine in PCP, the involvement of other Th1-associated cytokines in PCP pathogenesis remains plausible. Notably, dedicated studies examining these alternative cytokines are currently lacking.

Th2

Th2 cells, regulated by GATA binding protein 3, play an important role in coordinating immune responses through the synthesis of IL-4, IL-5 and IL-13.^{66,67} Pneumocystis acts as a respiratory allergen that can initiate a Th2-type immune response. 68,69 In immunocompetent mice, Th2 cells are dominant both in the lung and lymph nodes, with increases in Th2 cells in lung tissues persisting for 3 weeks before declining.⁷⁰ However, their role is not indispensable, as STAT6deficient (Th2) mice exhibit only a modest decrease in their ability to clear Pneumocystis infection.³³ In further confirmation of the absence of complementary roles between Th1 cells and Th2 infection experiments cells, with STAT4/STAT6-deficient mice demonstrated no additional predisposition to **Pneumocystis** murina.³³ Interestingly, Th2-dominant immunity is associated with alleviated immunopathological outcomes. PCP mice treated with both anti-IFN-y and Th2-promoting maintained cytokines enhanced fungal clearance capacity, demonstrating less severe pulmonary immunopathology and faster recovery rates compared to those receiving anti-IFN-y alone.⁶¹ Intriguingly, Th2 cells are involved in the development of inducible bronchus-associated lymphoid tissue, which may enhance host defences in PCP.⁷¹

Peripheral blood mononuclear cells obtained from HIV-infected patients with a history of PCP exhibited significantly elevated IL-4 secretion upon major surface glycoprotein stimulation. Additionally, the effective fungal clearance observed in IL-4^{-/-} mice indicates that *Pneumocystis* resistance mechanisms can operate independently of IL-4, suggesting that IL-4 may have a limited effect on PCP pathogenesis. The

levels of IL-13 in bronchoalveolar lavage fluid (BALF) were notably lower in infected versus uninfected individuals, whereas the levels of IL-5 showed no significant differences.⁷³ The use of plasmid-mediated IL-5 expression resulted in elevated eosinophil counts and reduced fungal infection in mice lacking CD4⁺ T cells.⁷⁴ These findings suggest that Th2 cells may not be essential for controlling fungal load but alleviating contribute pulmonary inflammation.38,74

Th9

Th9 cells are characterised by the transcriptional factor PU.1⁷⁵; however, their immunological function in combating PCP is less reported. 14 IL-9, the signature cytokine of Th9 cells, exerts multiple biological effects, including promoting the migration and activation of mast cells and eosinophils, and inducing mucus secretion from epithelial cells.⁷⁶ The role of the Th9/IL-9 axis in fungal immunity is complex and contextdependent. On the one hand, its proper function is crucial for host defence, as evidenced by patients with chronic mucocutaneous candidiasis exhibit а broad T helper encompassing Th9 cells and significantly reduced IL-9 production.⁷⁷ On the other hand, its dysregulation can be pathogenic, as prominently allergic bronchopulmonary displayed in aspergillosis, where Th9 cells drive a deleterious allergic response to Aspergillus fumigatus, fuelling eosinophilic inflammation and mucus hypersecretion.⁷⁸

Given these divergent roles, the function of Th9/IL-9 in PCP has been an open question. Addressing this gap, we have previously demonstrated that $II-9^{-/-}$ mice exhibit no significant difference in the final clearance of Pneumocystis organisms from lung tissues; these gene-depleted mice demonstrate a markedly reduced pulmonary fungal burden 3 weeks after Pneumocystis infection compared with that observed in WT mice. This reduction was accompanied by an increased absolute number of Th17 cells in both BALF and lung tissues, along with an augmentation of IL-17A in BALF, suggesting an enhanced pulmonary Th17 response in II-9^{-/-} mice with PCP. *In vitro* differentiation experiments revealed that splenocytes from II-9^{-/-} mice are more prone to differentiate into Th17 cells, with higher concentrations of IL-17A in the cell culture supernatant.³⁹ Thus, our study provides valuable insights into the immunoregulatory role of IL-9 in PCP. It suggests that, unlike its protective role in candidiasis, the IL-9 pathway may act as a negative regulator of protective immunity in PCP, potentially by constraining the Th17 response. This positions IL-9 signalling not merely as an understudied topic, but as a promising and novel immunotherapeutic target for modulating host defence in PCP.

Th17

The subset of CD4⁺ T cells that generate IL-17A, known as Th17 cells, exhibits remarkable adaptability in the immunopathogenesis of various autoimmune disorders and is regulated by retinoid-related orphan receptor gamma t.⁷⁹ Pneumocystis colonisation in COPD patients is associated with elevated IL-17 levels.⁸⁰ Single-cell TCR sequencing of *Pneumocystis*-infected mice revealed that Th17 cells were predominantly clonal CD4⁺ T-cell subsets, displaying characteristics similar to those of tissue-resident memory Th17 cells.²³ IL-17 depletion leads to elimination of *Pneumocystis* worsened pulmonary damage in comparison with observations in WT PCP mice, 40 emphasising the critical role of Th17 cells in controlling Pneumocystis infection. Notably, WT mice treated with anti-IL-17 antibodies showed a 36-fold fungal burden increase in 3 weeks Pneumocystis inoculum.⁴¹ Anti-IFN-γ treatment enhances fungal clearance, which can be blocked by anti-IL-17 antibodies.⁶¹ Our previous study further demonstrated that IL-17 neutralisation exaggerates the fungal burden in an II-9^{-/-} mouse model of PCP.³⁹ Additionally, Th17 cells, together with Th2 cells, contribute to the formation of the inducible bronchus - associated lymphoid tissue structure.⁷¹ Th17 cells not only influence the progression of *Pneumocystis* infection through the secretion of IL-17, but also exert their functions via complex interactions with other T-cell subsets. 39-41,71

Tfh

Follicular helper T (Tfh) cells, which are characterised by the expression of the transcription factor B-cell lymphoma 6, reside in B-cell follicles and predominantly produce IL-21.81,82 Despite the importance of Tfh cells in

humoral immunity, few studies have conducted on their role in Pneumocystis infection. Both II-21^{-/-} mice and patients carrying IL-21 receptor mutations show increased susceptibility to PCP, indicating a potential protective role for Tfh cells in combating *Pneumocystis* infection. 33,83 Moreover, our previous study provided further insights into the functions of Tfh cells, demonstrating that they might regulate cell proliferation, cell-cell adhesion and the positive regulation of B-cell differentiation, thereby highlighting their potential contribution to immune defence mechanisms during Pneumocystis infection.²¹ The critical importance of Tfh is underscored by the susceptibility of patients with CD40L deficiency to PCP. As this gene is critical for Tfh function and germinal centre formation, its failure disrupts antibody affinity maturation. However, the fact that pure B-cell deficiencies (e.g. BTK deficiency) confer a much lower risk of PCP suggests that the essential role of Tfh extends beyond providing B cell help, likely encompassing direct effector mechanisms such as macrophage activation.84

Treg

Regulatory T cells (Tregs), a specialised subset of CD4 $^+$ T cells, play an important role in suppressing immune responses and are characterised by the expression of the key transcription factor forkhead box protein 3 (FOXP3). 85,86 Treg cells suppress the function of other immune cells through IL-10, TGF- β , CTLA-4 and CD25. 87

Patients with IPEX syndrome resulting from FOXP3 mutations are at risk for developing PCP. 88,89 However, it remains challenging to definitively attribute this risk solely to the FOXP3 mutation itself, as these patients frequently receive potent immunosuppressive therapies to manage their severe autoimmunity, which independently predisposes them to opportunistic infections.⁹⁰ Therefore, while FOXP3 deficiency is clinically associated with PCP, iatrogenic immunosuppression is likely а significant contributing factor.⁸⁸ In rodent models, faster fungal clearance and heightened inflammation occur when IL-10 or Tregs are depleted, 42-44 indicating a complex role for Treg cells in balancing immune responses during PCP. The adoptive transfer of CD25⁺ CD4⁺ T cells to infected SCID mice alleviates inflammation without affecting the fungal load. 91 Similarly, intratracheal administration of IL-10 in CD4⁺ T-cell-depleted mice has been found to reduce inflammation without affecting *Pneumocystis* clearance.⁹² These findings suggest that Tregs primarily modulate inflammation rather than directly influencing fungal clearance.

CD8⁺ T CELLS

CD8⁺ T cells play a critical role in identifying and eliminating pathogens and abnormal cells through cytotoxic mechanisms. ^{93,94} Clinical studies have delineated the importance of CD8⁺ T cells in PCP outcomes. ^{95,96} In non-HIV patients diagnosed with PCP, a low CD8⁺ T-cell count is identified as an independent risk factor for poor prognoses. ⁹⁷ Furthermore, in another study, low levels of CD8⁺ T cells were found to be strongly related to PCP and its mortality, ⁹⁸ indicating their potential role in disease progression.

In contrast to CD4⁺ T cells, the role of CD8⁺ T cells in combating fungal infection during PCP is less clear and remains controversial. It has been suggested that CD8⁺ T-cell deficiency alone does not impair the clearance of *Pneumocystis*; however, depletion of both CD4⁺ and CD8⁺ T cells exacerbates pulmonary infection,³¹ implying an important interplay between CD8+ T cells and CD4⁺ T cells in PCP. However, CD4⁺ cell-depleted mice presented opposite results. 62,99 It has been found that IFN-γ induces an increase in IFN-γ-positive CD8⁺ T cells, resulting in stronger clearance of **Pneumocystis** infection.⁶² Furthermore, CD8⁺ T cells demonstrating a cytotoxic CD8⁺ T (Tc1) response to *Pneumocystis* in BALB/c mice effectively killed the pathogen in vitro and facilitated its clearance in adoptive models. 100 transfer Subsequent evidence suggested that recombinant human IL-7 can increase the number of CD8⁺ CD4-depleted mice, facilitating the clearance of Pneumocystis. 101 Additionally, it has been found that the fungal burden remains consistent across all time points, regardless of the presence of CD8⁺ T cells, implying that the role of CD8⁺ T cells in *Pneumocystis* clearance is not wellsupported.⁹⁹ The conflicting findings regarding CD8⁺ T cells in PCP may result from the heterogeneity within the CD8+ T-cell population. Some subsets, such as Tc1 cells, exhibit protective functions; however, others may contribute to lung injury without significantly impacting fungal clearance.

Existing studies have documented that CD8⁺ T cells play a causative role in lung injury during PCP. Pneumocystis infection triggers a strong infiltration of CD8⁺ T cells into the alveolar and interstitial areas of the lung, especially when CD4⁺ T cells are absent. This infiltration causes lung injury, evidenced by decreased pO2 and albumin leakage into the BALF, similar to observations in other interstitial lung diseases mediated by CD8+ T cells. 30,102,103 In one study, non-T cytotoxic-1 CD8⁺ T cells showed no in vitro activity and were linked to lung damage when transferred. 100 Aligning with this conclusion, Tc1 CD8⁺ T cells have also been identified as a good prognostic marker among autoimmune patients.⁵⁷ This diversity highlights the need for an in-depth investigation to clarify the specific roles of different CD8+ T-cell subsets in PCP.

IMMUNE RECONSTITUTION INFLAMMATORY SYNDROME AND PCP

Immune reconstitution inflammatory syndrome (IRIS) is characterised by the clinical deterioration or new onset of an infectious disease following the reversal of immune deficiency. 104 This reversal can be triggered by multiple events, including antiretroviral therapy (ART) in HIV patients, neutrophil recovery after chemotherapy or stem cell transplantation, suboptimal immunosuppression in solid organ transplant recipients, and postpartum immune reconstitution. ^{105,106} IRIS complicates 4–5% of cases of PCP in patients with HIV, occurring following the initiation of both ART and antimicrobial therapy for PCP. 107, 108 The withdrawal of glucocorticoids or other immunosuppressants, been associated with clinical which has deterioration in a considerable proportion of patients, contributes to increasing PCP mortality rates in non-HIV populations. 109 According to one case series, elevated pre-ART HIV viral burden and reduced CD4⁺ T cell counts are predictive of PCP-IRIS after ART initiation. 110

The first experimental model of IRIS associated with PCP was established using $Rag1^{-/-}$ and SCID mice. 30,44 In this model, immunodeficient mice were infected with *Pneumocystis murina* for 2 weeks and subsequently reconstituted with whole splenocytes or CD4 $^+$ T cells. 30,44 Studies using this system have demonstrated that CD4 $^+$ T cells contribute to the pathological immune response in PCP-IRIS. Depletion of Tregs was found to exacerbate IRIS in this model. 44 Furthermore, IFN- γ is a critical

mediator in the exacerbated inflammatory response, decreasing the CD8⁺ Foxp3⁺ regulatory T cell subset in PCP-IRIS.³⁵ Moreover, CD8⁺ T cells are the primary inflammatory mediators in the absence of CD4⁺ T cells.³²

OMICS APPROACHES IN PCP

The increasing accessibility of omics platforms has enabled research using high-throughput sequencing strategies to map dynamic alterations in the host pulmonary immune response and the pathogenic landscape of PCP.

Hu et al. 111 used transcriptome analysis to examine the immune response in the lungs of PCP corticosteroid-treated mice. revealing downregulated expression of genes associated with innate immunity, including antigen processing and inflammatory presentation, response phagocytosis, as well as those involved in adaptive B- and T-cell-mediated immunity. These findings partly explain the susceptibility of patients using glucocorticoids to *Pneumocystis* and provide potential targets for clinical intervention. Unlike bulk RNA sequencing, single-cell RNA sequencing (scRNA-seg) enables the identification of specific groups of immune cell subtypes and the analysis of immune cell profiles during infection processes. 13,21 TCRs and B-cell receptors (BCRs) are key components of the adaptive immune system and play a crucial role in responding to pathogen infections. 112-114 Integrated scRNA-seq and BCR sequencing of murine lungs revealed that Pneumocystis infection induces persistent plasma cell expansion, reduced BCR diversity, biased V(D)J gene usage, and an expanded naïve B cell subset marked by high ATF3 expression, providing insights biomarker and immunotherapy development. 115 In a complementary study, integrated scRNA-seg and TCR-seg analysis showed that clonally expanded CD4⁺ T cells dominate the immune response in *Pneumocvstis*-infected mice. accompanied by reduced TCR diversity and biased VDJ gene usage. A distinct population of clonal Th17 cells exhibiting a tissue-resident memory-like phenotype was also identified.²³ Qiao et al. collected TCR data from plasma of 10 patients with PCP and HIV-1 infection, eight asymptomatic HIV-infected patients, and eight healthy subjects, revealing that patients with PCP exhibited different immune cell proportions and reduced TCR pool diversity compared with healthy individuals. Furthermore, anti-PCP treatment could restore

cytokine dynamics and TCR diversity, suggesting that the immune response plays a key role in host infection control. 116

While Th1, Th2 and Th17 cell responses are all elicited during murine infection, studies using genedeficient mouse models have demonstrated that individually insufficient subsets are mediate pathogen clearance. 33,38,40 These findings suggest that intercellular crosstalk among immune subsets, rather than isolated effector functions, may play a pivotal role in PCP immunopathogenesis. Current high-throughput sequencing studies predominantly focus on delineating alterations within discrete discussed. 13,21,115 populations. previously as However, the inability of single lineage-deficient models to recapitulate PCP susceptibility phenotypes implies that coordinated multicellular networks, mediated by cell-cell communication, are critical for host defences. This gap is underscored by the limited exploration of immune synapse dynamics, cytokine chemokine circuits, or receptor ligand interactions specific to the Pneumocystisinfected lung microenvironment.

FUTURE DIRECTIONS

Despite progress in defining the contributions of specific cell populations to the pathogenesis of PCP, an in-depth exploration of the crosstalk and cooperative networks among these cells remains lacking. Future studies should therefore prioritise elucidating these complex cellular interactions, both spatially and temporally, across the spectrum of infection. Key directions include applying high-dimensional single-cell technologies, such as spatial transcriptomics and multiplexed imaging, to map intercellular communication within the lung microenvironment. Unravelling intricate cellular crosstalk will not only advance understanding of PCP fundamental immunopathogenesis but also reveal novel therapeutic targets for modulating host immunity to improve disease outcomes.

The current standard therapeutic regimen for PCP remains trimethoprim-sulfamethoxazole (TMP-SMX), which serves as the first-line treatment. 4,117 Toxicities associated with TMP-SMX, such as rash, fever, nephrotoxicity, bone marrow suppression, electrolyte disorders and hepatotoxicity, necessitate a treatment change in up to 40% of patients. 118–120 Other alternative agents include dapsone, pentamidine, atovaquone, clindamycin and

primaquine, ¹²¹ which are less efficacious than TMP-SMX and possess their own profiles of serious toxicities. ¹²² Although T-cell therapies have not yet been explored for PCP, pioneering work in invasive fungal infection highlights their transformative potential. ¹²³ Given the limitations of current pharmacotherapies, the development of T-cell-based immunotherapies for PCP represents a compelling and innovative direction. Ultimately, harnessing T-cell immunity may pave the way for targeted, toxin-sparing therapeutic modalities that overcome the drawbacks of existing antifungal regimens.

CONCLUSION

Host defence against Pneumocystis is uniquely dependent on functional T-cell immunity, a principle unequivocally demonstrated by the specific spectrum of human inborn errors of immunity. Profound susceptibility to PCP is observed in patients with severe T cell deficiencies, such as SCID (e.g. because of mutations in in IL2RG, 124 IL7R, 125 RAG1 126 and STAT3 127) and in those with impaired function (e.g. CD40L84). A highly informative dichotomy, however, reveals the distinct nature of this defence: mutations affecting the IL-23/IL-17/Th17 axes (e.g. $IL12B^{128}$ and $RORC^{129}$) or the IFN-γ signalling pathway¹³⁰ confer susceptibility to intramacrophage infections such as mycobacterial disease; however, they do not typically predispose otherwise healthy individuals to PCP. This key distinction indicates that the protective host response to Pneumocystis is less dependent on the classical Th1 and Th17 pathways required for intracellular pathogen control; instead, it is more reliant on other T-cell functions, potentially including CD4⁺ T-cell-mediated macrophage activation through alternative pathways and B-cell help for antibody production. Furthermore, the occurrence of PCP in patients with certain forms of humoral immunodeficiency (e.g. agammaglobulinemia because of BTK mutations¹³¹) suggests that while antibodies may play a contributory role, they are individually insufficient to confer protection in the absence of adequate T-cell immunity.

While murine models have implicated numerous CD4⁺ T helper subsets (Th1, Th2, Th9, Th17, Tfh) in fungal control, the findings are often inconsistent, and the roles of CD8⁺ T cells and the precise mechanisms of inter-cellular crosstalk remain poorly defined. This heterogeneity underscores

the complexity of the immune response to *Pneumocystis* and highlights a critical gap between phenomenological observations and mechanistic understanding.

Bridging this gap necessitates a paradigm shift in research strategies. Future efforts must prioritise the application of high-resolution tools, such as single-cell and spatial transcriptomics on human PCP samples, to move beyond murine models and directly map the landscape of protective versus pathological T-cell responses in the human lung. This refined understanding will be the foundation for rational therapeutic design, shifting the focus from broad-spectrum antimicrobials towards targeted immunotherapies. Promising avenues include engineering adoptive T cell transfers or modulating specific cytokine pathways (e.g. IL-9, IL-17) to augment defective immunity, particularly in immunocompromised hosts.

In conclusion, unravelling the intricate functional network of T-cell subsets in PCP is no longer just a biological question but a translational imperative. By defining the precise rules of T-cell-mediated host defence, we can pioneer a new class of immune-complementary therapies that overcome the limitations of current antifungals and finally improve outcomes for this challenging infection.

ACKNOWLEDGMENTS

The National Natural Science Foundation of China (No. 82270009, No. 82070005, No. 82400009) and Beijing Scholars Program (No. 062).

AUTHOR CONTRIBUTIONS

Yuxi Chen: Writing – original draft; visualization. Hengmo Rong: Writing – original draft; visualization; funding acquisition. Ting Li: Writing – original draft. Chao Zhang: Writing – original draft. Huqin Yang: Writing – original draft. Han Sun: Writing – original draft. Dong Wang: Writing – original draft. Xiaoxia Zhou: Writing – original draft. Kan Zhai: Conceptualization; writing – review and editing. Zhaohui Tong: Conceptualization; writing – review and editing; funding acquisition.

CONFLICT OF INTEREST

None.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

ETHICS APPROVAL STATEMENT

The authors have nothing to report.

REFERENCES

- 1. Gingerich AD, Norris KA, Mousa JJ. Pneumocystis pneumonia: immunity, vaccines, and treatments. Pathogens 2021; 10: 10.
- 2. Liu Y, Fahle GA, Kovacs JA. Inability to culture Pneumocystis jirovecii. MBio 2018; 9: 9.
- 3. Lécuyer R, Issa N, Camou F et al. Characteristics and prognosis factors of *Pneumocystis jirovecii* pneumonia according to underlying disease: a retrospective multicenter study. Chest 2024; 165: 1319-1329.
- 4. McDonald EG, Afshar A, Assiri B et al. Pneumocystis jirovecii pneumonia in people living with HIV: a review. Clin Microbiol Rev 2024; 37: e0010122.
- 5. Ghembaza A, Vautier M, Cacoub P, Pourcher V, Saadoun D. Risk factors and prevention of Pneumocystis jirovecii pneumonia in patients with autoimmune and inflammatory diseases. Chest 2020; **158**: 2323–2332.
- 6. Saadatzadeh T, Angarone M, Stosor V. Pneumocystis jirovecii in solid organ transplant recipients: updates in epidemiology, diagnosis, treatment, and prevention. Curr Opin Infect Dis 2024; 37: 121-128.
- 7. Classen AY, Henze L, von Lilienfeld-Toal M et al. Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematologic malignancies and solid tumors: 2020 updated guidelines of the infectious diseases working Party of the German Society of hematology and medical oncology (AGIHO/DGHO). Ann Hematol 2021; **100**: 1603-1620.
- 8. Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis 2024; 24: e428-e438.
- 9. Graham SM, Mtitimila El, Kamanga HS, Walsh AL, Hart CA, Molyneux ME. Clinical presentation and outcome of Pneumocystis carinii pneumonia in Malawian children. Lancet 2000; 355: 369-373.
- 10. Chintu C, Mudenda V, Lucas S et al. Lung diseases at necropsy in African children dying from respiratory illnesses: a descriptive necropsy study. Lancet 2002; **360**: 985-990.
- 11. Pneumonia Etiology Research for Child Health (PERCH) Study Group. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country casecontrol study. Lancet 2019; 394: 757-779.
- 12. Senécal J, Smyth E, Del Corpo O et al. Non-invasive diagnosis of Pneumocystis jirovecii pneumonia: a systematic review and meta-analysis. Clin Microbiol Infect 2022; 28: 23-30.
- 13. Wang Y, Li K, Zhao W et al. Integrated multi-omics analyses reveal the altered transcriptomic pulmonary characteristics of macrophages in immunocompromised hosts with pneumocystis pneumonia. Front Immunol 2023; 14: 1179094.
- 14. Otieno-Odhiambo P, Wasserman S, Hoving JC. The contribution of host cells to pneumocystis immunity: an update. Pathogens 2019; 8: 52.

- 15. Charpentier E, Ménard S, Marques C, Berry A, Iriart X. Immune response in pneumocystis infections according to the host immune system status. J Fungi (Basel) 2021; **7**: 7.
- 16. Phair J, Muñoz A, Detels R, Kaslow R, Rinaldo C, Saah A. The risk of *Pneumocystis carinii* pneumonia among men infected with human immunodeficiency virus type 1. Multicenter AIDS cohort study group. N Engl J Med 1990; **322**: 161-165.
- 17. Kaplan JE, Hanson DL, Navin TR, Jones JL. Risk factors for primary Pneumocystis carinii pneumonia in human immunodeficiency virus-infected adolescents and adults in the United States: reassessment of indications for chemoprophylaxis. J Infect Dis 1998; 178: 1126-1132.
- 18. Kaplan JE, Hanson DL, Jones JL, Dworkin MS. Viral load as an independent risk factor for opportunistic infections in HIV-infected adults and adolescents. AIDS 2001: **15**: 1831-1836.
- 19. Chesnay A, Gonzalez L, Parent C, Desoubeaux G, Baranek T. Description of a murine model of pneumocystis pneumonia. Mycopathologia 2024; 189: 42.
- 20. Bishop LR, Curran SJ, Kovacs JA. Mucosal-associated invariant T cells accumulate in the lungs during murine pneumocystis infection but are not required for clearance. J Fungi (Basel) 2022; 8: 8.
- 21. Yang HQ, Sun H, Li K, Shao MM, Zhai K, Tong ZH. Dynamics of host immune responses and a potential function of Trem2(hi) interstitial macrophages in pneumocystis pneumonia. Respir Res 2024; 25: 72.
- 22. Bhagwat SP, Wright TW, Gigliotti F. Anti-CD3 antibody decreases inflammation and improves outcome in a murine model of pneumocystis pneumonia. J Immunol 2010; **184**: 497–502.
- 23. Yang HQ, Wang YS, Zhai K, Tong ZH. Single-cell TCR sequencing reveals the dynamics of T cell repertoire profiling during pneumocystis infection. Front Microbiol 2021; 12: 637500.
- 24. Swain SD, Meissner NN, Harmsen AG. CD8 T cells modulate CD4 T-cell and eosinophil-mediated pulmonary pathology in pneumocystis pneumonia in B-cell-deficient mice. Am J Pathol 2006; 168: 466-475.
- Sidman CL. Both immunity and 25. Roths JB, hyperresponsiveness to *Pneumocystis carinii* result from transfer of CD4⁺ but not CD8⁺ T cells into severe combined immunodeficiency mice. J Clin Invest 1992; 90: 673-678.
- 26. Beck JM, Warnock ML, Kaltreider HB, Shellito JE. Host defenses against Pneumocystis carinii in mice selectively depleted of CD4⁺ lymphocytes. Chest 1993; 103: 116s-118s.
- 27. Shellito J, Suzara VV, Blumenfeld W, Beck JM, Steger HJ. Ermak TH. A new model of Pneumocvstis carinii infection in mice selectively depleted of helper T lymphocytes. J Clin Invest 1990; 85: 1686-1693.
- 28. Harmsen AG, Stankiewicz M. Requirement for CD4⁺ cells in resistance to Pneumocystis carinii pneumonia in mice. J Exp Med 1990; 172: 937-945.
- 29. An CL, Su XP, Harmsen AG. The role of CD8⁺ T cells in the pathogenesis of *Pneumocystis carinii* pneumonia in mice depleted of CD4⁺ T cells. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2000; 18: 207-212.

- Wright TW, Gigliotti F, Finkelstein JN, McBride JT, An CL, Harmsen AG. Immune-mediated inflammation directly impairs pulmonary function, contributing to the pathogenesis of *Pneumocystis carinii* pneumonia. *J Clin Invest* 1999; 104: 1307–1317.
- 31. Beck JM, Newbury RL, Palmer BE, Warnock ML, Byrd PK, Kaltreider HB. Role of CD8⁺ lymphocytes in host defense against *Pneumocystis carinii* in mice. *J Lab Clin Med* 1996; **128**: 477–487.
- 32. Bhagwat SP, Gigliotti F, Xu H, Wright TW. Contribution of T cell subsets to the pathophysiology of *pneumocystis*-related immunorestitution disease. *Am J Physiol Lung Cell Mol Physiol* 2006; **291**: L1256–L1266.
- Elsegeiny W, Zheng M, Eddens T et al. Murine models of pneumocystis infection recapitulate human primary immune disorders. JCI Insight 2018; 3: 3.
- Rudmann DG, Preston AM, Moore MW, Beck JM. Susceptibility to *Pneumocystis carinii* in mice is dependent on simultaneous deletion of IFN-gamma and type 1 and 2 TNF receptor genes. *J Immunol* 1998; 161: 360–366.
- Zhang ZQ, Wang J, Hoy Z et al. Neither classical nor alternative macrophage activation is required for pneumocystis clearance during immune reconstitution inflammatory syndrome. Infect Immun 2015; 83: 4594– 4603
- Steele C, Zheng M, Young E, Marrero L, Shellito JE, Kolls JK. Increased host resistance against Pneumocystis carinii pneumonia in gammadelta T-celldeficient mice: protective role of gamma interferon and CD8⁺ T cells. Infect Immun 2002; 70: 5208–5215.
- Garvy BA, Ezekowitz RA, Harmsen AG. Role of gamma interferon in the host immune and inflammatory responses to *Pneumocystis carinii* infection. *Infect Immun* 1997: 65: 373–379.
- Garvy BA, Wiley JA, Gigliotti F, Harmsen AG. Protection against *Pneumocystis carinii* pneumonia by antibodies generated from either T helper 1 or T helper 2 responses. *Infect Immun* 1997; 65: 5052–5056.
- Li T, Rong HM, Zhang C, Zhai K, Tong ZH. IL-9 deficiency promotes pulmonary Th17 response in murine model of pneumocystis infection. Front Immunol 2018; 9: 1118.
- Rong HM, Qian XJ, Zhang C, Li T, Tong ZH. IL-17 inversely correlated with IL-10 via the STAT3 gene in pneumocystis-infected mice. Mediat Inflamm 2019; 2019: 6750861.
- Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 2007; 75: 3055–3061.
- 42. Qureshi MH, Harmsen AG, Garvy BA. IL-10 modulates host responses and lung damage induced by *Pneumocystis carinii* infection. *J Immunol* 2003; **170**: 1002–1009.
- Kurkjian C, Hollifield M, Lines JL et al. Alveolar macrophages in neonatal mice are inherently unresponsive to pneumocystis murina infection. Infect Immun 2012; 80: 2835–2846.
- McKinley L, Logar AJ, McAllister F, Zheng M, Steele C, Kolls JK. Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of pneumocystis pneumonia. J Immunol 2006; 177: 6215– 6226.

- 45. Künzli M, Masopust D. CD4⁺ T cell memory. *Nat Immunol* 2023; **24**: 903–914.
- 46. Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8: 235.
- 47. Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 2009; 58: 1–207.
- Khalife S, Chabé M, Gantois N et al. Relationship between Pneumocystis carinii burden and the degree of host immunosuppression in an airborne transmission experimental model. J Eukaryot Microbiol 2016; 63: 309–317.
- Muhamad NDA, Kanie N, Otsubo Y, Suzuki K, Kinoshita K, Horikoshi Y. Letermovir-inclusive combination therapy for a refractory and resistant infection by cytomegalovirus with UL54 mutation following a hematopoietic stem cell transplant for MHC class II deficiency. J Infect Chemother 2025; 31: 102627.
- Clarridge K, Leitenberg D, Loechelt B, Picard C, Keller M. Major histocompatibility complex class II deficiency due to a novel mutation in RFXANK in a child of Mexican descent. J Clin Immunol 2016; 36: 4–5.
- 51. Ahmed A, Reith W, Puck JM, Cheng LE. Novel mutation in the class II Transactivator associated with immunodeficiency and autoimmunity. *J Clin Immunol* 2015; **35**: 521–522.
- 52. Sheikh AA, Groom JR. Transcription tipping points for T follicular helper cell and T-helper 1 cell fate commitment. *Cell Mol Immunol* 2021; **18**: 528–538.
- Zhu X, Zhu J. CD4 T helper cell subsets and related human immunological disorders. *Int J Mol Sci* 2020; 21: 8011.
- 54. Shen HP, Tang YM, Song H, Xu WQ, Yang SL, Xu XJ. Efficiency of interleukin 6 and interferon gamma in the differentiation of invasive pulmonary aspergillosis and *pneumocystis* pneumonia in pediatric oncology patients. *Int J Infect Dis* 2016; **48**: 73–77.
- Ripamonti C, Bishop LR, Kovacs JA. Pulmonary Interleukin-17-positive lymphocytes increase during pneumocystis murina infection but are not required for clearance of pneumocystis. Infect Immun 2017; 85: e00434-16.
- 56. Alshahrani MY, Alfaifi M, Al Shahrani M *et al.* Increased mRNA expression of key cytokines among suspected cases of *Pneumocystis jirovecii* infection. *BMC Infect Dis* 2021; **21**: 28.
- 57. Zhang NN, Huang X, Feng HY et al. Circulating and pulmonary T-cell populations driving the immune response in non-HIV immunocompromised patients with *Pneumocystis jirovecii* pneumonia. *Int J Med Sci* 2019; **16**: 1221–1230.
- 58. Charpentier E, Marques C, Ménard S et al. New insights into blood circulating lymphocytes in human pneumocystis pneumonia. J Fungi (Basel) 2021; 7: 7.
- Zhang C, Rong HM, Li T, Zhai K, Tong ZH. PD-1 deficiency promotes macrophage activation and Thelper cell type 1/T-helper cell type 17 response in pneumocystis pneumonia. Am J Respir Cell Mol Biol 2020: 62: 767–782.

- Meissner N, Swain S, McInnerney K, Han S, Harmsen AG. Type-I IFN signaling suppresses an excessive IFN-gamma response and thus prevents lung damage and chronic inflammation during pneumocystis (PC) clearance in CD4 T cell-competent mice. Am J Pathol 2010; 176: 2806–2818.
- Wang J, Zhang ZQ, Gigliotti F, Wright TW. IFN-γ limits immunopathogenesis but delays fungal clearance during *pneumocystis* pneumonia. *J Immunol* 2023; 211: 1397–1405.
- 62. Kolls JK, Habetz S, Shean MK et al. IFN-gamma and CD8⁺ T cells restore host defenses against *Pneumocystis* carinii in mice depleted of CD4⁺ T cells. *J Immunol* 1999; 162: 2890–2894.
- Ruan S, McKinley L, Zheng M et al. Interleukin-12 and host defense against murine pneumocystis pneumonia. Infect Immun 2008; 76: 2130–2137.
- Beck JM, Liggitt HD, Brunette EN, Fuchs HJ, Shellito JE, Debs RJ. Reduction in intensity of *Pneumocystis carinii* pneumonia in mice by aerosol administration of gamma interferon. *Infect Immun* 1991; 59: 3859–3862.
- Downing JF, Kachel DL, Pasula R, Martin WJ 2nd. Gamma interferon stimulates rat alveolar macrophages to kill *Pneumocystis carinii* by L-arginine- and tumor necrosis factor-dependent mechanisms. *Infect Immun* 1999; 67: 1347–1352.
- León B. A model of Th2 differentiation based on polarizing cytokine repression. *Trends Immunol* 2023; 44: 399–407.
- Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. *Allergy* 2022; 77: 3309–3319.
- Eddens T, Campfield BT, Serody K et al. A novel CD4⁺ T cell-dependent murine model of pneumocystis-driven asthma-like pathology. Am J Respir Crit Care Med 2016; 194: 807–820.
- Rojas DA, Iturra PA, Méndez A et al. Increase in secreted airway mucins and partial Muc5b STAT6/FoxA2 regulation during pneumocystis primary infection. Sci Rep 2019; 9: 2078.
- Shellito JE, Tate C, Ruan S, Kolls J. Murine CD4⁺ T lymphocyte subsets and host defense against Pneumocystis carinii. J Infect Dis 2000; 181: 2011–2017.
- Eddens T, Elsegeiny W, Garcia-Hernadez ML et al. Pneumocystis-driven inducible bronchus-associated lymphoid tissue formation requires Th2 and Th17 immunity. Cell Rep 2017; 18: 3078–3090.
- Theus SA, Sawhney N, Smulian AG, Walzer PD. Proliferative and cytokine responses of human T lymphocytes isolated from human immunodeficiency virus-infected patients to the major surface glycoprotein of *Pneumocystis carinii*. J Infect Dis 1998; 177: 238–241.
- Carreto-Binaghi LE, Tenorio EP, Morales-Villarreal FR et al. Detection of cytokines and Collectins in bronchoalveolar fluid samples of patients infected with histoplasma capsulatum and Pneumocystis jirovecii. J Fungi (Basel) 2021; 7: 7.
- Eddens T, Elsegeiny W, Nelson MP et al. Eosinophils contribute to early clearance of pneumocystis murina infection. J Immunol 2015; 195: 185–193.
- 75. Tu J, Chen W, Huang W *et al.* Positive feedback loop PU.1-IL9 in Th9 promotes rheumatoid arthritis development. *Ann Rheum Dis* 2024; **83**: 1707–1721.

- Angkasekwinai P, Dong C. IL-9-producing T cells: potential players in allergy and cancer. *Nat Rev Immunol* 2021; 21: 37–48.
- Becker KL, Rösler B, Wang X et al. Th2 and Th9 responses in patients with chronic mucocutaneous candidiasis and hyper-IgE syndrome. Clin Exp Allergy 2016; 46: 1564–1574.
- Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of cytokines and chemokines in aspergillosis. J Fungi (Basel) 2024; 10: 10.
- Kanno T, Nakajima T, Miyako K, Endo Y. Lipid metabolism in Th17 cell function. *Pharmacol Ther* 2023: 245: 108411.
- Gantois N, Lesaffre A, Durand-Joly I et al. Factors associated with pneumocystis colonization and circulating genotypes in chronic obstructive pulmonary disease patients with acute exacerbation or at stable state and their homes. Med Mycol 2021: 60: myab070.
- Hinrichs CS, Spolski R, Paulos CM et al. IL-2 and IL-21 confer opposing differentiation programs to CD8⁺ T cells for adoptive immunotherapy. Blood 2008; 111: 5326–5333.
- Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu Rev Immunol 2016; 34: 335–368.
- 83. Stepensky P, Keller B, Abuzaitoun O et al. Extending the clinical and immunological phenotype of human interleukin-21 receptor deficiency. *Haematologica* 2015; **100**: e72–e76.
- 84. Banday AZ, Nisar R, Patra PK et al. Clinical and immunological features, genetic variants, and outcomes of patients with CD40 deficiency. J Clin Immunol 2023; 44: 17.
- 85. Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. *Cell Res* 2020; **30**: 465–474.
- 86. Bittner S, Hehlgans T, Feuerer M. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. *Trends Immunol* 2023; **44**: 468–483.
- Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20: 1002–1022.
- 88. Bacchetta R, Roncarolo MG. IPEX syndrome from diagnosis to cure, learning along the way. *J Allergy Clin Immunol* 2024; **153**: 595–605.
- 89. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. *Front Immunol* 2012; **3**: 211.
- 90. Huang Q, Liu X, Zhang Y, Huang J, Li D, Li B. Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. *J Genet Genomics* 2020; **47**: 17–26.
- 91. Hori S, Carvalho TL, Demengeot J. CD25⁺CD4⁺ regulatory T cells suppress CD4⁺ T cell-mediated pulmonary hyperinflammation driven by *Pneumocystis carinii* in immunodeficient mice. *Eur J Immunol* 2002; **32**: 1282–1291.
- 92. Ruan S, Tate C, Lee JJ, Ritter T, Kolls JK, Shellito JE. Local delivery of the viral interleukin-10 gene suppresses tissue inflammation in murine *Pneumocystis carinii* infection. *Infect Immun* 2002; **70**: 6107–6113.

- 93. Sykulev Y. Factors contributing to the potency of CD8⁺ T cells. *Trends Immunol* 2023; **44**: 693–700.
- Kok L, Masopust D, Schumacher TN. The precursors of CD8⁺ tissue resident memory T cells: from lymphoid organs to infected tissues. *Nat Rev Immunol* 2022; 22: 283–293.
- Kaminski H, Belliere J, Burguet L et al. Identification of predictive markers and outcomes of late-onset Pneumocystis jirovecii pneumonia in kidney transplant recipients. Clin Infect Dis 2021; 73: e1456–e1463.
- 96. Tang G, Tong S, Yuan X et al. Using routine laboratory markers and immunological indicators for predicting *Pneumocystis jiroveci* pneumonia in immunocompromised patients. *Front Immunol* 2021; **12**: 652383.
- 97. Jin F, Xie J, Wang HL. Lymphocyte subset analysis to evaluate the prognosis of HIV-negative patients with *pneumocystis* pneumonia. *BMC Infect Dis* 2021; 21: 441.
- 98. Li Y, Ghannoum M, Deng C et al. Pneumocystis pneumonia in patients with inflammatory or autoimmune diseases: usefulness of lymphocyte subtyping. Int J Infect Dis 2017; 57: 108–115.
- Gigliotti F, Crow EL, Bhagwat SP, Wright TW. Sensitized CD8⁺ T cells fail to control organism burden but accelerate the onset of lung injury during *Pneumocystis carinii* pneumonia. *Infect Immun* 2006; **74**: 6310–6316.
- 100. McAllister F, Steele C, Zheng M et al. T cytotoxic-1 CD8⁺ T cells are effector cells against pneumocystis in mice. J Immunol 2004; 172: 1132–1138.
- 101. Ruan S, Samuelson DR, Assouline B, Morre M, Shellito JE. Treatment with Interleukin-7 restores host defense against *pneumocystis* in CD4⁺ T-lymphocyte-depleted mice. *Infect Immun* 2016; **84**: 108–119.
- 102. Meissner NN, Lund FE, Han S, Harmsen A. CD8 T cell-mediated lung damage in response to the extracellular pathogen *pneumocystis* is dependent on MHC class I expression by radiation-resistant lung cells. *J Immunol* 2005; **175**: 8271–8279.
- 103. Wright TW, Notter RH, Wang Z, Harmsen AG, Gigliotti F. Pulmonary inflammation disrupts surfactant function during *Pneumocystis carinii* pneumonia. *Infect Immun* 2001; **69**: 758–764.
- 104. Dellière S, Guery R, Candon S *et al.* Understanding pathogenesis and care challenges of immune reconstitution inflammatory syndrome in fungal infections. *J Fungi (Basel)* 2018; **4**: 4.
- 105. Singh N, Lortholary O, Alexander BD et al. An immune reconstitution syndrome-like illness associated with Cryptococcus neoformans infection in organ transplant recipients. Clin Infect Dis 2005; 40: 1756–1761.
- 106. Singh N, Perfect JR. Immune reconstitution syndrome and exacerbation of infections after pregnancy. *Clin Infect Dis* 2007; **45**: 1192–1199.
- 107. Achenbach CJ, Harrington RD, Dhanireddy S, Crane HM, Casper C, Kitahata MM. Paradoxical immune reconstitution inflammatory syndrome in HIV-infected patients treated with combination antiretroviral therapy after AIDS-defining opportunistic infection. *Clin Infect Dis* 2012; **54**: 424–433.
- 108. Roade Tato L, Burgos Cibrian J, Curran Fábregas A et al. Immune reconstitution inflammatory syndrome in HIV-infected patients with pneumocystis jirovecii pneumonia. Enferm Infecc Microbiol Clin (Engl Ed) 2018; 36: 621–626.

- 109. Guo Y, Zhu L, Li H. Glucocorticoid-induced pneumocystis pneumonia mice developed immune reconstitution inflammatory syndrome after glucocorticoid withdrawal. J Immunol 2025; 214: 2298– 2306.
- Jagannathan P, Davis E, Jacobson M, Huang L. Lifethreatening immune reconstitution inflammatory syndrome after *pneumocystis* pneumonia: a cautionary case series. AIDS 2009; 23: 1794–1796.
- 111. Hu Y, Wang D, Zhai K, Tong Z. Transcriptomic analysis reveals significant B lymphocyte suppression in corticosteroid-treated hosts with pneumocystis pneumonia. Am J Respir Cell Mol Biol 2017; 56: 322– 331.
- 112. Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. *Signal Transduct Target Ther* 2021; **6**: 412.
- 113. Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. *Nat Methods* 2021; **18**: 881–892.
- 114. Goldstein LD, Chen YJ, Wu J et al. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol 2019; 2: 304.
- 115. Sun H, Yang HQ, Zhai K, Tong ZH. Signatures of B cell receptor repertoire following *pneumocystis* infection. *Front Microbiol* 2021; **12**: 636250.
- 116. Qiao L, Cui X, Jia L et al. Peripheral immune phenotypes and T cell receptor repertoire in pneumocystis pneumonia in HIV-1 infected patients. Clin Immunol 2022; 237: 108985.
- 117. Hänsel L, Schumacher J, Denis B, Hamane S, Cornely OA, Koehler P. How to diagnose and treat a patient without human immunodeficiency virus infection having *Pneumocystis jirovecii* pneumonia? *Clin Microbiol Infect* 2023; **29**: 1015–1023.
- 118. Hughes W, Leoung G, Kramer F et al. Comparison of atovaquone (566C80) with trimethoprimsulfamethoxazole to treat *Pneumocystis carinii* pneumonia in patients with AIDS. N Engl J Med 1993; 328: 1521–1527.
- 119. Utsunomiya M, Dobashi H, Odani T et al. An openlabel, randomized controlled trial of sulfamethoxazole-trimethoprim for pneumocystis prophylaxis: results of 52-week follow-up. Rheumatol Adv Pract 2020; 4: rkaa029.
- 120. Safrin S, Finkelstein DM, Feinberg J et al. Comparison of three regimens for treatment of mild to moderate *Pneumocystis carinii* pneumonia in patients with AIDS. A double-blind, randomized, trial of oral trimethoprim-sulfamethoxazole, dapsone-trimethoprim, and clindamycin-primaquine. ACTG 108 study group. *Ann Intern Med* 1996; 124: 792–802
- 121. Weyant RB, Kabbani D, Doucette K, Lau C, Cervera C. *Pneumocystis jirovecii*: a review with a focus on prevention and treatment. *Expert Opin Pharmacother* 2021; **22**: 1579–1592.
- 122. Helweg-Larsen J, Benfield T, Atzori C, Miller RF. Clinical efficacy of first- and second-line treatments for HIV-associated *Pneumocystis jirovecii* pneumonia: a tricentre cohort study. *J Antimicrob Chemother* 2009; 64: 1282–1290.

- 123. Seif M, Kakoschke TK, Ebel F et al. CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci Transl Med 2022; 14: eabh1209.
- 124. Rios X, Chinn IK, Orange JS, Hanson CI, Rider NL. T-cell lymphopenia detected by newborn screening in two siblings with an Xq13.1 duplication. *Front Pediatr* 2017: **5**: 156.
- 125. Gray PE, Logan GJ, Alexander IE, Poulton S, Roscioli T, Ziegler J. A novel intronic splice site deletion of the IL-2 receptor common gamma chain results in expression of a dysfunctional protein and T-cell-positive X-linked severe combined immunodeficiency. *Int J Immunogenet* 2015; **42**: 11–14.
- 126. Chen X, Jiang C, Song W et al. Case report: Identification of a Chinese patient with RAG1 mutations initially presenting as autoimmune hemolytic anemia. Front Immunol 2024: 15: 1498066.
- 127. Lan J, Zhang Y, Song M et al. Omalizumab for STAT3 hyper-IgE syndromes in adulthood: a case report and literature review. Front Med (Lausanne) 2022; 9: 835257.

- 128. Cheng A, Kashyap A, Salvator H *et al*. Anti-interleukin-23 autoantibodies in adult-onset immunodeficiency. *N Engl J Med* 2024; **390**: 1105–1117.
- 129. Okada S, Markle JG, Deenick EK et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 2015; 349: 606–613.
- 130. Zhang SY, Boisson-Dupuis S, Chapgier A *et al.* Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. *Immunol Rev* 2008; 226: 29–40.
- 131. Fornes O, Jia A, Kuehn HS *et al.* A multimorphic mutation in IRF4 causes human autosomal dominant combined immunodeficiency. *Sci Immunol* 2023; **8**: eade7953.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.