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Inter-Ocular Fixation Instability of Amblyopia: 
Relationship to Visual Acuity, Strabismus, 
Nystagmus, Stereopsis, Vergence, and Age 

FATEMA GHASIA AND LAWRENCE TYCHSEN 

• PURPOSE: Amblyopia damages visual sensory and ocu- 
lar motor functions. One manifestation of the damage is 
abnormal fixational eye movements. Tiny fixation move- 
ments are normal; however, when these exceed a normal 
range, the behavior is labeled “fixation instability” (FI). 
Here we compare FI between normal and amblyopic sub- 
jects, and evaluate the relationship between FI and sever- 
ity of amblyopia, strabismus angle, nystagmus, stereopsis, 
vergence, and subject age. 
• METHODS: Fixation eye movements were recorded us- 
ing infrared video-oculography from 47 controls (15.3 ±
12.2 years of age) and 104 amblyopic subjects (13.3 ±
11.2 years of age) during binocular and monocular view- 
ing. FI and vergence instability were quantified as the bi- 
variate contour ellipse area (BCEA). We also calculated 

the ratio of FI between the 2 eyes: right eye/left eye for 
controls, amblyopic eye/fellow eye for amblyopes. Multi- 
ple regression analysis evaluated how FI related to a range 
of visuo-motor measures. 
• RESULTS: During binocular viewing, the FI of fellow 

and amblyopic eye, vergence instability, and inter-ocular 
FI ratios were least in anisometropic and most in mixed 

amblyopia ( P < .05). Each correlated positively with the 
strabismus angle ( P < .01). During monocular viewing, 
subjects with deeper amblyopia ( P < .01) and larger stra- 
bismus angles ( P < .05) had higher inter-ocular FI ra- 
tios. In all, 27% of anisometropic and > 65% of strabis- 
mic/mixed amblyopes had nystagmus. Younger age and 

nystagmus increased FI and vergence instability ( P < .05) 
but did not affect the inter-ocular FI ratios ( P > .05). 
• CONCLUSIONS: Quantitative recording of perturbed 

eye movements in children reveal a major functional 
deficit linked to amblyopia. Imprecise fixation, measured 

as inter-ocular FI ratios, may be used as a robust marker 
for amblyopia and strabismus severity. NOTE: Publica- 
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mblyopia is the most common cause of visual
impairment in children, affecting 2% to 4%. 1 Am-
blyopia arises as a result of discordant binocular vi-

ual inputs during the critical period of development (from
irth to 7 years of age). 2-6 It is caused most commonly by
nisometropia or strabismus. Amblyopia is characterized by
educed grating, vernier, and optotype visual acuity, 7 , 8 as
ell as subnormal contrast sensitivity. 9 , 10 Amblyopic sub-

ects also have reduced stereopsis and increased inter-ocular
uppression. 11-14 

Video-oculography–based eye tracking is useful for quan-
ifying strabismus 15-18 and holds promise as an automated
arker for the depth of amblyopia. Pathologic fixation in-

tability is a feature of vision loss. 19 , 20 Amblyopia also dam-
ges oculomotor functions, evident as increased fixation in-
tability (FI). 21-25 FI can be quantified as an oval of fixa-
ion scatter or a bivariate contour ellipse area (BCEA). 23 , 26

1 , 24 FI in amblyopes correlates with both visual acuity and
ontrast sensitivity deficits. 23 , 27-29 Vergence instability in
mblyopes, a form of FI, also correlates with stereo-acuity
eficits 21 , 23 , 28 , 30-32 and interocular suppression. 30 , 33 

Normal human beings exhibit tiny, involuntary physi-
logic fixational eye movements (FMs). These comprise
icro-saccades ( < 1 °): binocular, conjugate movements oc-

urring at a frequency of 1 to 2 Hz, with interspersed slow
rifts and tremors. 34 , 35 Fixation disparity, which is a nor-
al minor difference between right and left eye alignment

n a visual target, arises from constant micro-disconjugacies
f binocular eye movement. Physiological FMs create con-
rolled image motion, keeping it within the foveola, pro-
oting the achievement of the highest visual acuity. 36-38

imilarly, normal FMs facilitate stereopsis without caus-
ng diplopia. 39 The specific fast and slow FMs components
ontributing to the observed FI in amblyopia have been
escribed. 22-25 , 40 The alterations comprise larger fixational
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saccades and higher drift velocities. FI may be aggravated
further by the presence of fusion maldevelopment nystag-
mus. 25 , 28 , 41 Nystagmus other than fusion maldevelopment
nystagmus may also contribute to FI in amblyopes. 42 Fur-
thermore, amblyopic individuals have more disconjugate
FMs. The disconjugacies are pronounced in individuals who
lack binocularity, those with large angle strabismus, and
stereo blindness. 15-17 

Recent studies have shown that FM abnormalities are in-
fluenced by viewing conditions. For instance, FI, when mea-
sured as the amplitude of fast FMs, is most evident when the
amblyopic eye is viewing and the fellow eye is occluded. 23 , 42 

Previous research has focused primarily on individual fellow
eye or amblyopic eye FI or vergence instability in binocular
viewing. 

The current study quantifies FI and vergence instabil-
ity under binocular and monocular viewing, and provides
a detailed analysis of fast and slow FM components to iden-
tify nystagmus waveform (if any). It also aims to assess po-
tential factors contributing to FI and vergence instability,
including the depth of amblyopia, strabismus angle, stere-
opsis, nystagmus waveforms, and affected individuals’ age.
Furthermore, the current study is a new effort to quantify
relative changes in FI of the amblyopic eye compared to
the fellow eye under different viewing conditions by com-
puting inter-ocular FI ratios. The inter-ocular FI ratio mea-
surements in our study are akin to the clinical diagnosis
of amblyopia based on inter-ocular visual acuity difference.
This approach minimizes the influence of age and poten-
tial noise artifacts in fixation eye movement recordings in
children. 43-48 It will enhance our understanding of the rela-
tionship among visual feedback, fixation movement alter-
ations, and binocular interactions in children with ambly-
opia. In addition, it contributes to establishing a compre-
hensive database of FM parameters for future clinical as-
sessment of amblyopic children. 

METHODS 

The Cleveland Clinic Institutional Review Board approved
the protocol. Written informed consent was obtained from
each participant or parent/legal guardian, as mandated by
the Declaration of Helsinki. 

• STUDY COHORT, INCLUSION/EXCLUSION CRITERIA, 

AND CLINICAL PARAMETERS: We recruited 47 controls
and 104 amblyopic subjects. Inclusion criteria were the
presence of amblyopia attributable to anisometropia, stra-
bismus, or a combination of anisometropia and strabismus
(hereinafter labeled “mixed mechanism” amblyopia). 
Amblyopia was defined as subnormal corrected distance
visual acuity in the absence of any structural optic nerve,
retinal, or visual pathway abnormalities. Exclusion criteria
VOL. 267 INTER-OCULAR FIXATION I
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ncluded any coexisting ocular or systemic disease, con-
enital infections/malformations, or developmental delay.
ubjects with idiopathic infantile (sensory anomaly or con-
enital motor) nystagmus were also excluded. Idiopathic
nfantile nystagmus is characterized by an increasing-
elocity, slow-phase component of the nystagmus, or,
lternatively, pendular nystagmus (no fast phase), which
s a confound in measurement of amblyopia. Participants’
ges ranged from 3 to 69 years. 

Control subjects in the study were chosen based on the
bsence of any ocular or systemic abnormalities affecting
isual acuity, except for refractive errors. Subjects’ demo-
raphic data including age, sex, and race were collected
ased on self-report. A total of 104 subjects with ambly-
pia (mean [SD] age, 13.3[11.2] years; 58 female [55.1%];
6 male [44.9%]), along with 47 controls (mean [SD] age,
5.3[12.2] years; 28 female [59.5%]; 18 male [40.4%]) were
ncluded in the study. There was no difference in age ( t test,
 = .20) and sex ( χ2 , P = .47) between controls and ambly-
pic subjects. Similarly, there was no difference in the dis-
ribution of race between controls (28 Caucasian [59.5%];
 African American [14.8%]; 3 Hispanic [6.3%]; 5 Asian
10.6%]; 4 Multi-cultural [8.5%]) and amblyopia subjects
68 Caucasian [65.3]; 16 African American [15.3%]; 10
ispanic [9.6%]; 4 Asian [3.9%]; 6 Multi-cultural [6.7%])

 χ2 , P = .18). 
Clinical characteristics of each subject were extracted

rom a retrospective chart review. The corrected distance
isual acuity, stereo-acuity, cycloplegic refraction, and stra-
ismus angle at distance and near were tabulated at the time
f eye movement recordings. Corrected distance visual acu-
ty was measured monocularly, starting from the right eye,
sing the participant’s optimal spectacle correction with
nellen linear optotypes. For subjects < 6 years of age, al-
ernatively, crowding-bar HOTV optotypes or picture opto-
ypes (Allen optotypes with crowding bars presented with
ommercially available computer-based system Accomo-
ata Stimuli) were used. Corrected distance visual acuity
as measured at 20 feet of distance, and was recorded as

he line at which all letters (or symbols) were read. Stereo-
cuity was measured with the Titmus Stereo Test at 40 cm.
ubjects with no detectable (nil) stereoacuity were assigned
 value of 7000′′ . Corrected distance visual acuity scores
ere converted to logMAR, and stereo-acuity scores in sec-
nds of arc were converted to log arcsec. 

The clinical categorization of amblyopia subtype (ani-
ometropic, strabismic, or mixed) and severity (treated,
ild, moderate, or severe) at the time of diagnosis was based

n Pediatric Eye Disease Investigator Group criteria. 49 The
ype of amblyopia was assessed as described below. 

nisometropic amblyopia 
or anisometropic amblyopia, at least 1 of the following cri-
eria were required to be met: ≥0.50 diopters (D) difference
etween eyes in spherical equivalent or ≥1.50 D difference
etween eyes in astigmatism in any meridian. 
NSTABILITY OF AMBLYOPIA 231
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Strabismic amblyopia 
For strabismic amblyopia, at least 1 of the following crite-
ria were required to be met, and criteria not met for mixed
amblyopia: heterotropia at distance and/or near fixation on
examination (with or without spectacles); history of stra-
bismus surgery; and previous history of strabismus that had
resolved with glasses and/or surgery 

Mixed mechanism amblyopia 
For mixed mechanism amblyopia, both of the following cri-
teria were required to be met: criteria for strabismus met
(see above); and ≥1.00 D difference between eyes in spher-
ical equivalent or ≥1.50 D difference between eyes in astig-
matism in any meridian. The severity of amblyopia was as-
sessed as follows: (1) treated: if worse eye corrected distance
visual acuity was ≤0.09 logMAR; (2) mild: if > 0.09 but
< 0.30 logMAR; (3) moderate if ≥0.30 and < 0.70 logMAR;
and (4) severe if ≥0.70 logMAR. Amblyopic subjects were
grouped by severity of disease as treated (n = 24), mild (n =
18), moderate (n = 44), and severe (n = 18), and by etiology
as strabismic (n = 35), anisometropic (n = 33), and mixed
mechanism (n = 36). 49 

• EYE MOVEMENT RECORDINGS: Remote infrared video-
oculography (EyeLink 1000 plus, SR Research) was used to
measure horizontal and vertical eye positions as detailed in
previous studies 28 , 50-53 This video tracking method tracks
the pupil with the corneal reflection. This system has a spa-
tial resolution of 0.01 ° and a temporal resolution of 500
Hz. It captures horizontal and vertical eye positions of both
eyes that are important for quantifying each eye’s ampli-
tude, direction, and position under different viewing con-
ditions. Experiments were conducted in a semi-darkened
room. Children with appropriate refractive correction were
seated in an examination chair, with their heads placed on
a chin rest 84 cm away from the liquid crystal display (LCD)
screen. A small target sticker was placed on the child’s fore-
head to allow measurements of head movements and dis-
tance of the subject in relation to the camera while captur-
ing binocular eye position data. 54-56 

Protocol 
Monocular calibration and validation were done using a
cruciform 5-point constellation of horizontal–vertical tar-
get positions. At the initiation of each trial, a large color
animal cartoon image appeared on an LCD monitor. When
the recordings were about to commence, the animal’s sound
was broadcast, and its image shrank in 3 rapid steps. A sim-
ilar technique has been used to capture a child’s attention
while recording visual evoked potentials. 57 

Target stimuli 
After calibration, FMs were recorded as the subject fixated
a white circular target (0.5 ° visual angle) projected against
a black background on the LCD monitor (30-inch diame-
232 AMERICAN JOURNAL OF OPHTH
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er, resolution 2560 × 1600 pixels at 60 Hz, brightness 350
d/m2 ). The animal sound was re-broadcast to recapture the
hild’s attention if they deflected their gaze beyond a 4 × 4 °
xation window for > 500 milliseconds. 

rials 
hree 45-second trials were recorded under binocular view-

ng and under right vs left eye monocular viewing (1 eye
locked) conditions in a randomized order. The monocu-
ar viewing trials were categorized as monocular fellow eye
iewing and monocular amblyopic eye viewing conditions.
n infrared permissive filter was used to block visible light
hile allowing the non-viewing eye to be tracked. 

DATA ANALYSIS: Horizontal and vertical eye positions of
ight and left eye were analyzed using Matlab TM (Math-

orks). Blinks and partial blinks were identified and re-
oved. Blinks were defined as portions of raw data where

he pupil information was missing, and partial blinks were
efined as portions of data where there was a sudden
hange in pupil size > 50 units per sample. In addition,
00 units (200 milliseconds) of data before and after each
link and partial blink were removed to account for pe-
iods when the pupil may have been partially occluded
y the eyelid. Eye position signals were differentiated and
moothed with a Savitzkey–Golay filter to measure eye ve-
ocity. An interface that incorporated an automated En-
bert and Kleigl algorithm was used to identify fixational
accades and quick phases of nystagmus. 58-60 Both types of
ast FMs are generated by the same neural circuitry, 61-66

nd both follow the main-sequence relationship of saccades
o target steps. 67 , 68 To recognize and exclude noisy data
oints, we evaluated the main-sequence of fast FMs (quick
hases and fixational saccades were pooled together). 27 , 42

rifts and slow phases were defined as epochs between fixa-
ional saccades and quick phases in patients without or with
ystagmus. 27 , 42 

Subjects were categorized based on the presence of ab-
ence of nystagmus, defined as repetitive cycles of a fast-
hase saccade and a slower, prolonged, slow-phase lin-
ar or decreasing-velocity drift of eye position during at-
empted steady fixation (subjects with idiopathic infantile
ystagmus were excluded, as mentioned above). 69 Fusion–
aldevelopment nystagmus is common in individuals with

arly-onset strabismus. 70-73 Fusion maldevelopment nystag-
us was identified by the following: a nasalward slow-phase

rift with respect to the fixating eye; and an instantaneous
eversal of the direction of the fast and slow phases when
xation changed from 1 eye to the other. Subjects who did
ot fit the criteria for fusion maldevelopment nystagmus
and did not have idiopathic infantile nystagmus, an exclu-
ion criterion) were defined as having “other nystagmus.”
hus, all included subjects fell into 1 of 3 nystagmus cat-
gories: no nystagmus; fusion maldevelopment nystagmus;
r other nystagmus. 
ALMOLOGY NOVEMBER 2024

ealth and Social Security de ClinicalKey.es por Elsevier en noviembre 14, 
ación. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

•  

f  

t  

p  

t  

f  

s  

h  

s  

a  

a  

i  

p  

i  

a  

m  

m  

a  

p  

a  

w  

f  

v  

s  

m  

w  

r  

t  

t  

a  

t  

i  

g  

u  

v  

i  

c  

s  

u  

F  

p  

F  

a  

(  

t

•  

M  

b  

b  

1  

t  
Fixation and vergence stability (bivariate contour ellipse) metric
The fixation stability of the amblyopic eye was quantified
by calculating the bivariate contour ellipse (BCEA) en-
compassing 68% of fixation points, using the following for-
mula 21 , 22 , 74 : 

BCEA = π X 2 σ × σy 
√ 

1 − p2 

where 2.291 is the χ2 value (2 degrees of freedom) corre-
sponding to a probability of 0.68; σ x and σ y are the standard
deviations of horizontal (x) and vertical (y) eye position
of the amblyopic eye, respectively; and p is the product–
moment correlation of 2-position components (ie, the hor-
izontal (x) and vertical (y) position components). BCEA
were used to quantify the fixation stability of the amblyopic
eye obtained under binocular viewing, monocular fellow
eye viewing, and monocular amblyopic eye viewing con-
ditions. Similarly, BCEA was used to quantify the fixation
stability of the fellow eye obtained under binocular viewing,
monocular fellow eye viewing, and monocular amblyopic
eye viewing conditions. 

To calculate vergence instability, we computed the dif-
ference between the horizontal and vertical eye positions of
the amblyopic eye and fellow eye at a given time. Vergence
instability was quantified using the same BCEA formula as
above. Instead of using the actual horizontal (x) and ver-
tical (y) eye positions of the amblyopic eye or fellow eye,
we computed the standard deviations and product–moment
correlation on the difference in horizontal and vertical eye
positions, respectively, between the amblyopic eye and fel-
low eye at a given time. We quantified vergence instability
for each subject under binocular viewing, monocular fellow
eye viewing, and monocular amblyopic eye viewing con-
ditions. A log10 transformation was used to normalize the
resulting BCEAs. The higher the BCEA values, the greater
the FI and vergence instability. 

Inter-ocular FI ratios 
We computed 2 inter-ocular FI ratios as follows. (1) The
binocular viewing inter-ocular FI ratio was computed by
taking the ratio of the fixation stability of the amblyopic
eye and fixation instability of the fellow eye obtained un-
der binocular viewing, that is, the FI of the amblyopic eye
under binocular viewing divided by FI of the fellow eye un-
der binocular viewing. (2) The monocular viewing inter-
ocular FI ratio was computed by the taking the ratio of the
FI of the viewing obtained under the monocular amblyopic
eye viewing and monocular fellow eye viewing conditions,
that is, the FI of the amblyopic eye under monocular ambly-
opic eye viewing divided by the FI of the fellow eye under
monocular fellow eye viewing. 

The inter-ocular FI ratio allowed us to evaluate the rel-
ative increase in FI of the amblyopic eye compared to the
fellow eye under binocular and monocular viewing condi-
tions. Inter-ocular ratios of > 1 are indicative of greater FI
of the amblyopic eye compared to the FI of the fellow eye. 
VOL. 267 INTER-OCULAR FIXATION I
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STATISTICAL ANALYSIS: Statistical analysis was per-
ormed using SPSS (Version 25). The age between con-
rols and amblyopic subjects was compared using the un-
aired t test, whereas the sex and race distribution between
he 2 cohorts was compared using χ2 analysis. Also, the
requency of different FM waveforms by clinical type and
everity of amblyopia was compared using χ2 analysis. Post
oc comparisons were made for statistically significant re-
ults. A hierarchical multiple regression was run to evalu-
te the factors affecting fellow eye and amblyopic eye fix-
tion instability, vergence instability, and binocular view-
ng and monocular viewing inter-ocular FI ratios. In multi-
le regression model 1, age, corrected distance visual acu-
ty, stereo acuity, strabismus angle, extent of anisometropia,
nd multi-categorical waveform characteristics (no nystag-
us, FMN, other nystagmus) were included. In model 2,
ulti-categorical waveform information was removed. For

ll multiple regression models, linearity was assessed by
artial regression plots and a plot of studentized residuals
gainst the predicted values. The independence of residuals
as assessed by a Durbin–Watson statistic, which was < 2.4

or all models. There was homoscedasticity, as assessed by
isual inspection of a plot of studentized residuals vs non-
tandardized predicted values. There was no evidence of
ulticollinearity, as assessed by tolerance values of > 0.1
ith VIF values of < 3. There were no studentized deleted

esiduals greater than ±3 standard deviations. All statistical
ests had a critical alpha (significance) value of 0.05. To ob-
ain summative statistical measures of the FM variables di-
gnostic discrimination abilities in distinguishing different
ypes of amblyopia from controls, the individual eye fixation
nstability (ie, fellow eye and amblyopic eye FI) and ver-
ence instability obtained under binocular viewing, monoc-
lar _fellow eye viewing and monocular _amblyopic eye
iewing and the binocular viewing and monocular viewing
nter-ocular fixation instability ratios were subjected to re-
eiver operating characteristic (ROC) curve analyses. The
pecificity and sensitivity at a predetermined cut off val-
es were computed from the ROC curve analyses of each
M variable. The cut-off points were defined using the up-
er bound of 95% confidence intervals of the respective
M variables of control subjects (higher values of FM vari-
bles are indicative of greater FI). The area under the curve
AUC) and 95% confidence intervals of the AUC and sta-
istical significance were computed. 

RESULTS 

FIXATION INSTABILITY IN ANISOMETROPIC, STRABIS-

IC, AND MIXED-MECHANISM AMBLYOPIA: Fixation sta-
ility in a normal subject and FI in 2 different types of am-
lyopes are displayed in the graphs in Figure 1 . The top row
A is a normal subject. Within each box, on the right are
he ovals (BCEA plots) of each eye. The 3 boxes of the
NSTABILITY OF AMBLYOPIA 233
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FIGURE 1. Horizontal and vertical eye positions of right and left eye of control subject (A), fellow eye and amblyopic eye of 
anisometropic amblyopia subject (B), strabismic subject with amblyopia (C), and mixed amblyopia subject (D) obtained during a 
45-second visual fixation trial in primary position during binocular viewing (BV), monocular fellow eye viewing (MV_FE), and 
monocular amblyopic eye viewing (MV_AE). The 68% BCEA values of fixation stability for each eye are included next to the 
eye position plots as a quantitative measure of fixation scatter: the greater the BCEA values, the more unstable is the fixation 

(blue = fellow eye or left eye in control, red = amblyopic eye or right eye in control). Black arrows indicate the location of the 
target. The vergence stability for each subject under different viewing conditions is depicted in purple. Binocular and monocular 
viewing inter-ocular fixation instability (FI) ratios are computed for each subject. 
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row depict recordings during binocular viewing, monocular
amblyopic eye viewing, and monocular fellow eye viewing
respectively. To the left of each BCEA plot is the plot of
vergence stability (purple). The BCEA plots superimpose
the horizontal (x-axis) and vertical (y-axis) eye positions of
the right or amblyopic (red) vs left or fellow (blue) eye. The
greater the size of the BCEA oval, the greater the FI. Sim-
ilarly, the greater the size of the vergence instability oval,
the greater the vergence instability. The numbers within
234 AMERICAN JOURNAL OF OPHTH
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ach box represent the calculated BCEA for each eye, the
nter-ocular FI ratio, and the calculated vergence instabil-
ty. Lower numbers equate to more stability; higher numbers
quate to more instability. 

All of the amblyopic subjects in Figure 1 had larger
CEA than the control subject, indicating greater FI, and
ll of the amblyopes had greater vergence instability. The FI
nd vergence instability abnormalities were apparent dur-
ng binocular viewing (left column) in each type of ambly-
ALMOLOGY NOVEMBER 2024
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FIGURE 2. Mean and standard error of the mean of fixation instability (FI) of the fellow eye (black) and amblyopic eye (gray) in 

binocular viewing (BV), monocular fellow eye viewing (MV_FE), and monocular amblyopic eye viewing (MV_AE) in controls and 
in subjects with anisometropic, strabismic, and mixed amblyopia. 
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opia. The anisometropic amblyope had twice the binocular
viewing inter-ocular FI ratio of the control (1.83 vs 0.79).
The strabismic amblyope had a 6-fold greater binocular
viewing inter-ocular FI ratio compared to the control (4.94
vs 0.79), and the mixed amblyope had a 2.5 greater binoc-
ular viewing inter-ocular FI ratio compared to the control
(2.28 vs 0.79). Likewise, vergence instability was least in
the control (0.60), more in the anisometropic amblyope
(1.49), greatest in the strabismic amblyope (7.58), and in-
termediate (2.56) in the mixed-mechanism amblyope. 

Under conditions of monocular viewing, the FI in all
3 types of amblyopes was worse than under conditions of
binocular viewing. The monocular viewing inter-ocular FI
ratio increased in the anisometropic amblyope when com-
pared to the binocular viewing inter-ocular FI ratio. Ver-
gence instability also increased when viewing changed from
BV to monocular viewing in the strabismic and mixed-
mechanism amblyopes. In the strabismic amblyope, the
greatest vergence instability occurred during the monocu-
lar amblyopic eye viewing condition. In the mixed ambly-
ope, the greatest vergence instability occurred during the
monocular fellow eye viewing condition. Thus, monocu-
lar viewing made FI worse in all 3 types of amblyopia, and,
in subjects with a history of strabismus, monocular viewing
made vergence instability worse. 

• FIXATION INSTABILITY AND INTER-OCULAR FI RATIOS

AVERAGE VALUES FOR THE ENTIRE CONTROL AND AM-

BLYOPIA COHORT: Individual eye plots of FI of fellow eye
and amblyopic eye are displayed in Figure 1 . In Figure 2 ,
average FI values of the fellow eye and amblyopic eye are
shown for all controls and for all amblyopes, separated ac-
cording to amblyopia subtype. The severity of FI is plot-
ted along the y-axis as the size of the log10 BCEA. The
viewing conditions on the x-axis are assigned as binocu-
lar viewing, monocular fellow eye viewing, and monocu-
lar amblyopic eye viewing. For binocular viewing, controls
had mean FI of < 0, that is, highly stable fixation. The FI
of controls did increase in monocular viewing, particularly
in the eye that was occluded, which was attributable to
minor instability caused by lack of binocular summation
VOL. 267 INTER-OCULAR FIXATION I
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nd elimination of binocular-disparity eye position feed-
ack. During binocular viewing, the mean FI in all 3 am-
lyopia groups was worse than controls, and was worse in
he amblyopic eye compared to fellow eye. During monoc-
lar viewing, the mean FI of fellow eye and amblyopic eye in
ll 3 amblyopia groups increased, with a greater increase ob-
erved in the non-viewing (blocked) eye. The highest mean
I values occurred in subjects with strabismic and mixed-
echanism amblyopia under binocular viewing and in the
on-viewing eye under monocular viewing, indicating that
trabismus and diminshed visual feedback aggravate FI. In-
rease FI in the viewing eye under monocular viewing was
een in anisometropic and strabismic amblyopia groups, in-
icating that FI of viewing eye under monocular viewing
s reflective of the visual acuity deficit of the amblyopic
ye. 

The inter-ocular FI ratios of the individual subjects de-
icted in Figure 1 are representative of the results found
y averaging measurements for all subjects within a given
ubgroup ( Figure 3 ). The inter-ocular FI ratio was least for
ontrols and greatest for strabismic and mixed mechanism
mblyopes under binocular viewing. Inter-ocular FI ratio in-
reased in all groups, except the control group, when view-
ng changed from binocular to monocular viewing. 

EFFECT OF AMBLYOPIA SUBTYPE ON VERGENCE INSTA-

ILITY: To assess how subtype of amblyopia could influence
he stability of vergence, mean vergence instability was cal-
ulated and is plotted in Figure 4 . Following previous con-
ention, the x-axis notes the viewing condition: binocular
iewing, monocular fellow eye viewing, or monocular am-
lyopic eye viewing. Control subjects had the lowest ver-
ence instability, < 0 under conditons of binocular view-
ng. The next most stable subgroup was the one with ani-
ometropic amblyopia. The largest vergence instability was
ecorded in those with strabismus: the strabismic and mixed
echanism amblyopia groups. In all groups, including the

ontrol, changing from binocular to monocular viewing in-
reased vergence instability, and changing from monocular
ellow eye viewing to monocular amblyopic eye viewing in-
reased vergence instability further. 
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FIGURE 3. Mean and standard error of the mean of inter- 
ocular fixation instability ratio of amblyopic eye vs fellow eye 
(BCEA 68) obtained under binocular viewing (BV ratio) and 
per the viewing eye fixation stability obtained under monoc- 
ular viewing, that is, amblyopic eye obtained under monocu- 
lar amblyopic eye viewing divided by fellow eye obtained under 
monocular fellow eye viewing (MV ratio) in controls and in sub- 
jects with anisometropic amblyopia, strabismic amblyopia, and 
mixed amblyopia. To compute the inter-ocular fixation instabil- 
ity (FI) ratios in controls, we divided the data of the left eye by 
the right eye. 

FIGURE 4. Mean and standard error of the mean of ver- 
gence instability in binocular viewing (BV), monocular fellow 

eye viewing (MV_FE), and monocular amblyopic eye viewing 
(MV_AE) in controls and in subjects with anisometropic, stra- 
bismic, and mixed amblyopia. 
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• NYSTAGMUS AS AN ADDITIONAL ELEMENT OF AMBLY-

OPIC FIXATION INSTABILITY: FI and vergence instability,
as measured using BCEA, exceeded control values in all the
amblyopes of the present study. Both FI and vergence insta-
bility were aggravated when subjects were deprived of the
fixation cues provided by binocular viewing; that is, FI and
vergence instability worsened in monocular viewing. How-
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ver, as valuable as FI and vergence instability measures
re, BCEA measurement does not capture the dynamic fea-
ures of FM in some amblyopes, evident as fixational nys-
agmus. 28 Furthermore, clinical examination may not accu-
ately detect nystagmus. 69 , 73 , 75-78 Accurate nystagmus de-
ection entails careful analysis of eye movement recordings
ith particular attention to fast and slow-phase oscillations.
o detect nystagmus, eye position traces were analyzed dur-

ng binocular and monocular viewing epochs ( Figure 5 ).
ubjects were categorized for the presence or absence of nys-
agmus, as well as type: no nystagmus, other nystagmus and
usion maldevelopment nystagmus. 

Figure 5 shows fast and slow components of FMs in a
ontrol subject, and in amblyopes who displayed no nys-
agmus, other nystagmus and fusion maldevelopment nys-
agmus. Eye movement traces were analyzed for the direc-
ion of repetitive fast and slow phases. 67 The control sub-
ect ( Figure 5 , A) and amblyopia subject without nystag-

us ( Figure 5 , B) tracings show some fixational saccades
nterspersed with inter-saccadic drifts, but lack repetitive
scillations. They were categorized as no nystagmus. The
ubject in Figure 5 , C showed evidence of a minor albeit
nconsistent nystagmus in binocular viewing, interspersed
ith micro-square-wave jerks. When viewing converted to
onocular fellow eye viewing, the nystagmus in both eyes

onverted to a repetitive cycle of conspicuous, conjugate
low and fast phases. When viewing changed to monocu-
ar amblyopic eye viewing, the repetitive nystagmus cycles
isappeared and were supplanted by a series of conjugate
acro-square-wave jerks on a baseline of slower drift. The
ystagmus in this subject was labeled as having other nys-
agmus. 

In Figure 5 , D, binocular viewing showed a conju-
ate horizontal jerk nystagmus with a slow phase veloc-
ty of ∼3 degrees per second rightward and a frequency
f ∼2.5 Hz. Monocular fellow eye viewing showed equiv-
lent, rightward slow-phase nystagmus. Monocular ambly-
pic eye viewing produced an inversion of the nystagmus;
low phases were now directed leftward in both eyes at a
igher velocity ( ∼15 degrees per second). The nystagmus
as categorized as fusion maldevelopment nystagmus, typi-
ed by a conjugate nasalward slow phase with respect to the
iewing eye, rightward when viewing with the left fellow
ye and leftward when viewing with the right amblyopic
ye. 

FIXATION NYSTAGMUS IN DIFFERENT SUBTYPES AND

EVERITIES OF AMBLYOPIA: FM tracing waveforms were
nalyzed to assess the relationship to subtype and sever-
ty of amblyopia. In amblyopic subjects as a whole, 46.1%
n = 48) had no nystagmus; 40.5% (n = 42) had other
ystagmus; and 13.5% (n = 14) had fusion maldevelop-
ent nystagmus. Nystagmus type was plotted for each of

he 3 subtypes of amblyopia ( Figure 6 , A). The majority
f anisometropic subjects had no nystagmus ( P < .001),
hereas the majority of strabismic and mixed amblyopia
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FIGURE 5. Examples of fixation eye movement (FMs) obtained during a 5-second epoch under conditions of binocular viewing 
(on the left), monocular viewing (fellow eye) (in the center), and monocular viewing (amblyopic eye) (on the right) from a control 
subject (A) and amblyopic subjects, including a subject without nystagmus (B), a subject with fusion maldevelopment nystagmus 
(C), and a subject with other nystagmus that did not meet the criteria for fusion maldevelopment nystagmus or idiopathic infantile 
nystagmus (D). The x-axis represents time, and the y-axis represents horizontal (solid line, black: fellow eye, and gray: amblyopic 
eye) and vertical (dotted line, black: fellow eye, and gray: amblyopic eye) positions. Solid black arrows represent the fast FMs, 
whereas dotted black arrows represent slow FMs. Numbers in black and gray represent fast FM amplitude and eye velocity of slow 

FMs of the fellow eye and amblyopic eye, respectively. Note that the amplitude of fast FMs and eye position variance of slow FMs 
are increased in the amblyopic eye during monocular amblyopic eye viewing (MV_AE) (gray numbers) than in the fellow eye during 
monocular fellow eye viewing (MV_FE) (black numbers) in amblyopic subjects without and with nystagmus. 
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subjects had other nystagmus ( P < .001). Fusion malde-
velopment nystagmus was absent in anisometropic ambly-
opes and was present in a minority of subjects with strabis-
mic or mixed amblyopia ( P < .001). Nystagmus waveform
was also assessed for any relationship to severity of ambly-
opia ( Figure 6 , B). There was no correlation observed (chi
square, P = .40). 

• MULTIPLE FACTORS THAT COULD INFLUENCE FIXA-

TION INSTABILITY AND VERGENCE INSTABILITY: FI could
be influenced potentially by a number of factors, in addition
to those noted in the previous results. 

To examine this possibility, multiple regression analyses
were conducted to weigh the influence of the following:
subject age, amblyopic eye corrected distance visual acu-
ity, fellow eye corrected distance visual acuity, refractive
error differences, stereo-acuity, strabismus angle, and FM
waveforms. The results of the analyses are listed in Table 1 .
Model 1 includes FM waveform, whereas model 2 excludes
waveform data. The cells at the top row of the table display
the viewing condition, the eye measured, and the effect on
the inter-ocular FI ratio. The analysis was run to also take
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nto account any confounding effect caused by FM wave-
orms. 

Age analysis showed that younger children had a greater
I ( P < .05). FI was also likely to be greater in eyes with the
ollowing: poorer corrected distance visual acuity, whether
mblyopic eye ( P < .001) or fellow eye ( P < .05); larger stra-
ismus angle ( P < .05); and either no nystagmus or other
ystagmus ( P < .05). Greater monocular viewing inter-
cular FI ratio was linked to poorer amblyopic eye corrected
istance visual acuity ( P < .001) and larger strabismus an-
le ( P < .05). Greater binocular viewing inter-ocular FI ra-
io was linked to larger strabismus angle ( P < .001). The
emoval of waveform information does not significantly af-
ect the ability of the model to predict the FI of fellow eye
nd amblyopic eye (no statistically significant change in �
2, � F) under monocular fellow eye viewing as well as
onocular amblyopic eye viewing. However, the removal

f waveform information had a statistically significant ef-
ect on the model’s performance ( � R2, � F were reduced,
 < .05) in predicting FI of fellow eye and amblyopic eye
nder binocular viewing. In other words, characterizing FM
aveforms is important while evaluating fixation instability
nder binocular viewing. Interestingly, age and FM wave-
NSTABILITY OF AMBLYOPIA 237
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FIGURE 6. The distribution of fixation eye movement (FM) waveforms per the clinical type (A) and severity (B) of amblyopia 
(n = 104). 
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forms did not have an impact on the binocular viewing and
monocular viewing inter-ocular FI ratios. 

Mulitple regression analysis was also performed to de-
termine the effect of other factors on vergence instability
( Table 2 ). As in Table 1 , the analysis was run with or with-
out the addition of waveform information. During monocu-
lar viewing, vergence instability tended to be worse in sub-
jects with larger strabismus angles ( P < .001) and those
with fusion maldevelopment nystagmus ( P < .05). During
binocular viewing, vergence instability tended to be worse
in younger children ( P < .05), in those with larger stra-
bismus angles ( P < .001), and in subjects with either no
nystagmus or fusion maldevelopment nystagmus ( P < .05).
The removal of waveform information had a statistically
significant effect on the model’s performance ( � R2, � F
were reduced, P < .05) in predicting vergence instability
under binocular viewing and monocular fellow eye viewing
conditions. In other words, characterizing FM waveforms is
important while evaluating vergence instability. 

• ROC ANALYSIS FOR FM VARIABLES IN DETECTION OF

AMBLYOPIA: Figure 7 plots the results of the ROC analy-
sis for the FM variables in detecting different types of am-
blyopia. The parameters included separate analysis of FI of
the fellow eye and amblyopic eye obtained under different
viewing conditions (top panel), vergence instability under
different viewing conditions (middle panel), and binocu-
lar and monocular viewing inter-ocular FI ratios (bottom
panel). In our study, we established the cut-off values for
each FM variable by setting them at 95% of the upper bound
of the confidence intervals for the median value observed
in the control group. Although this approach may reduce
sensitivity by raising the threshold for positive identifica-
tion, it was chosen to enhance specificity and to minimize
the likelihood of false-positive results in diagnostic assess-
ments. For strabismic and mixed amblyopia subjects, sep-
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rate fellow eye and amblyopic eye FI instability obtained
nder binocular viewing and of the non-viewing eye un-
er monocular viewing had very good capabilities in dif-
erentiating them from controls. Similarly, vergence insta-
ility under all 3 viewing conditions and the inter-ocular
inocular viewing ratio had good discriminative capablities
n differentiating strabismic and mixed amblyopia subjects
rom controls ( Table 3 ). On the other hand, the inter-ocular
onocular viewing ratio was the only FM parameter with a

air discriminative capability (AUC = 0.68) in differentiat-
ng anisometropic amblyopia subjects from controls. These
esults underscore that various FM variables can reflect the
ifferent clinical types of amblyopia. Specifically, the com-
arison of inter-ocular fixation instability ratio obtained un-
er monocular and binocular viewing can be particularly
nformative, as it is not affected by age and the presence of
ystagmus, unlike the individual fellow eye and amblyopic
ye FI and vergence instability parameters. 

DISCUSSION 

he chief goal of this study was to examine fixation sta-
ility in subjects with different subtypes of amblyopia. A
elated goal was to introduce a new metric—namely, the
nter-ocular FI ratio—to aid the understanding of the oc-
lar motor deficits incurred by amblyopia. Our analysis of
recise eye movement recording revealed that FI was more
ronounced in amblyopic subjects with strabismus under
inocular viewing, whereas the increased FI under monoc-
lar viewing was related to the depth of amblyopia ( Figures
-4 ). The FI was evident as larger BCEA plots for each eye,
arger inter-ocular BCEA differences (ratios) between eyes,
nd larger magnitudes of vergence instability. Our results
lso show a systematic increase in FI and inter-ocular FI
ALMOLOGY NOVEMBER 2024
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TABLE 1. Multiple Regression Model Evaluating Separately (ie, Not Pooled) Fellow Eye and Amblyopic Eye Fixation Stability, and 
Inter-Ocular Fixation Stability in Controls and Amblyopia Under Different Viewing Conditions 

Separate Fellow Eye and Amblyopia Eye Fixation Instability Inter-Ocular Fixation Instability Ratios 

FI of FE in BV 

[FI of AE in BV] 

FI of FE in MV_FE 

[FI of AE in MV_AE] 

BV Inter-Ocular FI Ratio = 
FI of AE in BV/ 

FI of FE in BV 

MV Inter-Ocular FI Ratio = 
FI of AE in MV_AE/ 

FI of FE in MV_FE 

Variables MODEL_1 WITH FM WAVEFORM 

Age –0.31 ∗∗∗

[–0.24] ∗
–0.25 ∗

[–0.17] ∗
0.09 0.03 

AE visual acuity 0.17 

[0.21] 

–0.05 

[0.65] ∗∗∗
0.04 0.53 ∗∗∗

FE visual acuity 0.12 

[0.08] 

0.24 ∗

[0.09] 

0.05 –0.01 

Refractive error difference –0.20 

[–0.15] 

–0.10 

[–0.09] 

0.06 –0.19 

Stereo-acuity 0.06 

[0.04] 

–0.00 

[–0.04] 

–0.02 –0.01 

Strabismus angle 0.16 

[0.27] ∗
0.05 

[0.14] 

0.35 ∗∗∗ 0.22 ∗

No nystagmus 0.25 ∗

[0.17] 

0.08 

[–0.18] 

–0.07 –0.19 

Fusion maldevelopment nystagmus 0.18 

[0.32] 

–0.07 

[–0.03] 

0.00 –0.13 

Other nystagmus 0.06 

[0.13] 

–0.04 

[–0.26] ∗
0.05 –0.11 

R 

2 , F 0.30, 5.68 ∗∗∗

[0.37,7.89] ∗∗∗
0.17, 2.72 ∗

[0.35, 7.20] ∗∗∗
0.18, 2.88 ∗ 0.25, 4.38 ∗

Variables MODEL_2 WITHOUT FM WAVEFORM 

Age –0.34 ∗∗∗

[–0.23] ∗
–0.27 

[–0.14] 

0.10 0.04 

AE visual acuity 0.19 

[0.21] 

–0.02 

[0.59] ∗∗∗
0.04 0.51 ∗∗∗

FE visual acuity 0.16 ∗

[0.15] 

0.23 

[0.13] 

0.04 –0.04 

Refractive error difference –0.15 

[–0.13] 

–0.09 

[–0.11] 

0.05 –0.18 

Stereo-acuity 0.14 

[0.21] ∗
–0.06 

[–0.06] 

0.00 –0.05 

Strabismus angle 0.17 

[0.29] ∗∗∗
0.034 

[0.10] 

0.35 ∗ 0.21 ∗

R 

2 , F 0.25, 6.80 ∗∗∗

[0.32, 3.10] ∗∗∗
0.16, 3.83 ∗

[0.31, 9.50] ∗∗∗
0.17, 4.12 ∗∗∗ 0.23, 6.13 ∗∗∗

(� R2 , � F) 

(after removing FM waveforms) 

(–0.05, 2.84) ∗

[(–0.05, 3.09)] ∗
(–0.01, 0.59) 

[(–0.03, 2.07)] 

(–0.01, 50) (–0.02, 0.90) 

AE = amblyopic eye; BV = binocular viewing; FE = fellow eye; FI = fixation instability; MV = monocular viewing; MV_AE = monocular 

amblyopic eye viewing; MV_FE = monocular fellow eye viewing. 

The top row in each cell in the individual eye position FI section represents data of the FE, whereas the data in square brackets [] represent 

values of the AE. 
∗P < .05 
∗∗∗P < .001. 
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when the ocular motor system is deprived of binocular feed-
back; FI under conditions of monocular viewing exceeded
FI under conditions of binocular viewing. 

An additional component of the study was waveform
analysis, with the goal of revealing the prevalence and sub-
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ype of nystagmus in subjects with amblyopia ( Figures 5
nd 6 ). Nystagmus was recorded in > 65% of subjects with
trabismic or mixed mechanism amblyopia and in 27% of
ubjects with anisometropic amblyopia. Multiple regression
nalysis ( Table 1 ) was used to examine the relationship be-
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TABLE 2. Multiple Regression Model Evaluating Vergence Stability in Controls and Amblyopia Under Different 
Viewing Conditions 

Vergence Instability in BV Vergence Instability in MV_FE Vergence Instability in MV_AE 

Variables MODEL_1 WITH FM WAVEFORM 

Age –0.19 ∗ –0.13 0.00 

AE visual acuity 0.19 0.14 0.15 

FE visual acuity 0.12 0.02 0.1 

Refractive error difference 0.16 –0.10 –0.03 

Stereo-acuity –0.03 –0.02 0.14 

Strabismus angle 0.35 ∗∗∗ 0.30 ∗∗∗ 0.31 ∗∗∗

None 0.22 ∗ 0.06 0.09 

FMN 0.31 ∗ 0.35 ∗ 0.11 ∗

Other nystagmus 0.14 0.16 –0.07 

R 

2 , F 0.39, 8.55 ∗∗∗ 0.26, 4.83 ∗∗∗ 0.25, 4.41 ∗∗∗

Variables MODEL_2 WITHOUT FM WAVEFORM 

Age –0.19 ∗ –0.08 0.02 

Visual acuity of AE 0.19 0.10 0.13 

Visual acuity of FE 0.18 ∗ 0.09 0.14 

Refractive error difference –0.13 –0.09 –0.01 

Stereo-acuity 0.14 0.17 0.16 

Strabismus angle 0.38 ∗∗∗ 0.33 ∗∗∗ 0.29 ∗∗∗

R 

2 , F 0.34, 10.52 ∗∗∗ 0.21, 5.39 ∗∗∗ 0.22, 5.82 ∗∗∗

(� R2 , � F) [after removing FM waveforms] (–0.05, 3.40) ∗ (–0.06, 3.15) ∗ (–0.03, 1.46) 

AE = amblyopic eye; BV = binocular viewing; FE = fellow eye; FI = fixation instability; MV = monocular viewing; 

MV_AE = monocular amblyopic eye viewing; MV_FE = monocular fellow eye viewing. 
∗P < .05. 
∗∗∗P < .001. 
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tween FI, inter-ocular FI ratio, and a variety of contributing
factors: age, corrected distant visual acuity, stereo-acuity,
magnitude of anisometropia, angle of strabismus, and sub-
type of nystagmus. Multiple regression analysis ( Table 2 )
was also used to evaluate the impact of these same fac-
tors on vergence instability. ROC analysis was used to de-
termine the discriminative abilities of fixation eye move-
ment variables in detecting various types of amblyopia
( Table 3 ). 

• VALUE OF QUANTITATIVE EYE MOVEMENT RECORDING

ADVANCES FOR STUDIES OF CHILDREN: Advancements in
eye-tracking technology now allow precise recording of fix-
ational eye movements (FMs) in children, including those
with developmental delay and autism. 79-81 These innova-
tions facilitate objective assessments of eye movement in
infants, toddlers, and pre-school children. Over the last 2
decades, the FM measures have allowed the construction
of normative databases. 43 , 44 The primary objective of these
studies was to establish benchmarks for evaluating FM ab-
normalities in children with amblyopia and strabismus. An
additional application is to describe FMs in other pediatric
visual brain disorders, such as cerebral visual impairment.
Collectively, these studies have demonstrated the feasibil-
ity of obtaining FM recordings in children. Pediatric FM
recording has also aided the detection and diagnosis of nys-
tagmus. 81-85 
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The current study leverages advances in pediatric
ye tracking technology, using remote infrared video-
culography, which offers several advantages. 50-53 First, it
s child-friendly, with quick calibration. 17 , 52 , 82 , 86 , 87 Sec-
nd, it precisely captures binocular eye position data. Third,
nfrared video-oculography captures head movements and
ubject–camera distance variations to eliminate analysis
onfounds. 54-56 The high sampling frequency and spatial
esolution are akin to the gold standard of scleral search
oil recordings, but avoid the discomfort and eye safety con-
erns associated with scleral contact. 88 , 89 Infrared video-
culography ensures simultaneous capture of horizontal and
ertical eye positions for both eyes under different view-
ng conditions. That capability is instrumental for quan-
ifying amplitude, direction, position, alignment stability,
nd disconjugacy (ie, difference in eye position between
he 2 eyes). Infrared video-oculography is further enhanced
y automated (Engbert algorithm) FM analysis. 27 , 59 , 66 , 90

he analysis software enhances data quality, which includes
lotting the main-sequence relationship of fast FM (fixa-
ional saccades and quick phases) to facilitate the recogni-
ion and exclusion of noisy data points. 

FIXATION ABNORMALITIES AND THE NEURAL INTE-

RATOR: Fixation in normal subjects is more stable when
iewing a well-lit target; increased instability occurs in
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FIGURE 7. Receiver operating characteristic curves of various fixation eye movement (FM) variables in predicting anisometropic, 
strabismic, and mixed amblyopia. The top panel plots fellow eye and amblyopic eye fixation instability, whereas the middle panel 
plots vergence instability in binocular viewing (BV), monocular fellow eye viewing (MV_FE), and monocular amblyopic eye viewing 
(MV_AE). The bottom panel plots binocular and monocular viewing inter-ocular fixation instability (FI) ratios. 
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darkness. 52 , 91 , 92 Likewise, fixation is more stable when
viewing with both eyes as opposed to 1 eye. The improve-
ment is attributed to binocular summation. 22 , 28 , 30 Fixation
instability (FI) is more pronounced in eyes with reduced vi-
sion ( Figures 1-4 ). Key to FI is the role of the brainstem neu-
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al integrator, which integrates premotor velocity into eye
osition signals. 93 Neural integrators specify the position of
ach eye by receiving the individual eye’s visual informa-
ion. A mechanism for FI is degraded visual input into the
eural integrator. 
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TABLE 3. ROC Analysis of Fixation Eye Movement Variables in Different Types of Amblyopia 

Fixation Eye Movement Variables AUC 95% CI Cut-Off values Sensitivity Specificity 

Fellow Eye and Amblyopic Eye Fixation Instability 

Fellow eye (BV) (0.61) 

[0.76∗] 
{0.64∗} 

(0.47-0.74) 

[0.65-0.88] 
{0.51-0.76} 

( > –0.03) 

[ > –0.03] 
{ > –0.03} 

(46.5%) 

[65.5%] 
{58.1%} 

(65.9%) 

[65.9%] 
{65.9%} 

Amblyopic eye (BV) (0.59) 

[0.82∗] 
{0.81∗} 

(0.46-0.73) 

[0.73-0.91] 
{0.72-0.91} 

( > –0.01) 

[ > –0.01] 
{ > –0.01} 

(46.5%) 

[86.2%] 
{90.3%} 

(65.9%) 

[65.9%] 
{65.9%} 

Fellow eye (MV_FE) (0.57) 

[0.50] 

{0.63} 

(0.43-0.72) 

[0.36-0.64] 

{0.49-0.76} 

( < –0.09) 

[ < –0.09] 

{ < –0.09} 

(51.5%) 

[38.2%] 

{58.3%} 

(71%) 

[71%] 

{71%} 

Amblyopic eye (MV_FE) (0.50) 

[0.75∗] 
{0.79∗} 

(0.36-0.65) 

[0.64-0.87] 
{0.68-0.89} 

( > 0.32) 

[ > 0.32] 
{ > 0.32} 

(33.3%) 

[67.5%] 
{63.89%} 

(70%) 

[70%] 
{70%} 

Fellow eye (MV_AE) (0.62) 

[0.78∗] 
{0.81∗} 

(0.48-0.76) 

[0.66-0.89] 
{0.70-0.92} 

( > 0.32) 

[ > 0.32] 
{ > 0.32} 

(48.8%) 

[67.6%] 
{77.8%} 

(70%) 

[70%] 
{70%} 

Amblyopic eye (MV_AE) (0.54) 

[0.54] 

{0.71∗} 

(0.39-0.68) 

[0.39-0.68] 

{0.59-0.84} 

( > 0.07) 

[ > 0.07] 

{ > 0.07} 

(48.4%) 

[52.9%] 

{66.6%} 

(63.3%) 

[63.3%] 

{63.3%} 
Vergence Instability 

BV (0.59) 

[0.86∗] 
{0.78∗} 

(0.45-0.74) 

[0.78-0.94] 
{0.68-0.89} 

( > –0.03) 

[ > –0.03] 
{ > –0.03} 

(53.8%) 

[90.0%] 
{74.1%} 

(64.5%) 

[64.5%] 
{64.5%} 

MV_FE (0.55) 

[0.79∗] 
{0.79∗} 

(0.40-0.69) 

[0.68-0.90] 
{0.69-0.90} 

( < 0.22) 

[ > 0.25] 
{ > 0.25} 

(63.6%) 

[74.29%] 
{75.0%} 

(43.3%) 

[66.7%] 
{66.7%} 

MV_AE (0.50) 

[0.81∗] 
{0.78∗} 

(0.36-0.65) 

[0.71-0.91] 
{0.66-0.90} 

( > 0.25) 

[ > 0.25] 
{ > 0.25} 

(39.3%) 

[77.1%] 
{75%} 

(66.6%) 

[66.6%] 
{66.6%} 

Inter-Ocular Fixation Instability Ratio 

Inter-Ocular BV ratio (0.52) 

[0.66∗] 
{0.79∗} 

(0.36-0.67) 

[0.52-0.80] 
{0.67-0.91} 

( > 1.2) 

[ > 1.2] 
{ > 1.2} 

(53.8%) 

[62%] 
{80%} 

(64.5%) 

[64.5%] 
{64.5%} 

Inter-Ocular MV ratio (0.68∗) 
[0.55] 

{0.75∗} 

(0.54-0.81) 
[0.41-0.69] 

{0.63-0.87} 

( > 1.2) 
[ > 1.2] 

{ > 1.2} 

(63.6%) 
[44.1%] 

{69.4%} 

(72.4%) 
[72.4%] 

{72.4%} 

AUC = area under the curve; BV = binocular viewing; MV = monocular viewing; MV_AE = monocular amblyopic eye viewing; MV_FE = monoc- 

ular fellow eye viewing; ROC = receiver operating characteristic. 

The inter-ocular MV ratio compares the fixation instability of the amblyopic eye obtained under monocular amblyopic eye viewing condi- 

tion/fellow eye obtained under monocular fellow eye viewing condition, whereas the inter-ocular BV ratio compares the fixation instability of 

amblyopic eye/fellow eye obtained under binocular viewing. All values for anisometropic amblyopes are indicated by parentheses (); for strabis- 

mic amblyopes, square brackets []; and for mixed amblyopia, wavy brackets {}. Statistical significance is denoted by asterisks. 
∗P < .05. 
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• FI AND MALDEVELOPMENT OF THE VISUAL CORTEX:

Studies of non-human primate models of amblyopia and
strabismus lend important insights into degraded vi-
sual input and ocular motor control. 4 , 6 , 16 , 70 , 71 , 94-105 Non-
corresponding binocular inputs during the critical period
lead to anatomical and functional abnormalities in stri-
ate cortical area. 96 , 99 , 101 , 106 The disruption reduces binoc-
ular neurons in the striate cortex and causes loss of exci-
tatory connections, persistence of inhibitory connections,
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nd imprecise spatial signaling. The binocular maldevelop-
ent is promulgated to downstream visual areas, including
iddle temporal and medial superior temporal, responsi-

le for conjugate gaze holding. 70 Medial superior tempo-
al drive remains unbalanced, manifested as a nasalward
aze drift with respect to the viewing eye. The imbalance
s implicated as the cause of fusion maldevelopment nys-
agmus. 6 , 70 , 71 , 99-101 , 103 , 107 , 108 Subcortical areas driving eye
ovements that receive inputs from the visual cortex areas
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are also damaged by amblyopia. Damage to those neurons is
associated with FI. 4 , 39 , 96 , 108 , 109 Strabismus also impairs fix-
ation stability. Strabismus is characterized by eye position
variability, in both the deviating and fixating eye. 15 , 17 , 25 

The instability is an abnormality of the vergence path-
ways. 15 , 17 , 21 , 110 , 111 Our results agree with these findings.
FI in both the viewing and non-viewing eyes was more
prominent in subjects with strabismus and stereo blindness
( Table 1 ). 

• BCEA AND NYSTAGMUS WAVEFORM ANALYSIS AS

TOOLS FOR MEASUREMENT OF FI: Fixation stability mea-
sured using the bivariate contour ellipse area (BCEA)
serves as a crucial metric for quantifying FI in individuals
with amblyopia and strabismus. 21-24 , 46 , 112 , 113 BCEA values
are larger in amblyopic eyes of both children and adults
compared to fellow eyes. 21-24 , 26 , 28 , 30 , 31 Although mea-
surement of BCEA is a valuable tool for quantifying the
dispersion of eye positions, it does not accurately detect
the presence of nystagmus. 28 In previous work, we have
described nystagmus patterns in amblyopes, categorized
as no nystagmus, other nystagmus, and fusion maldevel-
opment nystagmus. 28 An examination of FM waveforms
revealed that subjects with strabismic or mixed amblyopia
were more likely to have nystagmus ( Figure 6 ). The most
common form of nystagmus in anisometropes was the form
designated as other nystagmus. Amblyopic subjects without
nystagmus can also exhibit other abnormalities in FMs.
The abnormal FMs can be present in both the amblyopic
and fellow eye. 21-23 , 42 These observations underscore the
importance of evaluating eye position traces obtained
under binocular and monocular viewing conditions to
accurately characterize waveforms. 

• VERGENCE INSTABILITY IN AMBLYOPIA WITH AND

WITHOUT STRABISMUS: Vergence instability, or FI in
depth, is computed as the difference in right and left eye po-
sition over time. Vergence instability increases in the pres-
ence of strabismus or amblyopia. 15 , 16 , 28 , 30 Our results show
that vergence instability is greater in strabismic and mixed
mechanisms amblyopes and is less in anisometropic ambly-
opes. 16 , 30 The current results identified strabismus, rather
than amblyopia, as the primary determinant of vergence in-
stability ( Figure 4 ). Vergence instability was greater in con-
trols and anisometropic amblyopes during monocular view-
ing. However, vergence instability in subjects with strabis-
mus was large in both binocular and monocular viewing
conditions. Loss of binocular disparity cues is implicated,
therefore, as a major driver of vergence instability. Ver-
gence instability was also more pronounced in subjects with
fusion maldevelopment nystagmus, reinforcing the notion
that lack of binocular fusion is a major cause of vergence
instability. Parallel findings of maldeveloped disparity ver-
gence in strabismic non-human primates complement our

114 
observations. 
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INTER-OCULAR FI IN AMBLYOPIA WITH AND WITHOUT

TRABISMUS: A few studies in the literature have evalu-
ted fixation stability, noting greater instability in younger
hildren. 43 , 44 , 115 The capacity to maintain a steady fixation
s not well developed at birth, and is characterized by in-
reased instability and variability during infancy. 116 How-
ver, over the course of development, there is a discernible
eduction in FI, a decrease in the frequency of intrusive sac-
ades and larger amplitude saccades during fixation, persist-
ng through mid-adolescence in typically developing chil-
ren. 43 , 44 Investigation into the developmental trajectory
f eye movements has revealed the same observations for
ther classes of eye movements, including smooth pursuit,
accades, and binocular eye alignment. The proficiency of
moothly tracking a moving target, termed ocular pursuit,
s immature at birth, but it improves in the first year of
ife. 117-121 The neural infrastructure to generate saccades is
n place at infancy, but saccadic accuracy improves through-
ut the childhood. Ocular misalignment observed in new-
orns during the first 2 months is indicative of a normally
eveloping vergence system. 122 The incidence of such mis-
lignment progressively diminishes in infancy, coinciding
ith the introduction of retinal disparity cues to the visual

timulus. 123 

To address the inherent challenges posed by inter-subject
ariabilities, specifically considering the influences of age,
e did a meticulous assessment of inter-ocular FI. In agree-
ent with previous studies, we found an increase in both

ndividual eye FI and vergence instability in younger chil-
ren; however, the inter-ocular FI was not impacted by
ge. Our results emphasize the importance of inter-ocular
I measurement. For binocular viewing, the strabismus an-
le emerged as the most robust predictor of inter ocular
I ( Table 1 ). For monocular viewing, the corrected dis-
ance visual acuity of the amblyopic eye emerged as the
est predictor, followed by the strabismus angle. We have
reviously reported increased FI (BCEA) values for the
mblyopic eye compared to the fellow eye, regardless of
ystagmus. 28 That finding was replicated in the current
tudy. 

UTILITY OF EYE MOVEMENT RECORDINGS AND FUTURE

ACHINE-LEARNING TOOLS FOR AMBLYOPIA MANAGE-

ENT: The shortage of pediatric ophthalmologists in the
nited States and globally has prompted a quest for inno-

ative solutions to optimize patient care, to reduce costs,
nd to overcome barriers to access. 124 125 Artificial intel-
igence, or machine learning, offers promise for detection
f amblyopia and strabismus. Eye movement analysis is
menable to machine learning. Commercially available re-
ote video eye trackers are now portable, accurate, and pos-

ess high sampling rates. Coupled with machine learning
nd the kind of normal and abnormal FI data generated in
he current study, the technology could advance consider-
bly the future diagnosis and treatment of binocular vision
isorders. 
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