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IMPORTANCE Accurate risk stratification of nonischemic dilated cardiomyopathy (NIDCM)
remains challenging.

OBJECTIVE To evaluate the association of cardiac magnetic resonance (CMR) imaging–derived
measurements with clinical outcomes in NIDCM.

DATA SOURCES MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection
databases were systematically searched for articles from January 2005 to April 2023.

STUDY SELECTION Prospective and retrospective nonrandomized diagnostic studies reporting
on the association between CMR imaging–derived measurements and adverse clinical
outcomes in NIDCM were deemed eligible.

DATA EXTRACTION AND SYNTHESIS Prespecified items related to patient population, CMR
imaging measurements, and clinical outcomes were extracted at the study level by 2
independent reviewers. Random-effects models were fitted using restricted maximum
likelihood estimation and the method of Hartung, Knapp, Sidik, and Jonkman.

MAIN OUTCOMES AND MEASURES All-cause mortality, cardiovascular mortality, arrhythmic
events, heart failure events, and major adverse cardiac events (MACE).

RESULTS A total of 103 studies including 29 687 patients with NIDCM were analyzed. Late
gadolinium enhancement (LGE) presence and extent (per 1%) were associated with higher
all-cause mortality (hazard ratio [HR], 1.81 [95% CI, 1.60-2.04]; P < .001 and HR, 1.07 [95% CI,
1.02-1.12]; P = .02, respectively), cardiovascular mortality (HR, 2.43 [95% CI, 2.13-2.78];
P < .001 and HR, 1.15 [95% CI, 1.07-1.24]; P = .01), arrhythmic events (HR, 2.69 [95% CI,
2.20-3.30]; P < .001 and HR, 1.07 [95% CI, 1.03-1.12]; P = .004) and heart failure events
(HR, 1.98 [95% CI, 1.73-2.27]; P < .001 and HR, 1.06 [95% CI, 1.01-1.10]; P = .02). Left
ventricular ejection fraction (LVEF) (per 1%) was not associated with all-cause mortality (HR,
0.99 [95% CI, 0.97-1.02]; P = .47), cardiovascular mortality (HR, 0.97 [95% CI, 0.94-1.00];
P = .05), or arrhythmic outcomes (HR, 0.99 [95% CI, 0.97-1.01]; P = .34). Lower risks for
heart failure events (HR, 0.97 [95% CI, 0.95-0.98]; P = .002) and MACE (HR, 0.98 [95% CI,
0.96-0.99]; P < .001) were observed with higher LVEF. Higher native T1 relaxation times
(per 10 ms) were associated with arrhythmic events (HR, 1.07 [95% CI, 1.01-1.14]; P = .04) and
MACE (HR, 1.06 [95% CI, 1.01-1.11]; P = .03). Global longitudinal strain (GLS) (per 1%) was not
associated with heart failure events (HR, 1.06 [95% CI, 0.95-1.18]; P = .15) or MACE (HR, 1.03
[95% CI, 0.94-1.14]; P = .43). Limited data precluded definitive analysis for native T1 relaxation
times, GLS, and extracellular volume fraction (ECV) with respect to mortality outcomes.

CONCLUSION The presence and extent of LGE were associated with various adverse clinical
outcomes, whereas LVEF was not significantly associated with mortality and arrhythmic end
points in NIDCM. Risk stratification using native T1 relaxation times, extracellular volume
fraction, and global longitudinal strain requires further evaluation.
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N onischemic dilated cardiomyopathy (NIDCM) is char-
acterized by left-ventricular or biventricular dilata-
tion and contractile dysfunction in the absence of

significant coronary artery disease and abnormal loading con-
ditions, such as those presented by hypertensive, valvular,
congenital, infiltrative, and acute inflammatory pathologies.1-3

NIDCM represents the most common indication for heart trans-
plantation globally, with 5-year mortality reaching up to 20%
because of progressive heart failure or sudden cardiac death
(SCD).4,5 With an annual incidence of 2% to 3%, NIDCM ac-
counts for considerable proportions of SCD, particularly among
people of working age. To mitigate the risk of SCD, approxi-
mately 100 000 implantable cardioverter-defibrillators (ICDs)6

are placed prophylactically in patients with NIDCM in the US
each year, generating a lifetime cost of approximately $230 000
per device.7,8 Yet landmark trials have repeatedly failed to dem-
onstrate long-term survival benefits of prophylactic ICD im-
plantation under current selection criteria,9-12 which are based
on a left ventricular ejection fraction (LVEF) at or below 35% as
the sole imaging criterion at the core of risk stratification algo-
rithms. Of note, the majority of patients with NIDCM receiving
ICDs under this convention did not experience a single defib-
rillator shock after a mean follow-up duration of 5.3 years,13

whereas patients with only mild to moderate contractile im-
pairment continue to remain at disproportionate risk of SCD.14,15

These circumstances illustrate that precise risk assessment for
guiding surveillance, resource allocation, and therapeutic
decision-making remain a major unmet clinical need for pa-
tients with this complex, heterogeneous disease.

Cardiac magnetic resonance (CMR) imaging has unique
potential for optimizing risk stratification in NIDCM given its
increasing accessibility in clinical practice and its potency in
providing noninvasive, multiparametric assessment of myo-
cardial function, morphology, and tissue characteristics. Late
gadolinium enhancement (LGE) represents the reference
standard for noninvasive assessment of focal replacement
fibrosis. Measurement of T1 relaxation times enables voxel-
by-voxel tissue characterization while extracellular volume
fraction (ECV) quantification offers a physiologically intuitive
estimation of myocardial collagen content, both serving as
measures of diffuse interstitial fibrosis.16-18 Further, myocar-
dial strain has been suggested to detect even subtle contrac-
tile dysfunction.19 Previous meta-analyses focused on the
evaluation of singular CMR imaging–based measurements in
predicting a narrow spectrum of clinical and nonclinical out-
comes in NIDCM, thereby limiting their applicability to clini-
cal practice. Against this background, this analysis aimed to
summarize the association of CMR imaging–derived LVEF,
LGE presence, LGE extent, native T1 relaxation times, ECV,
and global longitudinal strain (GLS) with adverse clinical out-
comes in individuals with NIDCM.

Methods
This meta-analysis is reported in line with the Meta-analyses Of
Observational Studies in Epidemiology (MOOSE)20 guidance
(supporting checklist) and the Preferred Reporting Items for Sys-

tematic reviews and Meta-Analyses (PRISMA)21 statements and
was registered on the international Prospective Register of Sys-
tematic Reviews (PROSPERO, CRD42022335477).22 Additional
methods are described in eAppendix 1 in Supplement 1.

Search Strategy
The electronic databases MEDLINE, Embase, Cochrane Library,
and Web of Science Core Collection were comprehensively
searched by a librarian (B.C.) for English-language papers from
January 2005 through April 2023. The search syntax was de-
signed by combining keywords and Medical Subject Head-
ings around the concepts of CMR imaging, cardiomyopathy,
and clinical outcomes (eAppendix 2 in Supplement 1). The ref-
erences of included studies were searched for additional eli-
gible studies. Conference abstracts and Cochrane Library on-
going trial registry records were excluded. Following deletion
of duplicate records, abstract screening was conducted in
a blinded manner by 2 independent reviewers (C.E., D.K.).

Study Selection
We deemed eligible any prospective or retrospective nonran-
domized diagnostic study fulfilling the following inclusion cri-
teria: (1) the study population consisted entirely of patients with
NIDCM (as defined by World Health Organization, European
Society of Cardiology, or American Heart Association criteria,1-3

including ventricular dilatation and contractile dysfunction,
absence of abnormal loading conditions, infiltrative or acute
inflammatory pathologies), NIDCM subgroup data were pro-
vided separately, or cardiomyopathies other than NIDCM rep-
resented a minor proportion (<10%) of the study population;
(2) the prognostic value of 1 or more CMR imaging–derived mea-
surements of LVEF, LGE presence, LGE extent, native T1 re-
laxation times, ECV, or GLS was explored; (3) 1 of the clinical
outcomes of interest was reported; and (4) the study pro-
vided quantitative information (either an estimate of associa-
tion or data for constructing 2 × 2 tables) for at least 1 CMR
imaging measurement and its corresponding outcome(s) of in-
terest, which could be used for the quantitative synthesis.

Key Points
Question Are cardiac magnetic resonance imaging–derived
measurements associated with adverse outcomes in nonischemic
dilated cardiomyopathy (NIDCM)?

Findings In this meta-analysis of 103 studies comprising 29 687
patients with NIDCM, late gadolinium enhancement (LGE)
presence and extent were consistently associated with
arrhythmic, nonarrhythmic, and mortality end points, whereas left
ventricular ejection fraction (LVEF) was not significantly
associated with mortality and arrhythmia. Higher native T1
relaxation times were associated with arrhythmic end points and
major adverse cardiac events. Due to insufficient data, a pooled
analysis could not be conducted for the measurements of native T1
relaxation times, extracellular volume fraction, and global
longitudinal strain concerning mortality end points.

Meaning The presence and extent of LGE were associated with
adverse clinical outcomes, whereas LVEF was not associated with
mortality and arrhythmic end points in NIDCM.
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Potential overlap between study cohorts was investigated for
each measurement and outcome using study centers and re-
cruitment periods as overlap indicators. In case of suspected
overlap, only data from the report with the largest study size,
longest follow-up duration, and/or highest statistical robust-
ness, in that order of priority, was extracted.

Data Extraction and Quality Assessment
Full-text review, data extraction, and quality assessment were
performed by 2 investigators (C.E., D.K.) independently. Inter-
reviewer discrepancies were resolved by consensus or discus-
sion with other investigators (G.C.M.S., C.G.). Study-level char-
acteristics, including year of publication, number of included
patients, study design, recruitment and follow-up period, pri-
mary recruitment center, recruitment countries, inclusion cri-
teria, primary and secondary outcomes, CMR field strength,
age, gender (male), body mass index, comorbidities (hyper-
tension, dyslipidemia, smoking history, atrial fibrillation, dia-
betes), LVEF, left ventricular end-diastolic volume (LVEDV),
and LVEDV index were extracted. Quality assessment was per-
formed using the Quality In Prognosis Studies (QUIPS) tool.23

Outcomes
The outcomes of interest were all-cause mortality, cardiovas-
cular mortality, arrhythmic events, heart failure events, and
major adverse cardiac events (MACE). Cardiovascular mortal-
ity was defined as cardiovascular death or heart transplant. Ar-
rhythmic events were defined as any combination of SCD,
aborted SCD, appropriate ICD therapy, and sustained ventricu-
lar arrhythmias. Heart failure events were defined as any com-
bination of heart failure mortality, heart transplant, left ven-
tricular assist device implantation, or hospitalization for heart
failure. Outcomes were classified as MACE if they were com-
posed of end points from multiple outcome categories (mor-
tality, arrhythmia, or heart failure).

Statistical Analysis
Hazard ratios (HRs) with corresponding 95% CIs were chosen
as the primary summary metric because they are most appro-
priate for summarizing time to event data.24 Where different
HRs were available for the same measurement at the study
level, estimates with the highest level of adjustment were pre-
ferred over those adjusted for fewer covariates or unadjusted
estimates. For dichotomous measurements (eg, LGE pres-
ence), relative risks and 95% CIs were derived from crude event
numbers and 2 × 2 tables if HRs were not available. Primary
meta-analyses for continuous measurements were based on
the most commonly reported increment (per 1% for LVEF, LGE
extent, ECV, and GLS; per 10 ms for native T1 relaxation times).
We fitted random-effects meta-analysis models using re-
stricted maximum likelihood estimation and the method of
Hartung, Knapp, Sidik, and Jonkman to synthesize estimates
from different studies for each CMR imaging–derived mea-
surement and outcome of interest.25,26 Heterogeneity was
quantified using the I2 statistic, which describes the propor-
tion of the variability in measures of association that is due to
heterogeneity rather than chance. Additionally, P values were
calculated from a χ2 test. Strict thresholds for interpretation

are not recommended, but in general, an I2 statistic at or above
50% and a χ2 test P value <.10 may be considered representa-
tive of substantial or considerable heterogeneity.27,28 To ex-
plore the impact of study and patient characteristics on asso-
ciations of CMR imaging–derived measurements with clinical
outcomes, random-effects meta-regression was performed for
those end points with 10 or more studies available. The effect
of baseline age, gender, LVEF, study design (prospective vs
retrospective), analytical method (unadjusted vs adjusted
analysis), and study centers (single-center vs multicenter) on
outcomes was tested. Assessment of small-study effects, en-
compassing publication bias, outcome reporting bias, and clini-
cal heterogeneity, was conducted graphically using funnel plots
and statistically using the Egger test if at least 10 studies were
included in the meta-analysis. The Grading of Recommenda-
tions Assessment, Development and Evaluation (GRADE) ap-
proach was applied to assess the quality of the evidence base
(eTable 1 in Supplement 1).29 All analyses were performed in
the statistical programming environment R version 4.3.1 using
the meta package (RStudio).

Results
Following the screening of 10 479 abstracts and the full-text
review of 176 reports, 103 studies30-133 comprising 29 687 pa-
tients were included (PRISMA flowchart in eAppendix 3 in
Supplement 1). Details about included studies, outcomes, and
technical information can be found in eAppendix 4 in Supple-
ment 1. The majority of included studies were prospective (51%)
and single-center (77%). The median (IQR) follow-up dura-
tion was 37.8 (26.5-47.9) months. Patients were a median (IQR)
age of 55.0 (51.6-58.5) years, were predominantly male (71.1%
[64.7%-75.7%]), displayed severely reduced systolic function
(LVEF, 29.5% [25.0%-36.4%]), and increased left ventricular
end-diastolic volume indices (130.6 mL/m2 [119.7-146.3]). Base-
line study/patient characteristics are summarized and strati-
fied by CMR imaging–derived measurements in the Table.
Study quality (QUIPS) is included in eAppendix 5 in Supple-
ment 1. Results from primary meta-analyses, including pooled
estimates, are represented visually in Figure 1 and are sum-
marized, including statistical heterogeneity and small-study
effects assessment, in eTable 1 in Supplement 1. Funnel plots
are found in eAppendix 6 in Supplement 1, and GRADE rat-
ings are outlined in eTable 1 in Supplement 1. eTable 3 in
Supplement 1 summarizes relevant additional studies for each
parameter and end point that could not be incorporated into
quantitative analysis due to discrepancies in units or incre-
ments of reported measurements.

LGE Presence
Ninety-six studies30-125 (n = 27 590) reported the association
between LGE presence and clinical outcomes in NIDCM, all of
which were incorporated into the primary meta-analysis.
Data on all-cause mortality, cardiovascular mortality, arrhyth-
mic events, heart failure events, and MACE in relation to
LGE presence were presented by 23 (n = 9738), 19 (n = 5228),
40 (n = 13 791), 32 (n = 9464), and 54 (n = 12 040) studies,
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Table. Study and Participant Characteristics

Study characteristic
Total
population

Late gadolinium
enhancement
presence

Late gadolinium
enhancement
extent LVEF

Native T1
mapping
relaxation times

Extracellular
volume fraction

Global
longitudinal
strain

No. of studies 103 96 28 47 7 3 9

No. of patients 29 687 27 590 7344 14 180 2461 1372 2226

Design, No. (%)

Prospective 53 (51) 50 (51) 14 (50) 24 (51) 7 (100) 3 (100) 3 (33)

Retrospective 49 (48) 45 (47) 14 (50) 23 (49) 0 0 6 (67)

Mixed 1 (1) 1 (1) 0 0 0 0 0

Single-center 79 (77) 73 (76) 21 (75) 35 (74) 5 (71) 2 (67) 8 (89)

Multicenter 24 (23) 23 (24) 7 (25) 12 (26) 2 (29) 1 (33) 1 (11)

Location, No. (%)

Europe 37 (35) 34 (35) 8 (29) 17 (36) 3 (43) 1 (33) 3 (33)

North America 15 (15) 15 (16) 4 (14) 6 (13) 1 (14) 0 0

Asia 43 (42) 39 (41) 14 (50) 20 (43) 2 (29) 1 (33) 6 (66)

Australia 4 (4) 4 (4) 0 1 (2) 0 0 0

Multiple 4 (4) 4 (4) 2 (7) 3 (6) 1 (14) 1 (33) 0

Sample size, No. (%)

≤100 31 (30) 29 (30) 3 (11) 8 (17) 3 (43) 0 1 (11)

>100 to ≤500 54 (52) 51 (53) 21 (75) 30 (64) 1 (14) 1 (33) 7 (78)

>500 18 (17) 16 (17) 4 (14) 9 (19) 3 (43) 2 (66) 1 (11)

Follow-up, median (IQR), mo 37.8
(26.5-47.9)

37.6
(26.5-47.6)

38.4
(20.9-50.2)

38.0
(26.6-47.7)

25.0
(22.0-31.0)

22.0
(13.6-23.3)

42.7
(20.5-47.3)

CMR field strength, No. (%)

1.5 T 58 (59) 55 (60) 12 (46) 19 (42) 3 (43) 0 3 (33)

3.0 T 15 (15) 13 (14) 7 (27) 12 (27) 2 (29) 1 (33) 3 (33)

Both 25 (26) 24 (26) 7 (27) 14 (31) 2 (29) 2 (66) 3 (33)

Studies investigating outcome, No. (total No.)

All-cause death NA 23 (9738) 4 (1852) 5 (3220) 0 0 0

Cardiovascular death NA 19 (5228) 3 (1323) 7 (3522) 0 0 0

Arrhythmic events NA 40 (13 791) 9 (2086) 12 (5055) 5 (1778) 0 0

Heart failure events NA 32 (9464) 6 (1686) 10 (4576) 3 (2198) 3 (1372) 3 (1001)

MACE NA 54 (12 040) 13 (3004) 24 (5446) 3 (962) 0 7 (1397)

Patient characteristics

Age, median (IQR), y 55.0
(51.6-58.5)

55.0
(51.8-58.5)

53.0
(49.0-57.0)

54.3
(50.0-57.0)

54.3
(48.0-58.6)

54.3
(51.9-58.7)

53.6
(47.0-59.2)

Male sex, median (IQR), % 71.1
(64.7-75.7)

71.0
(64.3-75.9)

69.8
(62.7-74.3)

70.7
(64.7-75.6)

72.0
(66.0-77.3)

62.0
(60.7-66.0)

70.0
(66.7-75.0)

BMI, median (IQR) 26.0
(24.2-27.0)

26.0
(24.3-27.0)

24.7
(24.1-27.2)

24.7
(24.1-26.7)

25.5
(24.1-27.8)

NA 24.4
(23.9-25.3)

Comorbidities, median (IQR), %

Hypertension 37.0
(30.7-47.7)

37.0
(31.4-48.0)

38.5
(31.3-45.5)

39.0
(31.7-44.8)

33.2
(23.0-35.0)

NA 37.4
(20.1-51.4)

Dyslipidemia 30.1
(26.2-38.5)

31.0
(26.4-39.0)

30.0
(24.0-38.0)

30.5
(25.4-38.0)

30.0
(30.0-31.0)

NA 26.0
(14.7-29.4)

Smoking history 30.6
(19.9-41.0)

31.3
(22.0-41.0)

26.8
(18.8-32.3)

30.5
(20.3-39.5)

30.0
(19.0-37.5)

NA 32.6
(28.5-41.0)

Atrial fibrillation 20.0
(15.4-28.2)

20.0
(15.0-28.2)

16.2
(11.5-20.6)

18.4
(14.6-27.0)

20.0
(15.0-31.8)

NA NA

Diabetes 16.5
(12.0-22.0)

17.0
(12.0-22.6)

15.1
(10.0-24.0)

15.1
(12.0-23.6)

14.3
(13.0-17.0)

NA 19.5
(14.2-28.3)

Cardiac function, median (IQR)

LVEF, % 29.5
(25.0-36.4)

29.5
(25.0-36.3)

28.4
(24.1-35.7)

28.0
(25.0-36.4)

30.7
(23.4-41.4)

40.7
(24.9-42.0)

23.7
(21.0-36.7)

LVEDVi, mL/m2 130.6
(119.7-146.3)

129.3
(119.7-145.1)

138.4
(122.0-159.1)

136.8
(120.6-158.9)

142.1
(111.0-188.8)

112.0
(110.0-159.1)

136.8
(123.0-167.9)

LVEDV, mL 243.3
(211.5-272.6)

241.1
(210.0-270.0)

277.0
(259.1-284.3)

270.0
(244.6-286.8)

NA NA NA

Abbreviations: BMI, body mass index; CMR, cardiac magnetic resonance;
LVEDV, left ventricular end-diastolic volume (as measured by CMR, where
available); LVEDVi, left ventricular end-diastolic volume index (as measured by

CMR, where available); LVEF, left ventricular ejection fraction; MACE, major
adverse cardiovascular events; NA, not applicable.

Research Original Investigation Risk Stratification in Nonischemic Dilated Cardiomyopathy Using CMR Imaging

1538 JAMA November 12, 2024 Volume 332, Number 18 (Reprinted) jama.com

© 2024 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by Biblioteca Nacional de Salud y Seguridad Social user on 11/13/2024

http://www.jama.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2024.13946


respectively. Statistically significantly higher risks of all-
cause mortality (HR, 1.81 [95% CI, 1.60-2.04]; P < .001)
(Figure 2A), cardiovascular mortality (HR, 2.43 [95% CI, 2.13-
2.78]; P < .001) (Figure 2B), arrhythmic events (HR, 2.69 [95%
CI, 2.20-3.30]; P < .001) (eFigure 1A in Supplement 1), heart fail-
ure events (HR, 1.98 [95% CI, 1.73-2.27]; P < .001) (eFigure 1C
in Supplement 1), and MACE (HR, 2.09 [95% CI, 1.79-2.44];
P < .001) (eFigure 1E in Supplement 1) were observed in the
presence of LGE.

LGE Extent
The association of LGE extent with clinical outcomes in NIDCM
was evaluated by 28 studies34,41,44,51,52,55,57,62,76,86,91,92,94-96,

98, 99, 102, 105, 110, 113, 121, 124, 126-130 (n = 7344) within the meta-
analysis. All-cause mortality, cardiovascular mortality, ar-
rhythmic events, heart failure events, and MACE per 1% higher
LGE extent were reported by 4 (n = 1852), 3 (n = 1323), 9
(n = 2086), 6 (n = 1686), and 13 (n = 3004) studies, respec-
tively. Statistically significantly higher risks of all-cause mor-
tality (HR, 1.07 [95% CI, 1.02-1.12]; P = .02) (Figure 3A), car-
diovascular mortality (HR, 1.15 [95% CI, 1.07-1.24]; P = .01)

(Figure 3B), arrhythmic events (HR, 1.07 [95% CI, 1.03-1.12];
P = .004) (eFigure 1B in Supplement 1), heart failure events (HR,
1.06 [95% CI, 1.01-1.10]; P = .02) (eFigure 1D in Supple-
ment 1), and MACE (HR, 1.03 [95% CI, 1.02-1.04]; P < .001)
(eFigure 1F in Supplement 1) were observed with every 1%
higher LGE extent.

LVEF
The association between LVEF and adverse outcomes in NIDCM
was explored by 47 studies31,34,36,38,40,41,44,45,51-53,57-59,61-63,

65,66,70,75,76,78,79,85-87,92,93,95-99,102-105,110,113,120,121,124,128,129,

131,132 (n = 14 180) within the meta-analysis. All-cause mortal-
ity, cardiovascular mortality, arrhythmic events, heart failure
events, and MACE in relation to every 1% higher LVEF were re-
ported by 5 (n = 3220), 7 (n = 3522), 12 (n = 5055), 10 (n = 4576),
and 24 (n = 5446) studies, respectively. No significant asso-
ciation with all-cause mortality (HR, 0.99 [95% CI, 0.97-
1.02]; P = .47), cardiovascular mortality (HR, 0.97 [95% CI,
0.94-1.00]; P = .05), and arrhythmic events (HR, 0.99 [95% CI,
0.97-1.01]; P = .34) per 1% higher LVEF was observed
(Figure 4A-C). Statistically significantly lower risks of heart

Figure 1. Cardiac Magnetic Resonance (CMR) Imaging Parameters and Clinical Outcomes

0.5 41
HR (95% CI)

Studies/
patients, No.Parameter HR (95% CI)

Late gadolinium enhancement presence (yes/no)

19/5228Cardiovascular mortality 2.43 (2.13-2.78)

23/9738All-cause mortality 1.81 (1.60-2.04)

40/13 791Arrhythmia 2.69 (2.20-3.30)

32/9464Heart failure 1.98 (1.73-2.27)

54/12 040MACE 2.09 (1.79-2.44)

Late gadolinium enhancement extent (per 1%)

3/1323Cardiovascular mortality 1.15 (1.07-1.24)

4/1852All-cause mortality 1.07 (1.02-1.12)

9/2086Arrhythmia 1.07 (1.03-1.12)

6/1686Heart failure 1.06 (1.01-1.10)

13/3004MACE 1.03 (1.02-1.04)

Left ventricular ejection fraction (per 1%)

7/3522Cardiovascular mortality 0.97 (0.94-1.00)

5/3220All-cause mortality 0.99 (0.97-1.02)

12/5055Arrhythmia 0.99 (0.97-1.01)

10/4576Heart failure 0.97 (0.95-0.98)

24/5446MACE 0.98 (0.96-0.99)

T1 relaxation time (per 10 ms)

5/1778Arrhythmia 1.07 (1.01-1.14)

3/2198Heart failure 1.03 (0.93-1.13)

Global longitudinal strain (per 1%)

3/1001Heart failure 1.06 (0.95-1.18)

7/1397MACE 1.03 (0.94-1.14)

3/962MACE 1.06 (1.01-1.11)

Extracellular volume (per 1%)

3/1372Heart failure 1.09 (0.91-1.30)

Pooled hazard ratios (HRs) for the association between CMR imaging–derived
measurements of late gadolinium enhancement (LGE) presence, LGE extent,
left ventricular ejection fraction, native T1 relaxation times, extracellular volume

fraction, and global longitudinal strain and clinical outcomes when 3 or more
studies were available for meta-analysis. MACE indicates major adverse
cardiovascular events.
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failure events (HR, 0.97 [95% CI, 0.95-0.98]; P = .002)
(Figure 4D) and MACE (HR, 0.98 [95% CI, 0.96-0.99]; P < .001)
(eFigure 2 in Supplement 1) were seen per 1% higher LVEF.

Native T1 Relaxation Times
Seven studies49,60,79,91,99,126,133 (n = 2461) exploring the asso-
ciation between native T1 relaxation times and clinical outcomes

Figure 2. Association of Late Gadolinium Enhancement (LGE) Presence With All-Cause
and Cardiovascular Mortality

LGE presence and all-cause mortalityA

Weight, %

0.1 20101
HR (95% CI)

Patients,
No.Study HR (95% CI)

0.732Kono et al,73 2010 0.78 (0.18-3.28)
4.2293Li et al,77 2013 2.26 (1.26-4.07)
2.1140Doesch et al,54 2014 2.30 (1.01-5.24)
0.376Sadahiro et al,103 2015 5.69 (0.72-45.05)
0.231Venero et al,116 2015 3.68 (0.19-70.87)
0.3105Gaztanaga et al,59 2016 3.83 (0.50-29.38)
2.6637Puntmann et al,99 2016 2.90 (1.37-6.15)

1.8531Marume et al,84 2018 3.15 (1.27-7.82)
4.6507Romano et al,102 2018 1.91 (1.09-3.35)
5.7452Gutman et al,63 2019 1.92 (1.16-3.18)
13.3874Halliday et al,64 2019 1.81 (1.30-2.52)
0.3130Muthalaly et al,90 2019 5.20 (0.64-42.39)
8.9689Shanbhag et al,107 2019 1.15 (0.77-1.72)
0.5112Behera et al,40 2020 3.09 (0.59-16.17)
4.1236Elming et al,55 2020 1.82 (1.00-3.30)
0.2157Chen et al,44 2021 4.55 (0.27-77.79)
5.61000Guaricci et al,61 2021 1.56 (0.94-2.59)
21.11020Klem et al,71 2021 1.68 (1.29-2.18)
0.775Shams et al,106 2021 4.71 (1.09-20.41)
1.8600Mirelis et al,88 2022 4.09 (1.68-9.97)
5.91165Claver et al,50 2023 1.63 (0.99-2.68)
7.8624Li et al,79 2023 1.68 (1.09-2.59)
100.0Random-effects model (HK) 1.81 (1.60-2.04)

7.3252Leyva et al,75 2017 1.86 (1.19-2.90)

Heterogeneity: I2 = 0%; τ2 = 0; χ  2    = 19.57 (P = .61)
Test for overall effect: t22 = 10.22 (P <.001)

22

LGE presence and cardiovascular mortalityB

Weight, %

0.1 20101
HR (95% CI)

Patients,
No.Study HR (95% CI)

0.265Wu et al,117 2008 1.39 (0.03-68.09)
5.0141Hombach et al,65 2009 2.26 (1.03-4.97)
0.732Kono et al,73 2010 2.33 (0.27-20.53)
12.3472Gulati et al,62 2013 3.22 (1.95-5.31)
0.472Machii et al,81 2014 3.57 (0.19-66.47)
0.764Rodriguez-Capitan et al,101 2014 0.45 (0.05-3.75)
0.357Yamada et al,119 2014 6.35 (0.32-126.52)

1.085Hu et al,66 2016 2.14 (0.38-12.16)
6.2441Arenja et al,36 2017 2.30 (1.14-4.65)
12.8252Leyva et al,75 2017 2.68 (1.64-4.37)
10.6220Zhang et al,125 2018 2.36 (1.38-4.04)
6.1452Gutman et al,63 2019 3.04 (1.49-6.20)
0.449Raman et al,111 2019 2.69 (0.17-42.56)
0.7112Behera et al,40 2020 6.18 (0.71-53.51)
7.6236Elming et al,55 2020 2.27 (1.20-4.30)
4.11165Di Marco et al,53 2021 3.50 (1.47- 8.33)
2.186Infante et al,68 2021 1.40 (0.42-4.64)
28.51020Klem et al,71 2021 2.04 (1.47-2.84)
100.0Random-effects model (HK) 2.43 (2.13-2.78)

0.4207Tateishi et al,114 2015 8.75 (0.48-160.40)

Heterogeneity: I2 = 0%; τ2 = 0; χ  2    = 8.90 (P = .96)
Test for overall effect: t18 = 14.10 (P <.001)

18

Meta-analysis results for the
association of LGE presence with
all-cause mortality (A) and
cardiovascular mortality (B). The area
of each square representing an
individual study is proportional to its
weight within the random-effects
meta-analysis model. Horizontal lines
indicate the 95% CI of the hazard
ratio (HR) estimate for the individual
study. The diamond indicates the
pooled HR estimate and its
corresponding 95% CI.
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in NIDCM were incorporated into the meta-analysis, including
studies using both 1.5 and 3.0 Tesla CMR machines (see addi-
tional methods in eAppendix 1 in Supplement 1). A paucity of
data precluded meta-analysis for all-cause mortality and car-
diovascular mortality. Data on arrhythmic events, heart failure
events, and MACE per 10-ms higher native T1 relaxation times
were reported by 5 (n = 1778), 3 (n = 2198), and 3 (n = 962) stud-
ies, respectively. We observed statistically significantly higher
risks for arrhythmic events (HR, 1.07 [95% CI, 1.01-1.14]; P = .04)
(Figure 5A) and MACE (HR, 1.06 [95% CI, 1.01-1.11]; P = .03) (eFig-
ure 3A in Supplement 1) with every 10-ms higher measure-
ment of native T1 relaxation times. No association with heart
failure event risk (HR, 1.03 [95% CI, 0.93-1.13]; P = .37) was iden-
tified (Figure 5B). Singular studies reported increased risks of
all-cause mortality (Puntmann et al; adjusted HR, 1.10 [95% CI,
1.07-1.17]; n = 637)99 and cardiovascular mortality (Li et al; ad-
justed HR, 1.19 [95% CI, 1.13-1.24]; n = 659)129 per 10- and 1-ms
higher measure of native T1 relaxation times, respectively.

Extracellular Volume
A paucity of data precluded pooled analysis for all-cause mor-
tality, cardiovascular mortality, arrhythmic events, and MACE
in relation to higher ECV. Three studies99,124,133 comprising 1372
patients reporting data on the association between ECV
and heart failure events were incorporated into the meta-
analysis. No significant association with heart failure event risk
was observed per 1% higher ECV (HR, 1.09 [95% CI, 0.91-1.30];
P = .18) (Figure 5C). Singular studies found higher all-cause mor-
tality (Puntmann et al; unadjusted HR, 1.10 [95% CI, 1.05-1.14];
n = 637)99 and cardiovascular mortality (Li et al; adjusted HR,
1.22 [95% CI, 1.12-1.33]; n = 659)129 risk per 1% higher ECV. Two
studies reported higher risks of arrhythmic events per 1%
(Di Marco et al; adjusted HR, 1.20 [95% CI, 1.10-1.40]; n = 618)133

and 3% (Li et al; adjusted HR, 1.26 [95% CI, 1.11-1.44]; n = 858)79

higher ECV. Four studies observed higher MACE risk with ev-
ery 1% higher ECV (Chen et al; adjusted HR, 1.48 [95% CI, 1.13-
1.94]; n = 46; Vita et al; adjusted HR, 1.11 [95% CI, 1.05-1.16];
n = 240),126,134 per 3% (Li et al; adjusted HR, 1.08 [95% CI, 1.04-
1.11]; n = 858),79 or per 1 standard deviation (Seno et al; ad-
justed HR, 1.37 [95% CI, 1.06-1.78]; n = 474).105

Global Longitudinal Strain
The association between reduced GLS (ie, less negative; as de-
fined in the additional methods in eAppendix 1 in Supple-
ment 1) and clinical outcomes in NIDCM was evaluated by 9
studies35,41,45,51,57,96,110,113,133 (n = 2226) incorporated into the
meta-analysis. Data on heart failure events and MACE per 1%
reduced GLS were reported by 3 (n = 1001) and 7 (n = 1397) stud-
ies, respectively. A paucity of data precluded pooled analysis
for all-cause mortality, cardiovascular mortality, and arrhyth-
mic events per 1% reduced GLS. No significant association with
heart failure events (HR, 1.06 [95% CI, 0.95-1.18]; P = .15)
(Figure 5D) and MACE risk (HR, 1.03 [95% CI, 0.94-1.14]; P = .43)
(eFigure 3B in Supplement 1) was observed per 1% reduced GLS.
Singular studies reported higher all-cause mortality (Romano
et al; adjusted HR, 2.14 [95% CI, 1.56-2.91]; n = 507),102 but no
association with cardiovascular mortality risk (Liu et al; un-
adjusted HR, 1.10 [95% CI, 0.91-1.32]; n = 192)130 per 1% re-
duced GLS. Two studies (Di Marco et al; adjusted HR, 1.20
[95% CI, 1.10-1.40]; n = 703; Li et al; unadjusted HR, 1.10
[95% CI, 1.00-1.20]; n = 466)76,133 reported associations be-
tween reduced GLS (per 1%) and higher risk of arrhythmia.

Meta-Regression
Meta-regression exploring heterogeneity in the associations
between CMR imaging–derived measurements and clinical out-
comes was feasible for LVEF, LGE presence, and LGE extent
(eTable 2 for quantitative values, eAppendix 7 in Supplement 1

Figure 3. Association of Late Gadolinium Enhancement (LGE) Extent With All-Cause
and Cardiovascular Mortality

LGE extent and all-cause mortalityA

Weight, %

1.21.10.9 1
HR (95% CI)

Patients,
No.Study HR (95% CI)

24.4472Gulati et al,62 2013 1.11 (1.06-1.16)
15.7637Puntmann et al,99 2016 1.09 (1.02-1.16)
36.6507Romano et al,102 2018 1.04 (1.02-1.07)
23.4236Elming et al,55 2020 1.07 (1.02-1.12)
100.0Random-effects model (HK) 1.07 (1.02-1.12)

Heterogeneity: I2 = 47%; τ2 = <.001; χ2
3 = 5.71 (P = .13)

Test for overall effect: t3 = 4.91 (P = .02)

LGE extent and cardiovascular mortalityB

Weight, %
Patients,
No.Study HR (95% CI)

100.0Random-effects model (HK) 1.15 (1.07-1.24)

Heterogeneity: I2 = 27%; τ2 = <.001; χ2
2 = 2.72 (P = .26)

Test for overall effect: t3 = 8.08 (P = .01) 0.5 421
HR (95% CI)

44.9472Gulati et al,62 2023 1.15 (1.10-1.20)
55.0659Li et al,129 2022 1.15 (1.11-1.20)
0.1192Liu et al,130 2021 2.57 (0.99-6.68)

Meta-analysis results for the
association of LGE extent with
all-cause mortality (A) and
cardiovascular mortality (B). The area
of each square representing an
individual study is proportional to its
weight within the random-effects
meta-analysis model. Horizontal lines
indicate the 95% CI of the hazard
ratio (HR) estimate for the individual
study. The diamond indicates the
pooled HR estimate and its
corresponding 95% CI.
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for meta-regression bubble plots). The association between LGE
presence and all-cause mortality was significantly modified by

patient age (P = .001), gender (P = .004), and baseline LVEF
(P = .02). Stronger associations were seen in populations of

Figure 4. Left Ventricular Ejection Fraction and Risk of Cardiovascular Events

0.8 0.9

Cardiovascular mortalityB

Weight, %

1.11
HR (95% CI)

Patients,
No.Study HR (95% CI)

14.4141Hombach et al,65 2009 0.95 (0.92-0.99)
19.2472Gulati et al,62 2013 0.96 (0.94-0.98)
14.9441Arenja et al,36 2017 1.00 (0.97-1.04)
13.8452Gutman et al,63 2019 1.03 (0.99-1.07)
9.11165Di Marco et al,53 2021 0.94 (0.89-1.00)
9.4192Liu et al,130 2021 0.96 (0.91-1.02)
19.2659Li et al,129 2022 0.96 (0.94-0.98)
100.0Random-effects model (HK) 0.97 (0.94-1.00)

Heterogeneity: I2 = 63%; τ2 = <.001; χ2
6 = 16.40 (P = .01)

Test for overall effect: t6 = –2.42 (P = .05)

0.5

Arrhythmic eventsC

Weight, %

21
HR (95% CI)

Patients,
No.Study HR (95% CI)

0.065Gao et al,58 2012 1.74 (0.62-4.88)
5.0137Perazzolo Marra et al,95 2017 0.98 (0.91-1.05)
3.734Jablonowski et al,128 2017 1.00 (0.92-1.09)
5.9183Barison et al,38 2020 1.06 (1.00-1.13)
8.4156Balaban et al,131 2021 1.01 (0.97-1.06)
11.6157Chen et al,44 2021 1.03 (1.00-1.06)
12.21165Di Marco et al,53 2021 0.96 (0.94-0.99)
13.41000Guaricci et al,61 2021 0.96 (0.94-0.98)

12.5115Piers et al,97 2022 1.00 (0.98-1.03)
2.4466Li et al,76 2023 0.90 (0.80-1.01)
100.0Random-effects model (HK) 0.99 (0.97-1.01)

Heterogeneity: I2 = 64%; τ2 = <.001; χ  2    = 30.88 (P = .001)
Test for overall effect: t11 = –0.99 (P = .34)

11

0.8 0.9

Heart failure eventsD

Weight, %

1.11
HR (95% CI)

Patients,
No.Study HR (95% CI)

16.2472Gulati et al,62 2013 0.95 (0.93-0.97)
16.3637Puntmann et al,99 2016 0.96 (0.94-0.98)
3.5117Youn et al,124 2017 0.88 (0.82-0.94)
7.9172Pi et al,96 2018 0.97 (0.93-1.01)
11.655Saito et al,104 2020 0.99 (0.96-1.02)
6.41165Di Marco et al,53 2021 0.94 (0.90-0.99)
2.7126Fu et al,57 2021 1.01 (0.93-1.09)
9.6255Yazaki et al,120 2021 0.99 (0.96-1.03)

100.0Random-effects model (HK) 0.97 (0.95-0.98)
Heterogeneity: I2 = 52%; τ2 = <.001; χ2

9 = 18.80 (P = .03)
Test for overall effect: t9 = –4.17 (P = .002)

All-cause mortalityA

Weight, %

1.10.9 1

Patients,
No.Study HR (95% CI)

24.2637Puntmann et al,99 2016 0.97 (0.95-1.00)
8.8507Romano et al,102 2018 0.98 (0.93-1.04)
21.3452Gutman et al,63 2019 1.02 (0.99-1.05)
25.11000Guaricci et al,61 2021 1.00 (0.98-1.03)
20.6624Li et al,79 2023 0.99 (0.96-1.02)
100.0Random-effects model (HK) 0.99 (0.97-1.02)

Heterogeneity: I2 = 42%; τ2 = <.001; χ2
4 = 6.89 (P = .14)

Test for overall effect: t4 = –0.79 (P = .47)
HR (95% CI)

12.4858Li et al,78 2022 0.99 (0.97-1.02)
12.4719Mikami et al,87 2021 0.98 (0.96-1.01)

9.2858Li et al,78 2022 0.96 (0.93-1.00)
16.6719Mikami et al,87 2021 0.98 (0.96-1.00)

Meta-analysis results for the risk of
all-cause mortality (A), cardiovascular
mortality (B), arrhythmic events (C),
and heart failure events (D) per 1%
increase in left ventricular ejection
fraction. The area of each square
representing an individual study is
proportional to its weight within the
random-effects meta-analysis model.
Horizontal lines indicate the 95% CI
of the hazard ratio (HR) estimate for
the individual study. The diamond
indicates the pooled HR estimate and
its corresponding 95% CI.
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younger patients, with more severely impaired systolic func-
tion and higher proportions of male participants. Baseline LVEF
did not modify the association between LGE presence and car-
diovascular mortality, arrhythmic events, heart failure events,
and MACE. Similarly, no modifying effect of baseline LVEF on
the association between LGE extent and arrhythmic events or
MACE was observed. For the remaining CMR imaging–
derived measurements and outcomes, results following meta-
regression remained largely consistent with primary analy-
ses (eTable 2 in Supplement 1).

Discussion
In this meta-analysis of observational studies exploring
CMR imaging–derived measurements as risk factors for

adverse clinical end points in NIDCM, the main findings
were: (1) Both presence and extent of LGE were associated
with all-cause mortality, cardiovascular mortality, arrhyth-
mia, heart failure events, and MACE; (2) higher LVEF was
associated with lower risk for heart failure events and
MACE, but no significant association with all-cause mortal-
ity, cardiovascular mortality, and arrhythmic risk was
observed; (3) higher risks for arrhythmic events and MACE
were seen with higher native T1 relaxation times; (4) there
was no association between GLS and heart failure events or
MACE; and (5) a paucity of data precluded pooled analysis
for native T1 relaxation times, ECV, and GLS with respect to
mortality end points.

Based on historic ICD trials, risk stratification in NIDCM
continues to be centered around LVEF threshold values at or
below 35% as the main indicator for primary prophylactic

Figure 5. Risk of Cardiovascular Events Due to Various Factors

T1 relaxation time and arrhythmic eventsA

Weight, %

1.11
HR (95% CI)

Patients,
No.Study HR (95% CI)

1.2 1.30.9

17.758Claridge et al,49 2017 1.12 (1.04-1.21)
31.944Gould et al,60 2019 1.01 (1.00-1.02)
9.3115Nakamori et al,91 2020 1.14 (1.00-1.30)
28.0858Li et al,78 2022 1.07 (1.04-1.11)
13.1703Di Marco et al,133 2023 1.10 (0.99-1.22)
100.0Random-effects model (HK) 1.07 (1.01-1.14)

Heterogeneity: I2 = 82%; τ2 = .002; χ2
4 = 22.65 (P <.001)

Test for overall effect: t4 = 3.06 (P = .04)

T1 relaxation time and heart failure eventsB

Weight, %

1.11
HR (95% CI)

Patients,
No.Study HR (95% CI)

1.20.9

34.1637Puntmann et al,99 2016 1.07 (1.05-1.10)
32.3858Li et al,78 2022 1.02 (0.99-1.05)
33.6703Di Marco et al,133 2023 0.99 (0.97-1.02)
100.0Random-effects model (HK) 1.03 (0.93-1.13)

Heterogeneity: I2 = 90%; τ2 = .001; χ2
2 = 20.26 (P <.001)

Test for overall effect: t2 = 1.14 (P = .37)

Extracellular volume and heart failure eventsC

Weight, %

1
HR (95% CI)

Patients,
No.Study HR (95% CI)

1.50.75

41.2637Puntmann et al,99 2016 1.05 (1.02-1.08)
30.7117Youn et al,124 2017 1.19 (1.10-1.29)
28.1618Di Marco et al,133 2023 1.04 (0.95-1.14)
100.0Random-effects model (HK) 1.09 (0.91-1.30)

Heterogeneity: I2 = 77%; τ2 = .004; χ2
2 = 8.64 (P = .01)

Test for overall effect: t2 = 2.00 (P = .18)

Global longitudinal strain and heart failure eventsD

Weight, %

1.11
HR (95% CI)

Patients,
No.Study HR (95% CI)

1.31.20.9

34.8172Pi et al,96 2018 1.07 (0.96-1.19)
39.1126Fu et al,57 2021 1.09 (0.99-1.21)
26.2703Di Marco et al,133 2023 1.00 (0.88-1.13)
100.0Random-effects model (HK) 1.06 (0.95-1.18)

Heterogeneity: I2 = 0%; τ2 = 0; χ2
2 = 1.17 (P = .56)

Test for overall effect: t2 = 2.31 (P = .15)

Meta-analysis results for the risk of
arrhythmic events (A) and heart
failure events (B) for every 10-ms
increase in native T1 relaxation time,
heart failure events with every 1%
increase in extracellular volume
fraction (C), and heart failure events
with every 1% reduction in global
longitudinal strain (D). The area of
each square representing an
individual study is proportional to its
weight within the random-effects
meta-analysis model. Horizontal lines
indicate the 95% CI of the hazard
ratio (HR) estimate for the individual
study. The diamond indicates the
pooled HR estimate and its
corresponding 95% CI.
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ICD implantation.1,135 Long-term follow-up from the land-
mark SCD-HeFT,9 DEFINITE,11 and, most recently, DANISH10

trials demonstrated no overall survival benefit from prophy-
lactic ICD implantation in NIDCM under LVEF-based crite-
ria; all 3 trials reported low rates of appropriate ICD dis-
charge of 5.1% over 1 year, 17.9% over 3 years, and 11.5% over
5.6 years, respectively. Only the DANISH trial demonstrated
a benefit in all-cause mortality during long-term follow-up
for the subgroup of patients aged 70 years or younger,10 pre-
senting a potential target for future trials. In the present
analysis, LVEF was not significantly associated with all-
cause mortality and arrhythmic events in NIDCM; merely a
trend toward lower risk of cardiovascular mortality (HR,
0.97 [95% CI, 0.94-1.00]; P = .05) was observed with higher
LVEF values. Overall, these findings cast further doubt on
the status of LVEF as the pivotal imaging criterion in risk
stratification and selection of patients for prophylactic ICD
implantation in NIDCM.

Replacement fibrosis resulting from collagen deposition
following apoptosis or necrosis of cardiac myocytes due to
irreversible injury can be detected in approximately 30% of
patients with NIDCM depicted by LGE. Analysis findings
illustrate that not only the presence, but also the extent of
LGE is consistently and strongly associated with mortality,
arrhythmia, and heart failure events in NIDCM (Figure 1).
The wide-ranging association of LGE across arrhythmic and
nonarrhythmic outcomes may be explained by replacement
fibrosis not only forming the major histological substrate for
myocardial reentry and malignant arrhythmias, but also
promoting secondary ventricular remodeling and contrac-
tile impairment.32 The association between LGE and clinical
outcomes remained consistent on meta-regression, includ-
ing exploration of results across the spectrum of LVEF, with
the exception of all-cause mortality, likely due to competing
noncardiac causes of death in older patients with more pre-
served systolic function (eTable 2 in Supplement 1). Analysis
results support findings from previous meta-analyses,
although the present analysis incorporates substantially
larger numbers of patients and reports data across all rel-
evant clinical outcome categories. The observations further
strengthen the notion of incorporating LGE detection and
quantification into the definition of high-risk NIDCM
phenotypes.136 Ultimately, randomized trials examining
the value of prophylactic ICD implantation in LGE-positive
patients with NIDCM are warranted and underway. The
CMR-ICD (NCT04558723) and BRITISH (NCT05568069)
studies are open-label, government-funded trials randomiz-
ing adult patients with NIDCM who have severely impaired
systolic function (LVEF ≤35%) and evidence of LGE on CMR
imaging in a 1:1 fashion to receive either primary prophylac-
tic ICD implantation or optimal medical therapy only, with
all-cause mortality as the primary end point. These trials
will provide definitive answers to whether LGE assessment
can tangibly improve therapeutic decision-making in
patients with NIDCM and advanced contractile impairment.
However, there continues to be a lack of randomized evi-
dence exploring LGE assessment as a selection criterion
for prophylactic ICD implantation in patients with NIDCM

and nonseverely reduced systolic function (LVEF >35%), as
these patients remain at risk of SCD.14 Analysis findings
indicate that such trials are warranted. Furthermore, stan-
dardized protocols for detecting and quantifying LGE are
needed to ensure consistent application of its evident prog-
nostic value in clinical practice.

Interstitial fibrosis, as depicted by native T1 mapping and
ECV, is near ubiquitous in NIDCM and may contribute to
arrhythmogenesis through maintenance of reentry circuits
and heterogeneous conduction slowing.133,137 Accordingly,
higher arrhythmic risk with higher native T1 relaxation times
were observed. Although meta-analysis for ECV regarding
arrhythmic events was not feasible, results from singular
studies appear to complement observations generated from
native T1 mapping (Di Marco et al,133 Li et al).79 Neither native
T1 relaxation times nor ECV demonstrated an association
with heart failure events, potentially suggesting that intersti-
tial fibrosis may not primarily contribute to contractile dys-
function and progressive pump failure in NIDCM. However,
this interpretation may not accurately mirror the true patho-
physiology and should be approached with caution due to
the limited availability of data. Moreover, insufficient data
precluded pooled analysis of mortality outcomes for both
measurements, yet singular studies observed higher all-
cause (Puntmann et al)99 and cardiovascular mortality
(Li et al)129 with higher native T1 relaxation times and ECV.
Although analysis observations suggest promise for a role of
native T1 relaxation times in NIDCM risk assessment, addi-
tional data from prospective, large-scale studies with
mortality- and arrhythmia-related end points are required to
establish whether measures of interstitial fibrosis provide
incremental value over LGE measurement.

Myocardial strain quantitatively assesses tissue mechan-
ics during the cardiac cycle, enabling refined evaluation of
systolic function beyond CMR imaging–derived volumes and
ejection fraction.138 GLS represents the most widely used
type of myocardial strain in clinical practice. Although no
clear associations between GLS and adverse outcomes were
identified in the analysis (Figure 1), current data are insuffi-
cient to draw strong conclusions. Considering the advanced
severity of systolic impairment of enrolled patients, GLS may
provide higher utility in NIDCM risk assessment at earlier dis-
ease stages given its sensitivity for discerning subclinical con-
tractile dysfunction.

Although the present analysis summarizes the associa-
tion of individual measurements with adverse outcomes,
risk assessment, and selection of patients for ICD implanta-
tion, analysis may be further enhanced by integrating vari-
ous CMR imaging measurements and combining them with
clinical risk factors, biomarkers,139 electrophysiological
data,140 and genetic variants141-143 to derive multiparametric
risk stratification algorithms. CMR imaging represents one
of the more resource-intensive imaging modalities in car-
diovascular medicine and is primarily restricted to more
developed health care systems, generating questions
regarding the cost-effectiveness of CMR imaging–based risk
assessment. Conversely, enhanced risk stratification and
refined selection of ICD candidates through CMR imaging

Research Original Investigation Risk Stratification in Nonischemic Dilated Cardiomyopathy Using CMR Imaging

1544 JAMA November 12, 2024 Volume 332, Number 18 (Reprinted) jama.com

© 2024 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by Biblioteca Nacional de Salud y Seguridad Social user on 11/13/2024

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2024.13946?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2024.13946
http://www.jama.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2024.13946


may avert considerable costs related to unnecessary ICD
implantations and subsequent lifetime management (gen-
erator changes, lead revisions, procedural and infectious
complications) while allowing the provision of life-saving
treatment for SCD-prone patients with NIDCM not captured
by current selection criteria.

Limitations
This analysis is limited by underlying study quality with
considerable proportions of studies featuring single-center
retrospective designs, limited patient numbers, and moder-
ate to high risks for bias. Substantial interstudy heteroge-
neity exists regarding definitions of NIDCM, inclusion crite-
ria, end point compositions, adjustment for covariates, as
well as thresholds, units, and increments used for measur-
ing CMR imaging–derived variables. Accordingly, the analy-
sis employed random-effects meta-analyses applying the
method of Hartung, Knapp, Sidik, and Jonkman to better
account for interstudy variance and conducted meta-
regression to explore the heterogeneity in the magnitude of
associations between CMR imaging parameters and clinical
outcomes. Specifically, the definition and composition of
MACE end points varied considerably, hence caution is
advised when interpreting results in relation to this out-
come. Further, a number of studies may have had the tech-
nical and statistical capabilities to report data on relevant
CMR imaging–derived variables and end points other than
the ones selected for publication, thereby generating the
potential for outcome or analysis reporting bias. Small-
study effects, including publication bias, may have resulted
in the overestimation of the associations, particularly
for LGE-based variables (eTable 1 for quantitative values,
eAppendix 6 for funnel plots in Supplement 1). Where
continuous variables have been studied, infrequent report-
ing of dichotomized thresholds or outcomes pertaining to
different age groups precluded any such analysis. Native T1
relaxation times and, to a lesser degree, ECV were depen-

dent on scanner type and magnetic field strength, and post-
processing software applied to GLS measurements varied
along with the normal values used. A paucity of data regard-
ing native T1 relaxation times, ECV, and GLS precluded
meta-analysis for bias-resistant mortality end points; and
sample size restrictions for nonmortality end points gener-
ated the potential for type II errors, clearly outlining the
need for future large-scale studies in this area. Lastly,
available studies predominantly included NIDCM popula-
tions with advanced contractile impairment, thereby
impeding the extrapolation of results to patients at earlier
disease stages.

Conclusions
This meta-analysis examined the value of CMR imaging–
derived measurements for risk stratification in patients with
NIDCM. The presence and extent of LGE were associated
with mortality and both arrhythmic and nonarrhythmic
clinical end points. However, small-study effects may have
led to an overestimation of the summary estimates. LVEF
was not associated with arrhythmic and mortality end
points, questioning its central role in risk stratification for
prophylactic ICD implantation in NIDCM. The lack of data
on bias-resistant mortality end points, along with the non-
standardized measurement and reporting for native T1
relaxation times, ECV, and GLS, represent significant evi-
dence gaps, which are clear targets for future research in
CMR imaging–based risk stratification of NIDCM. Ongoing
randomized clinical trials will provide insights into whether
LGE-based risk stratification can improve therapeutic
decision-making regarding prophylactic ICD implantation in
advanced NIDCM. Finally, further evaluation is needed to
determine if the findings of this analysis apply across the
entire clinical spectrum of NIDCM, including patients with
less severe contractile impairment.
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