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A B S T R A C T   

Atrial fibrillation (AFIB) and ventricular fibrillation (VFIB) are two common cardiovascular diseases that cause 
numerous deaths worldwide. Medical staff usually adopt long-term ECGs as a tool to diagnose AFIB and VFIB. 
However, since ECG changes are occasionally subtle and similar, visual observation of ECG changes is chal-
lenging. To address this issue, we proposed a multi-angle dual-channel fusion network (MDF-Net) to automat-
ically recognize AFIB and VFIB heartbeats in this work. MDF-Net can be seen as the fusion of a task-related 
component analysis (TRCA)-principal component analysis (PCA) network (TRPC-Net), a canonical correlation 
analysis (CCA)-PCA network (CPC-Net), and the linear support vector machine-weighted softmax with average 
(LS-WSA) method. TRPC-Net and CPC-Net are employed to extract deep task-related and correlation features, 
respectively, from two-lead ECGs, by which multi-angle feature-level information fusion is realized. Since the 
convolution kernels of the above methods can be directly extracted through TRCA, CCA and PCA technologies, 
their training time is faster than that of convolutional neural networks. Finally, LS-WSA is employed to fuse the 
above features at the decision level, by which the classification results are obtained. In distinguishing AFIB and 
VFIB heartbeats, the proposed method achieved accuracies of 99.39 % and 97.17 % in intra- and inter-patient 
experiments, respectively. In addition, this method performed well on noisy data and extremely imbalanced 
data, in which abnormal heatbeats are much less than normal heartbeats. Our proposed method has the potential 
to be used as a diagnostic tool in the clinic.   

1. Introduction 

In recent years, the number of cardiovascular disease (CVD) patients 
has been increasing worldwide [1]. According to the World Health Or-
ganization (WHO) [2], CVDs cause nearly 18 million deaths every year, 
accounting for the highest proportion of deaths due to various non-
communicable diseases, such as diabetes, malignant tumors, and 
tuberculosis. One of the most serious CVDs is arrhythmia, which is a 
general term for a heterogeneous set of types of abnormal cardiac 
electrical activity. Among various arrhythmias, atrial fibrillation (AFIB) 
and ventricular fibrillation (VFIB) [3–6] are two types of important 
diseases. They are characterized by rapid and irregular contraction of 
the atria and ventricles at an abnormal rate. In general, the occurrence of 

AFIB and VFIB may lead to the decline or even complete disruption of 
cardiac blood pumping function, which may eventually cause death. 
Hence, it is essential to identify potential AFIB and VFIB patients at an 
early stage. 

One of the most common diagnostic tools for AFIB and VFIB is 
electrocardiograms (ECGs). ECG is a kind of periodic electrical signal 
and can be collected conveniently through noninvasive methods. In 
general, a one-cycle ECG signal, namely, a heartbeat, is composed of a P 
wave, a QRS complex, and a T wave [7]. Among them, the P wave 
captures the potential changes during depolarization of the right and left 
atria, while the QRS complex and T wave reflect the changes in the two 
ventricles during depolarization and repolarization, respectively. Hence, 
ECGs contain rich information reflecting the state of the heart and are 
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often used by medical staff to diagnose AFIB and VFIB [8,9]. However, 
the changes in ECG waveforms are occasionally subtle and similar, 
making it difficult for medical staff to visually identify ECG abnormal-
ities [10]. Hence, it is important to develop an accurate and fast 
computer-aided system to detect cardiac abnormalities [11–14]. 

To realize automatic detection of AFIB and VFIB, relevant re-
searchers usually develop ECG classification systems by using signal 
processing and machine learning technologies. In general, the common 
ECG classification system is composed of three stages: preprocessing, 
feature extraction, and classification. At the preprocessing stage, the 
noise in raw ECGs is first removed by the signal processing method. 
Then, the noise-free ECGs are divided and normalized to obtain a series 
of mean-removed heartbeats. Next, the feature extraction stage is 
employed to mine key discriminatory information from heartbeats that 
is conducive to identifying cardiac abnormalities. In previous studies, 
common features of heartbeats mainly included time-domain features 
[18,21,22], frequency-domain features [17,19,20,28], statistical fea-
tures [15,23,24], and deep features [17,19–21,26–28]. At the stage of 
classification, support vector machine (SVM) [22,25], K-nearest 
neighbor (KNN) [23,24], and different kinds of neural networks 
[16,17,20,21,23,24,26,27] have been employed as classifiers to process 
features of heartbeats to obtain the final labels. Table 1 shows the 
relevant studies for classifying heartbeats of AFIB and VFIB patients. 

Although the above studies achieved excellent performance in 
identifying AFIB and VFIB, some issues have not been addressed 
[15–28], by which these methods may not be used in real scenarios. 1) 
First, most of the studies failed to verify the applicability of their 
methods in recognizing new patients. Specifically, these studies adopted 
the data of the same patients as the training and testing data (intra-pa-
tient experimental data) to verify the performance of their methods. For 
example, in 2019, Fujita et al. [27] proposed an 8-layer deep CNN based 
ECG classification method for recognizing cardiac diseases including 
AFIB and VFIB. This method achieved an accuracy of 98.43 % in the 
intra-patient experiment using 10-fold cross validation. However, the 
performance of this method has not been validated in inter-patient ex-
periments. In 2022, Rahul et al. [20] proposed a time-frequency repre-
sentation and BLSTM based ECG classification method. They only tested 
the performance of their method in the intra-patient experiment and not 
in the inter-patient experiment. However, in real scenarios, it is essential 
to adopt the proposed method to recognize the ECG data of new patients, 
for whom the heartbeats have not been used as training data. Due to the 
differences in the ECGs among individuals, the models developed based 
on intra-patient experiments are likely to cause overfitting in recog-
nizing the ECGs of new patients. Hence, it is particularly important to 
ensure the excellent performance of the proposed method in inter- 
patient experiments. 2) Second, the ability of the proposed methods to 
process noisy data has not been ensured. Specifically, many researchers 
have used signal processing algorithms to remove noise in ECGs at the 
preprocessing stage. However, due to the difference in collection 
equipment and environments, the levels of noise between ECGs are 
usually different, causing the process of completely removing noise from 
ECGs to inevitably lead to the loss of information useful for recognizing 
cardiac abnormalities. Hence, to avoid excessive dependence on an ac-
curate denoising algorithm, it is necessary to ensure that the method has 
certain noise robustness when developing an ECG recognition method; 
that is, it can effectively identify ECG data containing weak noise. 

Table 1 
The relevant studies for classifying AFIB and VFIB.  

Author Source Method Accuracy 

AFIB 
Martis et al. 

(2013) [15] 
MIT-BIH arrhythmia 
database (MITdb), 
MIT-BIH atrial 
fibrillation database 
(AFdb) 

Independent 
component analysis, 
Naive Bayes (NB) 
classifier 

99.33 % 
(NB) 

Jiang et al. 
(2019) [16] 

A real Paroxysmal 
Atrial Fibrillation 
dataset 

17-Layer one- 
dimensional 
convolution neural 
networks (CNN) 

95.8 % 

Radhakrishnan 
et al. (2021) 
[17] 

Physionet Computing 
in Cardiology 
Challenge 2017, 
MITdb, AFdb, MIT-BIH 
Normal Sinus Rhythm 
database (NSRdb) 

Time-frequency 
representation (TFR), 
deep convolutional 
bidirectional long 
short-term memory 
(BLSTM) network 

99.18 % 

Maghawry et al. 
(2021) [18] 

A real Paroxysmal 
Atrial Fibrillation 
dataset 

QRS complex 
duration, RR interval, 
sparse representation, 
Extreme Learning 
Machine 
classification 
technique 

97 % 

Wei et al. (2022) 
[19] 

PhysioNet Computing 
in Cardiology 
Challenge 2017 

Spectrogram, Fine- 
tuned EfficientNet B0 

97.3 % 

Rahul et al. 
(2022) [20] 

NSRdb, the MIT-BIH 
atrial fibrillation 
collected from Boston's 
Beth Israel Hospital 

Time-frequency 
representation, 
Bidirectional long 
short-term memory 
(BLSTM) network 

98.5 % 

Andersen et al. 
(2019) [21] 

AFdb, MITdb, and 
NSRdb 

RR intervals, 
Convolutional- and 
Recurrent-Neural 
Networks (CNN and 
RNN) 

98.96 % 

Parsi et al. 
(2021) [22] 

Atrial fibrillation 
prediction database 
(AFPdb) 

RR intervals, 
Poincaré 
representation, 
Linear kernel SVM 

98 % 

Lee et al. (2020) 
[23] 

Cardiology Center of 
Soonchunhyang 
Bucheon Hospital 
(SBH) 

Root-mean square of 
the successive 
differences (RMSSD) 
and the Shannon 
entropy (ShE), 
ensemble methods of 
neural networks 
(NNs), k-nearest 
neighbors (kNN), and 
decision trees (DT) 

97.94 % 

Lee et al. (2021) 
[24] 

Real data collected by 
themselves 

RMSSD and the 
Shannon entropy of 
the RR interval (ECG 
features), kNN, DT, 
and NNs 

98.9 % 
(KNN) 
97.8 % 
(DT), 
98.9 % 
(NN)  

VFIB 
Panigrahy et al. 

(2021) [25] 
MIT-BIH malignant 
ventricular arrhythmia 
database, arrhythmia 
database, and CUDB 
database 

Support vector 
machine (SVM), 
adaptive boosting 
(AdaBoost) and 
differential evolution 
(DE) algorithms 

98.2 %  

AFIB and VFIB 
Fujita et al. 

(2019) [26] 
MIT-BIH malignant 
ventricular arrhythmia 
database (VFdb), AFdb, 
MITdb. 

6-Layer deep CNN 97.78 % 

Fujita et al. 
(2019) [27] 

VFdb, AFdb and MITdb 8-Layer deep CNN 98.45 %  

Table 1 (continued ) 

Author Source Method Accuracy 

Tripathi et al. 
(2022) [28] 

MITdb, VFdb, Fantasia 
database, AF 
termination challenge 
database, CU 
ventricular 
tachyarrhythmia 
database 

Superlet transform 
(SLT), DenseNet-201 

96.2 %  
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Although some studies did not adopt a denoising algorithm at the pre-
processing stage, most of the noise in the raw ECGs was basically filtered 
out by the database creators. Hence, the results in these studies are not 
sufficient to prove the noise robustness of the proposed method. 3) 
Third, researchers should ensure that the proposed method can effec-
tively process multi-level extremely imbalanced data, in which the 
number of abnormal ECGs is far less than that of normal ECGs. Specif-
ically, the number of patients is usually less than that of normal in-
dividuals in real data settings, causing the numbers of ECG data between 
categories to be extremely imbalanced. Since machine learning methods 
tend to assign testing data to the category with the highest proportion of 
data used for training classification models, the small proportion of data 
is usually difficult to classify accurately. Hence, it is particularly 
important to verify the applicability of the proposed method to 
extremely imbalanced data. Although most researchers have not adop-
ted fully balanced data, they have usually constructed experimental 
datasets using more abnormal ECGs than normal ECGs, which is obvi-
ously different from the data distribution in real scenarios. In addition, 
the degrees of imbalance adopted in these studies are usually less than 
an order of magnitude, indicating that there is only a small difference in 
the number of heartbeats between different categories. Hence, it is 
essential to verify the performance of the proposed method on extremely 
imbalanced experimental datasets, in which there are far fewer 
abnormal ECGs than normal ECGs. 4) Fourth, the proposed methods in 
the above studies can only process single-lead ECGs, resulting in the 
inability to utilize diversified information in multi-lead ECGs. Specif-
ically, ECGs can be collected from the limb or chest leads. Among them, 
limb- and chest-lead ECGs record the state on the cardiac horizontal 
plane and sagittal plane, respectively, by which the single-lead ECG used 
in the above studies can only provide limited discriminant features. 
Hence, it is important to make full use of multi-lead ECGs when diag-
nosing cardiac abnormalities. 

To address the above issues, we propose a novel ECG classification 
method using a multi-angle dual-channel fusion network (MDF-Net). 
MDF-Net can be seen as the combination of the TRCA-PCA network 
(TRPC-Net) and the CCA-PCA network (CPC-Net), which are employed 
to extract deep features of multi-lead ECGs from different angles. Hence, 
MDF-Net can achieve two stages of feature-level information fusion. 
TRPC-Net is mainly composed of a TRCA convolutional layer, a PCA 
convolutional layer, and a fully connected layer. The aim of the TRCA 
convolutional layer is to extract the task-related components from multi- 
lead ECGs by maximizing the reproducibility of data under the same task 
[29]. Then, the PCA convolutional layer further weakens the correlation 
of ECGs between categories. Finally, the fully connected layer processes 
the outputs of the PCA convolutional layer to yield the feature vectors, 

called inter-lead task-related features. CPC-Net consists of a CCA con-
volutional layer, a PCA convolutional layer, and a fully connected layer. 
Among them, the CCA convolutional layer is employed to extract the 
correlation information from the multi-lead ECGs, while the functions of 
the PCA convolutional layer and the fully connected layer are similar to 
those in TRPC-Net. Hence, we regard the CPC-Net-based features as the 
inter-lead correlation features. Similar to convolutional neural networks 
(CNNs), MDF-Net can extract the deep discriminatory features from 
ECGs layer by layer. However, since the kernels of MDF-Net can be 
directly extracted by the TRCA, CCA, and PCA methods, MDF-Net has a 
faster training speed than CNNs. Next, a linear support vector machine 
(LSVM) is adopted to process the inter-lead task-related features and 
correlation features to yield two sets of primary results. These primary 
results are then fused by weighted softmax with average (WSA) to obtain 
the final labels. Since TRCA, CCA and PCA [30–32] can remove certain 
noise, MDF-Net, which combines the above methods using cascaded and 
convolutional structures, has significant noise robustness. In addition, 
since TRPC-Net and CPC-Net can extract features of multi-lead ECGs 
from different angles, including enhancing correlation and reproduc-
ibility under the same task, the complete MDF-Net has excellent feature 
mining ability, by which the key information conducive to recognizing 
cardiac abnormalities can be effectively extracted from extremely 
imbalanced and inter-patient ECG data. In this study, we adopted the 
ECGs of normal, AFIB, and VFIB patients in NSRdb, AFdb, and VFdb as 
experimental data to verify the performance of the proposed method. 

The main contributions of this work are as follows:  

1) An MDF-Net-based classification method, consisting of the TRPC- 
Net, CPC-Net, and LS-WSA fusion methods, was developed to auto-
matically diagnose AFIB and VFIB heartbeats.  

2) Inter-lead task-related feature extraction: We developed a TRPC-Net 
consisting of a TRCA convolutional layer, a PCA convolutional layer, 
and a fully connected layer. It is used to conduct the first stage of 
feature-level information fusion for multi-lead ECGs.  

3) Inter-lead correlation feature extraction: CPC-Net is constructed by a 
CCA convolutional layer, a PCA convolutional layer, and a fully 
connected layer. It can realize the second stage of feature-level in-
formation fusion for multi-lead ECGs.  

4) Decision-level information fusion: We designed an LSVM-weighted 
softmax with average (LS-WSA) method, including the LSVM, 
weight assignment, softmax function and average methods. It is 
employed to make decisions by conducting a stage of decision-level 
information fusion. 

2. Materials used 

2.1. Databases 

We adopt the ECGs of normal, atrial fibrillation (AFIB), and ven-
tricular fibrillation (VFIB) patients collected from three public databases 
as experimental data. These databases are the MIT-BIH Normal Sinus 
Rhythm Database (NSRdb), MIT-BIH Atrial Fibrillation Database 
(AFdb), and MIT-BIH Malignant Ventricular Ectopy Database (VFdb). 
Details are provided in Table 2.  

1) NSRdb includes ECG signals without abnormalities, which were 
obtained from 18 individuals.  

2) AFdb contains records for 23 available AFIB patients.  
3) In VFdb, ECGs were obtained from 4 patients with VFIB symptoms. 

2.2. Dataset construction 

In this work, ECGs collected from 45 individuals in NSRdb, AFdb, 
and VFdb were used as experimental data. For each patient, we 
randomly selected 400 heartbeats as the experimental data. Since only 
99 and 100 R waves were detected from the ECG records of two 

Table 2 
Databases used.  

Database MIT-BIH Normal 
sinus rhythm 
(NSRDB) 

MIT-BIH Atrial 
Fibrillation Database 
(AFDB) 

MIT-BIH 
Malignant 
Ventricular 
Ectopy Database 
(VFDB) 

Class Normal AFIB VFIB 
ECG ECG1 andECG2 ECG1 and ECG2 ECG1 and ECG2 
Sampling 

rate (Hz) 
128 250 250 

Number of 
records 

18 23 4 

ID 16265, 16272, 
16273, 16420, 
16483, 16539, 
16773, 16786, 
16795, 17052, 
17453, 18177, 
18184, 19088, 
19090, 19093, 
19140, 19830 

04015, 04043, 04048, 
04126, 04746, 04908, 
04936, 05091, 05121, 
05261, 06426, 06453, 
06995, 07162, 07859, 
07879, 07910, 08215, 
08219, 08378, 08405, 
08434, 08455 

422, 424, 426, 
430  
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individuals (ID = 08405, 424), only 99 and 100 heartbeats were ob-
tained. Then, we constructed six experimental datasets. The data dis-
tributions of these datasets are shown in Table 3. 

1) Sets A–C were constructed to evaluate the performance of the pro-
posed method on the intra-patient experiments. Among them, set A 
contains normal and AFIB heartbeats, while set B consists of normal 
and VFIB heartbeats. In addition, set C is composed of normal, AFIB 
and VFIB heartbeats. For each experiment, a random part of the 
heartbeats was used as training data, and the remainder was used as 
testing data.  

2) Sets D–F were designed to verify the performance of the proposed 
method on the inter-patient experiments. Among them, set D con-
tains normal and AFIB heartbeats, while set E consists of normal and 
VFIB heartbeats. In addition, set F includes normal, AFIB and VFIB 
patients. For each experiment, the training and testing data were 
obtained from different patients. 

3. Methods 

Fig. 1 shows the main flow of the proposed method. It consists of 
three main steps: preprocessing, feature extraction, and classification. In 
the preprocessing step, two-lead ECGs are first segmented into heart-
beats. Then, all the heartbeats are normalized and converted to ECG 
matrices. At the step of feature extraction, a multi-angle dual-channel 
fusion network (MDF-Net) consisting of TRPC-Net and CPC-Net is 
designed to extract deep features of two-lead ECG matrices from 
different angles. TRPC-Net was developed to extract the inter-lead task- 
related features, while CPC-Net was employed to mine the inter-lead 
correlation features. At the classification step, the LSVM is adopted to 
process the above two types of features to yield two sets of decision 
values, which are then fused by the weighted softmax and average 
(WSA) method to obtain the final labels. 

3.1. Preprocessing 

3.1.1. ECG segmentation 
In this work, we employ the Pan-Tompkins detection method to 

locate the positions of R peaks. Then, we use the ECG fragment align-
ment (EFA) method to divide the long-term ECG signals into short-term 
heartbeats. Specifically, for each R peak, we set the previous R peak as 
the R0 point and the next R peak as the R2 point. Then, the sample at 0.1 
s after the R0 point is set as A1, while the sample at 0.1 s before the R1 
point is set as A2. At the same time, the samples at 0.06 s before and after 
point R are set as points B1 and B2, respectively. Here, we set A1–B1, 
B1–B2, and B2–A2 as three segments. Next, we resample each segment 
to 100 points. Finally, these resampled segments are concatenated into a 
heartbeat with 300 sample points. 

3.1.2. Normalization and matrixing process 
Here, we use the min-max normalization method to convert the 

amplitude range of sample points in each heartbeat to [0,1]. Then, since 
the subsequent feature extraction method is designed to process two- 
dimensional (2-D) data, we convert each one-dimensional heartbeat to 
a 2-D ECG matrix with a size of by using the reshape function in 
MATLAB. 

3.2. Feature extraction 

3.2.1. MDF-Net 
To effectively mine key discriminant information in two-lead ECGs, 

we adopt the multi-angle dual-channel fusion network (MDF-Net) as the 
feature extraction method. MDF-Net can be regarded as the combination 
of TRPC-Net and CPC-Net. TRPC-Net is used to maximize the repro-
ducibility under the same task from two-lead ECGs, while CPC-Net is 
adopted to extract the correlation information between two-lead ECGs. 
Hence, we refer to TRPC-Net-based features and CPC-Net-based features 
as inter-lead task-related features and correlation features, respectively. 
The structure of MDF-Net is shown in Fig. 2. It consists of five processing 
layers: a scanning layer, a TRCA convolutional layer, a CCA convolu-
tional layer, a PCA convolutional layer, and a fully connected layer.  

1) Scanning layer 

In this layer, a patch with a size of k1 × k2 is used to scan the each- 
lead ECG matrix to obtain several matrices, which are then converted 
to vectors. Next, all vectors are combined into a new matrix, namely, the 
pending matrix.  

2) TRCA convolutional layer 

TRCA technology was developed to extract task-related components 
and task-unrelated components from data in different channels. In this 
work, the aim of the TRCA convolutional layer is to explore a series of 

Table 3 
Data distribution for sets A–F.  

Datasets Number of heartbeats 

Normal AFIB VFIB 

A/D  7200  8899  
B/E  7200   1300 
C/F  7200  8899  1300  

Fig. 1. The detailed process of the proposed method.  
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task-related components from multi-lead ECG matrices. To address these 
issues, we first adopt TRCA technology to process the above pending 
matrix between multi-lead ECGs to yield L1 TRCA filters. These filters 
are then convolved with the multi-lead ECG matrices to obtain TRCA- 
based primary feature blocks (TPFBs).  

3) CCA convolutional layer 

CCA technology was designed for mining correlations between data. 
In the CCA convolutional layer, we need to extract the correlation fea-
tures from the multi-lead ECG matrices. Specifically, CCA technology is 
used to extract L2 CCA filters by processing multi-lead ECGs. Then, these 
filters are convolved with the multi-lead ECG matrices to obtain CCA- 
based primary feature blocks (CPFBs).  

4) PCA convolutional layer 

Similar to the scanning layer, a k1 × k2 patch scans TPFB or CPFB to 
obtain a series of mean-removed patches, which are then extended into 
vectors. To make the process clear, we only employ TPFBs as an example 
to describe the subsequent steps. After processing all the TPFBs by the 
above operation, all the obtained vectors are converted to second-order 
pending (SOP) matrices. 

Then, PCA filters are used to extract L3 PCA filters from the SOP 
matrices. Next, these filters are convolved with the multi-lead ECG 
matrices to obtain L3 second-order feature blocks (SFBs). After pro-
cessing all TPFBs and CPFBs, we obtain L3 TPFB-based second-order 
feature blocks (TSFBs) and L3 CPFB-based second-order feature blocks 
(CSFBs).  

5) Output layer 

In this layer, by using hash coding, each TSFB or CSFB is converted to 
a binary matrix, which is then calculated to a decimal matrix. Next, a 
u1 × u2 window with overlap R is used to scan the decimal matrix to 
obtain a series of blocks. Finally, by using the histogram statistical 
method, all blocks are processed to yield the feature vector. After pro-

cessing all TSFBs and CSFBs, we obtain two sets of feature vectors fi,TRC 

and fi,CCA. 
A detailed description of the MDF-Net algorithm is shown in Ap-

pendix A with Table 13. 

3.3. Classification 

Here, we proposed the LSVM-weighted softmax function and average 
method (LS-WSA) to process the features fi,TRC and fi,CCA to obtain the 
final labels. The specific process of LS-WSA is as follows. 

3.3.1. LSVM 
SVM is a common supervised learning model and has been widely 

used in pattern recognition as a classifier model. It can establish the 
boundary of data between categories by building a decision hyperplane. 
In general, to cope with different situations, SVMs can employ different 
kernel functions, such as polynomial kernels, radial basis function (RBF) 
kernels, Laplace kernels, and linear kernels. Since the features extracted 
by MDF-Net have high dimensions, the SVM with a linear kernel func-
tion, namely, LSVM, is adopted as the classifier model. In our experi-
ments, the LSVM is implemented using the Liblinear toolkit in MATLAB. 
In addition, the penalty parameter C is set to 1. After processing all the 
fi,TRC or fi,CCA with the original label hi, we will obtain two sets of de-
cision values vi,h,TRC or vi,h,CCA, hi = 1, 2, ⋯, H, where hi expresses the 
corresponding original label, and decision values vi,h,TRC and vi,h,CCA ex-
press the distance between the sample and the decision hyperplane. 

3.3.2. Decision fusion  

(1) Weight assignment 

Due to differences in the expression abilities of features fi,TRC and 
fi,CCA, the decision values vi,h,TRC and vi,h,CCA should be assigned different 
importance. Hence, the LSVM-based sensitivities (SEs) of fi,TRC or fi,CCA 

for each class are used as the reference weights for vi,h,TRC or vi,h,CCA, by 
which we will obtain vweighted

i,h,TRC = SEz,TRC × vi,h,TRC or vweighted
i,h,CCA = SEz,CCA ×

Fig. 2. The structure of MDF-Net.  
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vi,h,CCA, where z represents the serial number of the label.  

(2) Probability assignment 

Here, according to Eq. (15), the softmax function (SF) is adopted to 
project vweighted

i,h,TRC and vweighted
i,h,CCA to two sets of probabilities si,h,TRC and si,h,CCA, 

respectively. 

sk
i,h =

evi,h

∑
hevi,h

> 0 (15)    

(3) Decision fusion 

The average method is employed to fuse the SF-based probabilities to 
obtain the overall decision probability si,h as per Eq. (16). 

si,h =
si,h,TRC + si,h,CCA

2
> 0 (16) 

For each category, the label with the highest probability si,h is used as 
the final label. 

3.4. K-fold cross validation  

1) Intra-patient experiments: We adopted ten-fold cross validation to 
ensure the reliability of the experimental results. Specifically, we 
randomly divided the data into ten parts. For each-fold experiment, a 
rotating part of the data was used as the testing data, while the others 
were employed as the training data.  

2) Inter-patient experiments: Leave-one-out cross validation was 
adopted for the inter-patient experiments. For each experiment, the 
heartbeats of a rotating patient were used as the testing data, while 
the others were employed as the training data. 

3.5. Evaluation indicators 

In this work, we adopted the confusion matrix including true posi-
tives (TPs), true negatives (TNs), false positives (FPs), and false nega-
tives (FNs) as the primary results. Based on them, we calculated the 
overall accuracy (OA), positive predictive value (PPV), sensitivity (SE), 
specificity (SPE), F1-score, and accuracy (AC) as the evaluation in-
dicators, which were calculated as per Eqs. (17)–(22). 

OA =
Correctly classified heartbeats
Total number of heartbeats

× 100% (17)  

PPV =
TP

TP + FP
× 100% (18)  

SE =
TP

TP + FN
× 100% (19)  

SPE =
TN

TN + FP
× 100% (20)  

F1 − score =
2 × PPV × SE

PPV + SE
× 100% (21)  

AC =
TP + TN

TP + FP + TN + FN
× 100% (22)  

4. Results and discussion 

4.1. Experimental setup 

In this work, a personal computer with an Intel® Core(TM) i7-8750H 
and a 16G RAM CPU was used as the experimental equipment. All ex-
periments were conducted on MATLAB 2018a. For the proposed 
method, all optimized parameters, which were obtained from validation 
data through the grid search method, are shown in Table 4. 

4.2. The results based on the intra-patient experiments 

4.2.1. The results on sets A–C 
Tables 5–6 record the classification results on intra-patient experi-

ments. Among them, set A contains normal and AFIB heartbeats, while 
set B consists of normal and VFIB heartbeats. According to Table 5, the 
proposed method realized OA, AC, SE, PPV, SPE, and F1-score of over 
99.9 % in distinguishing normal and AFIB heartbeats. In terms of clas-
sifying normal and VFIB heartbeats, Table 6 shows that most of the 
obtained indicators exceeded 99.9 % except for the PPV of 99.69 % and 
F1-score of 99.8 % when recognizing AFIB. Figs. 3–4 show the results for 
different folds on sets A–B. According to Figs. 3–4, all of the OA, average 
SE, average PPV, average SPE, and average F1-score obtained by our 
method are more than 99 %, indicating that the performance for all the 
folds is at a high level. 

Table 7 records the classification results on set C for distinguishing 
normal, AFIB and VFIB heartbeats. According to Table 7, an OA of 99.39 
% was achieved with misclassification rates of 0.07 % for normal 
heartbeats, 0.74 % for AFIB heartbeats, and 2.69 % for VFIB heartbeats. 
For each class, the obtained AC and SPE were greater than 99 %. In terms 
of recognizing normal and AFIB heartbeats, all of the obtained indicators 
exceeded 99.2 %. For identifying VFIB heartbeats, the proposed method 
achieved an SE of 97.31 %, a PPV of 95.26 %, and an F1-score of 96.27 
%. Fig. 5 shows the results for different folds on set C. It can be seen that 
all the values are over 97 %, meaning that the performance of the pro-
posed method is reliable and stable. The above results indicate that the 
proposed method exhibited excellent performance in classifying normal, 
AFIB and VFIB in intra-patient experiments. 

4.2.2. The results on sets A–C with multi-level extremely imbalanced data 
Here, we verified the performance of the proposed method in pro-

cessing multi-level extremely imbalanced heartbeats. Fig. 6 shows the 
classification results on sets A–C with multi-level extremely imbalanced 
data. The number of normal heartbeats was N times that of AFIB and 
VFIB heartbeats, where N represents the level of imbalance. As shown in 
Fig. 6, most of the indicators decreased slightly as N increased. However, 
all the values of SE, PPV, SPE, and F1-score achieved by the proposed 
method were more than 94 % on sets A–C when the N value changed 
from 6 to 40. In particular, when N was 20, all the indicators for AFIB 
and VFIB still exceeded 99 % on sets A–B. Although the SE, PPV, and F1- 
score for AFIB and VFIB on set C were slightly less than 98 % (over 96 
%), the obtained SPE was still greater than 99.8 %. Hence, the proposed 
method has excellent performance in detecting normal, AFIB and VFIB 
in intra-patient experiments containing multi-level extremely 

Table 4 
The optimal parameters of the proposed method.  

Model Layer Parameters Search range Optimized 
values 

Preprocessing Matrixing 
process 

m {2:30} 15 
n {2:30} 20 

MDF-Net Scanning layer k1(k2) {3:2:9} 3(3)
TRCA 
convolutional 
layer 

L1 {3:1:10} 6 

CCA 
convolutional 
layer 

L2 {3:1:10} 6 

PCA 
convolutional 
layer 

L3 {3:1:10} 7 

Output layer u1 × u2 {3:2:9} 7× 7 
R {0.34:0.2:0.9} 0.5  
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imbalanced data, in which abnormal heatbeats are much less than 
normal heartbeats. 

4.3. The results based on the inter-patient experiment 

Tables 8–10 record the classification results on sets D–F. According 

to Table 8, the proposed method achieved an OA of 99.84 % in dis-
tinguishing normal and AFIB heartbeats. In addition, all the values of 
PPV, SE, SPE and F1-score for normal and AFIB heartbeats exceeded 
99.7 %. Table 9 shows the confusion matrix obtained on set E, including 
normal and VFIB heartbeats. In total, the proposed method only mis-
classified 0.61 % of heartbeats containing 0.08 % of normal heartbeats 

Table 5 
Confusion matrix for set A (normal and AFIB classes).  

N = 1 Predicted AC 
(%) 

SE 
(%) 

PPV 
(%) 

SPE 
(%) 

F1-score 
(%) 

Normal AFIB 

Original Normal 7193 7 99.94 99.9 99.97 99.98 99.93 
AFIB 2 8897 99.94 99.98 99.92 99.9 99.95 

OA (%) 99.4  

Table 6 
Confusion matrix for set B (normal and VFIB classes).  

N = 1 Predicted AC 
(%) 

SE 
(%) 

PPV 
(%) 

SPE 
(%) 

F1-score 
(%) 

Normal AFIB 

Original Normal 7196 4 99.94 99.94 99.99 99.92 99.96 
VFIB 1 1299 99.94 99.92 99.69 99.94 99.8 

OA (%) 99.94  

Fig. 3. Results for different folds on set A.  

Fig. 4. Results for different folds on set B.  
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and 3.54 % of VFIB heartbeats. In terms of PPV and F1-score, the values 
for all classes exceeded 97 %. 

Table 10 shows the classification results on set F containing normal, 
AFIB, and VFIB heartbeats. Overall, an OA of 97.17 % was obtained by 
the proposed method. In recognizing normal heartbeats, the proposed 
method yielded values of over 99.6 % for all the indicators. In terms of 
identifying AFIB heartbeats, the obtained AC, SE, and F1-score exceeded 
97 %, while PPV and SPE reached 95.97 % and 95.66 %, respectively. 
Although the SE for recognizing VFIB heartbeats was only 72.23 %, 
which may stem from the small number of VFIB patients (only three) 
used to train the model, the AC, PPV, and SPE for recognizing VFIB 
heartbeats still exceeded 90 %. Based on the above results, the proposed 
method can effectively classify normal, AFIB, and VFIB heartbeats in 
inter-patient experiments. 

4.4. The results of the proposed method in processing multi-level noisy 
heartbeats 

In this work, we verified the ability of the proposed method to pro-
cess heartbeats with multi-level noise. To achieve this goal, we added 
different levels of noise to the heartbeats in sets A–F using the awgn 
function in MATLAB, as shown in Fig. 7. The ∞ db means that no 
additional noise was added to the ECG. According to Fig. 7, with the 
reduction in the SNR, the distortion of the heartbeat gradually increased. 
In particular, the morphological characteristics of ECG waveforms of 
normal, AFIB and VFIB patients are hardly recognized by the naked eye 
when the SNR is 6 dB. Fig. 8 shows the classification results on multi- 
level noisy data. The OAs obtained for all the sets exceeded 90 % 
when the SNR was 18 dB. Although the P wave, QRS wave and T wave of 
all the ECGs were severely distorted when the signal-to-noise ratio was 
12 dB, the proposed method still achieved OAs of over 85 % on set F and 
over 90 % on sets A–E. In summary, ECGs with different levels of noise 
can be effectively classified, indicating that the proposed method has 
acceptable noise robustness. 

4.5. Comparison and analysis 

4.5.1. Comparison of results on intra-patient data 
Table 11 shows the comparison of the performance in previous 

studies in identifying AFIB and VFIB heartbeats using K-fold cross vali-
dation. All of these studies adopt the AFIB and VFIB heartbeats in AFdb 
and VFdb as the experimental data. In Table 11, the SE, PPV, SPE, and 
F1-score, which is the harmonic mean of SE and PPV, were adopted as 
the indicators for comparison. According to Table 11, Radhakrishnan 
et al. [15] and Mohanty et al. [33] achieved the highest SE, PPV, SPE, 
and F1-scores for recognizing VFIB or AFIB heartbeats, respectively. 
Compared with these studies, the proposed method achieved a signifi-
cantly higher indicators in detecting AFIB or VFIB heartbeats, respec-
tively. In terms of classifying AFIB and VFIB heartbeats, the proposed 
method realized the highest F1-scores of 99.42 % for AFIB and 96.27 % 
for VFIB among all the studies [26–28]. For the AFIB, although refer-
ences [28] and [26,27] achieved slightly higher SE than our method, our 
method realized significantly higher PPV, F1-score, and SPE than their 
methods. For the VFIB, compared to the references [28] and [26,27] our 
method achieved similar SPE and higher SE and F1-score. In summary, 
compared with state-of-the-art methods, this approach has significantly 
better performance in recognizing AFIB and VFIB. 

4.5.2. Comparison of results on inter-patient data 
In terms of the performance on the inter-patient experiments, we 

found that the obtained OAs on sets D, E, and F are only 0.1 %, 0.55 %, 
and 2.22 % lower than those on sets A, B, and C, respectively. This in-
dicates that the proposed method can achieve excellent performance on 
both intra- and inter-patient experiments. Since most studies did not 
consider the effects of their proposed methods on inter-patient experi-
ments, we compare the performance of our method with ResNet-18 
[34], ResNet-34 [34], DenseNet [35], EFAP-Net [36], and the ECG- 
Convolution-Vision Transformer Network (ECVT-Net) [37]. To ensure 
the fairness of comparison, we further test the performance of the above 
methods in set F with inter-patient normal, AFIB and VFIB heartbeats. In 

Table 7 
Confusion matrix for set C (normal, AFIB and VFIB classes).   

Predicted AC 
(%) 

SE 
(%) 

PPV 
(%) 

SPE 
(%) 

F1-score 
(%) 

Normal AFIB VFIB 

Original Normal 7195 2 3 99.93 99.93 99.92 99.94 99.92 
AFIB 6 8833 60 99.41 99.26 99.58 99.56 99.42 
VFIB 0 35 1265 99.44 97.31 95.26 99.61 96.27 

OA (%) 99.39  

Fig. 5. Results for different folds on set C.  
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Fig. 6. Curve drawn obtained on multi-level extremely imbalanced data: (a) SEN; (b) PPV; (c) SPE; (d) F1-score.  

Table 8 
Confusion matrix for set D (normal and AFIB classes).   

Predicted AC 
(%) 

SE 
(%) 

PPV 
(%) 

SPE 
(%) 

F1-score 
(%) 

Normal AFIB 

Original Normal 7181 19 99.84 99.74 99.92 99.93 99.83 
AFIB 6 8893 99.84 99.93 99.79 99.74 99.76 

OA (%) 99.84  

Table 9 
Confusion matrix for set E (normal and VFIB classes).   

Predicted AC 
(%) 

SE 
(%) 

PPV 
(%) 

SPE 
(%) 

F1-score 
(%) 

Normal VFIB 

Original Normal 7194 6 99.39 99.92 99.36 96.46 99.63 
AFIB 46 1254 99.39 96.46 99.52 99.92 97.97 

OA (%) 99.39  

Table 10 
Confusion matrix for set F (normal, AFIB and VFIB classes).   

Predicted AC 
(%) 

SE 
(%) 

PPV 
(%) 

SPE 
(%) 

F1-score 
(%) 

Normal AFIB VFIB 

Original Normal 7177 18 5 99.76 99.68 99.74 99.81 99.72 
AFIB 9 8791 99 97.26 98.79 95.97 95.66 97.36 
VFIB 10 351 939 97.33 72.23 90.02 99.35 80.15 

OA (%) 97.17  
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terms of the evaluation indicators, the OA and the F1-scores for AFIB and 
VFIB, which can comprehensively reflect the SE and PPV, were adopted 
for the performance comparison. Fig. 9(a–c) shows the results for the 
above methods. According to Fig. 9(a–c), the F1-scores of AFIB heart-
beats are higher than those of VFIB heartbeats for most methods. Among 
these methods, the highest F1-score of approximately 93 % for recog-
nizing AFIB was realized by DenseNet, while EFAP-Net achieved the 
highest F1-score of approximately 75 % for identifying VFIB heartbeats. 
However, the OA (97.17 %) and the F1-scores for AFIB (97.36 %) and 
VFIB (80.15 %) heartbeats of MDF-Net are significantly higher than 
those of DenseNet and EFAP-Net. Hence, compared with other methods, 
MDF-Net has significantly better performance in classifying AFIB and 

VFIB heartbeats in inter-patient experiments. 

4.5.3. Comparison of results on multi-level extremely imbalanced data 
Here, we compared the results of the proposed method the above 

methods in processing extremely imbalanced data. It is known that these 
methods have the ability to process imbalanced ECGs or other types of 
data to a certain extent. In terms of the evaluation indicators, the F1- 
scores for AFIB and VFIB, which can comprehensively reflect the SE 
and PPV, were adopted for the performance comparison. Fig. 10 shows 
the curve of the recognition results of VFIB and AFIB as a function of N 
values. According to Fig. 10(a–b), the highest and lowest F1-scores were 
achieved when N = 8 and N = 40, respectively. Except for MDF-Net, the 

Fig. 7. Noisy heartbeats of the 1st lead with multi-level noise.  

Fig. 8. The curves of OAs obtained on noisy data (SNR = ∞, 24, 18, 12, 6).  

Table 11 
Relevant studies in detecting AFIB and VFIB heartbeats in intra-patient 
experiments.   

SE/PPV/F1-score/SPE (%) 

AFIB VFIB 

Andersen et al. [21] 98.98/95.76/97.31/ 
96.95 

– 

Rahul et al. [20] 98.9/98.8/98.85/98.80 – 
Radhakrishnan et al. [17] 99.17/–/99.42/99.18 – 
Mohanty et al. [33] – 97.97/99/98.48/99.15 
Fujita et al. [26] 99.57/97.87/98.72/ 

93.24 
96.07/92.63/94.32/ 
99.86 

Fujita et al. [27] 99.43/98.74/99.08/ 
96.07 

96.17/95.82/95.99/ 
99.83 

Tripathi et al. [28] 100/92.1/95.8/95.7 92.8/–/95.6/99.2 
Our method on Set A 99.98/99.92/99.95/99.9 – 
Our method on Set B – 99.92/99.69/99.8/99.94 
Our method on Set C 99.26/99.58/99.42/ 

99.56 
97.31/95.26/96.27/ 
99.61  
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highest F1-score of approximately 97 % for recognizing AFIB was real-
ized by DenseNet, while EFAP-Net achieved the highest F1-score of 
approximately 97.8 % for identifying VFIB heartbeats. However, when 
N is 40, the F1-scores of these methods for AFIB and VFIB are less than 

93.5 % except for MDF-Net, which is significantly lower than that ach-
ieved by MDF-Net (95.5 %–96 %). Specifically, ResNet-18 only achieved 
F1-scores of approximately 92 % for AFIB and VFIB, which is far lower 
than that of MDF-Net. In summary, compared with other methods, the 

Fig. 9. Classification results using MDF-Net and other methods on set F.  

Fig. 10. Classification results using MDF-Net and other methods on set C.  

Fig. 11. Classification accuracies using MDF-Net and other methods.  
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proposed method has a better ability to process extremely imbalanced 
data, in which abnormal heatbeats are much less than normal 
heartbeats. 

4.5.4. Comparison of results on inter-patient data with noise 
Fig. 11 shows the comparison of the performance between our 

method and other methods. To ensure the fairness of comparison, the 
overall accuracies shown in Fig. 11 were yielded by the experiments on 
Set C and Set F with different degrees of noise. According to Fig. 11(a–b), 
it can be seen that the accuracy of the proposed method is only slightly 
higher than that of other methods in intra-patient experiments, while 
there are significant differences in performance in inter-patient experi-
ments. This may be because the discriminative information in intra- 
patient data is significantly more similar than that in inter-patient 
data, causing these methods to easily distinguish intra-patient data 
even if noise is added. For the inter-patient experiments, according to 
Fig. 11(b), when the SNR is 6 dB, ResNet-18 achieved an OA of only 
approximately 64 %, which is lower than that of the other methods. In 
addition, although ECVT-Net, DenseNet and EFAP-Net achieved OAs of 
approximately 90 % in processing noise-free heartbeats, the obtained 
OAs are only 75 %–78 % when the SNR is 12 dB, indicating that the 
noise in heartbeats seriously affected their classification performance. 
However, when SNR is 12 dB, the proposed method (MDF-Net) still 
achieved an OA of 85.34 %, which is significantly higher than that 
achieved by other methods. Hence, compared with other methods, our 

method has significantly better noise robustness. 

4.5.5. Analysis of MDF-Net 
The above excellent performance stems from the fact that MDF-Net 

can achieve two stages of feature-level information fusion from 
different angles to yield two sets of features, which are then fused at the 
decision level by using the LS-WSA method. Specifically, MDF-Net can 
be seen as the fusion of two methods: TRPC-Net and CPC-Net, which can 
extract deep features of multi-lead ECGs from different angles. TRPC-Net 
consists of a TRCA convolutional layer, a PCA convolutional layer, and a 
fully connected layer. For TRPC-Net, the TRCA convolutional layer is 
designed to extract the task-related component by maximizing the 
reproducibility of the data under the same task, while the PCA con-
volutional layer removes the correlation of data between categories. 
Then, the fully connected layer is adopted to fuse the outputs of the PCA 
convolutional layer to obtain the feature vectors. Hence, TRPC-Net can 
extract inter-lead task-related features from multi-lead ECGs, by which 
the first stage of feature-level information fusion is achieved. Further-
more, CPC-Net, which is composed of a CCA convolutional layer, a PCA 
convolutional layer, and a fully connected layer, is employed to realize 
the second stage of feature-level information fusion. Among them, the 
CCA convolutional layer is used to extract the correlation information 
from two-lead ECGs, while the functions of the PCA convolutional layer 
and the fully connected layer are similar to those in TRPC-Net. Hence, 
we refer to the CPC-Net-based features as the inter-lead correlation 
features. To realize decision making, LSVM is used to process the TRPC- 
Net-based features and CPC-Net-based features to obtain two sets of 
decision values. These decision values are then fused at the decision 
level using the WSA method, by which the inter-lead task-related fea-
tures and inter-lead correlation features are fully utilized. Hence, the 
proposed method can comprehensively utilize the above multi-angle 
features, thus performing well on intra-patient data, extremely imbal-
anced data, and inter-patient data in detecting AFIB and VFIB. In 
addition, TRCA, PCA and CCA methods have the ability to remove noise 
from data. After integrating TRCA, CCA and PCA methods into the 

(a) TRCif , for normal 

heartbeats

(b) TRCif , for AFIB heartbeats (c) TRCif , for VFIB 

heartbeats

(d) CCAif , for normal 

heartbeats

(e) CCAif , for AFIB heartbeats (f) CCAif , for VFIB 

heartbeats

Fig. 12. Statistical histogram feature vectors of MDF-Net for normal, AFIB, and VFIB heartbeats.  

Table 12 
The training time of different CNNs and MDF-Net.  

Method ResNet-18 
[34] 

ResNet-34 
[34] 

VGGNet-16 
[40] 

MDF- 
Net 

Time per epoch 90 s 170 s 320 s 540 s 
Number of 

epochs 
Over 20 Over 20 Over 20 1 

Total time 1800 s 3400 s 6400 s 540 s  
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cascaded and convoluted network structure of MDF-Net, their ability to 
remove noise is enhanced, by which the proposed method has good 
noise robustness. Based on the above analysis, the proposed method has 
the potential to be applied in the clinic to detect AFIB and VFIB patients. 

CNN models have been used in some studies to process multi-lead 
ECG data. However, these methods are mostly adopted for detecting 
myocardial infarction (MI) rather than AFIB and VFIB. For example, Liu 
et al. [38] proposed a multiple-feature-branch (MFB) CNN based ECG 
classification method. In this study, they first extracted features from 
each-lead ECGs using multiple sets of branches composed of convolu-
tional and pooling layers, and these features were then connected using 
the fully connected layer. In addition, He et al. [39] designed a CNN and 
active learning-based ECG classification method to process multi-lead 
ECGs. In their study, each-lead ECGs were first processed by the MFB 
model and lead attention mechanism (LAM) to yield primary features. 
Then, multi-lead ECG-based primary features were cascaded by the 
concatenate and flattening methods using a fully connected layer. The 
above methods have successfully integrated multi-lead ECG features. 
However, there are several issues that need to be addressed in the above 
methods. First, these methods can only extract features through MFB or 
MBF-LAM models, making it impossible to mine ECG features from 
different perspectives. Second, these methods cannot enhance the cor-
relation information that records cardiac states between multi-lead ECG 
features during the feature extraction process of branches. Third, these 
methods only adopted feature-level information fusion methods and did 
not use multi-channel decision-level information fusion methods, by 

which the uncertainty information of multiple channels cannot be 
comprehensively utilized. However, as we mentioned earlier, our 
method can achieve two angles of feature-level and decision-level in-
formation fusions through the use of MDF-Net and D-S fusion methods. 
At the same time, it can also enhance the information correlation and 
task correlation between multi-lead ECGs through the CCA and TRCA 
algorithms, thereby achieving the extraction of multi-angle correlation 
features. To sum up, compared with the methods in the above refer-
ences, our method has a more comprehensive performance in processing 
multi-lead ECGs. 

4.5.6. Features of MDF-Net 
Fig. 12(a–f) shows the histogram statistical feature vectors fi,TRC and 

fi,CCA obtained using MDF-Net by processing normal, AFIB, and VFIB 
ECGs. Among them, Fig. 12(a–c) shows the fi,TRC, while Fig. 12(d–f) 
shows the fi,CCA obtained from the above three types of ECGs. As we 
know, the LSVM with the D-S method can effectively analyze fi,TRC and 
fi,CCA for classifying ECGs. However, according to Fig. 12, we find that 
the features extracted by MDF-Net are very abstract, by which the MDF- 
Net based features have difficulty corresponding to the physical mean-
ing of the original ECG waveforms. Although the MDF-Net features of 
different types of ECG can be found to have certain differences through 
human eyes, it is difficult to determine the types of these differences. 
Therefore, the features acquired by the MDF-Net model exhibit a rela-
tively weak level of interpretability. 

4.5.7. Comparison of training times between MDF-net and CNNs 
In terms of training time, since the proposed MDF-Net has a multi- 

layer cascaded structure similar to the CNN, we compare the classifi-
cation time between MDF-Net and CNNs. Table 12 shows the training 
time using 16,999 heartbeats on set F using three types of CNNs: ResNet- 
18 [34], Resnet-34 [34], and VGGNet-16 [40]. According to Table 12, 
the one-cycle training time of all CNN models exceeded 90 s. Because 
CNNs with excellent capabilities depend on multiple iterations, their 
epochs usually exceeded 20, and their total training time exceeded 1800 
s. However, for MDF-Net, the training time was only 540 s. This stem 
from the fact that the convolutional kernels of MDF-Net can be directly 
extracted by the TRCA, CCA, and PCA algorithms, by which MDF-Net 
does not need the iterative optimization process for the entire 
network. Hence, compared to CNNs, MDF-Net had a significantly faster 
training speed. 

4.6. Limitations  

3) Only Gaussian white noise yielded by AWGN was added to original 
ECGs to test the noise robustness of the proposed method. However, 
other types of noise, such as correlated noise and colored noise, were 
not adopted. 

4) Only two-lead ECGs were used to test the performance of our algo-
rithm. This is because the dimensions of features extracted by MDF- 
Net are very high. When processing multi-lead ECG data, MDF-Net 
will occupy a large amount of memory, causing our device to not 
support MDF-Net for processing 12-lead ECG data. 

5) The number of patients is limited, causing us to not verify the per-
formance of the proposed method in processing large-scale ECG data 
and ECGs with a higher degree of imbalance than the one used in this 
work. 

5. Conclusion 

Cardiovascular disease (CVD) has become a main cause of death. 
Among various CVDs, atrial fibrillation (AFIB) and ventricular fibrilla-
tion (VFIB) are the two most common cardiac disorders. To diagnose 
AFIB and VFIB in a timely manner, it is important to develop an accurate 
ECG automatic classification method with fast speed. In this work, we 

Table 13 
The MDF-Net algorithm.  

Input: Raw ECG signals 

Output: fi,TRC and fi,CCA 

1: Form ECG matrix Ici ,c = 1,⋯,C 
2: for Scanning layer do 
3: Extract patches using a window of size k1 × k2 

4: Construct the first-order pending matrices Xc,c = 1,2 
5: end for 
6: for the TRCA convolutional layer do 
7: Construct the matrix S =

(Sc1c2 )1≤ c1 ,c2 ≤C=

⎛

⎜
⎜
⎜
⎜
⎝

∑Nt
h1 ,h2=1

h1∕=h2

Cov
(
xc1 ,(h1)(t) , xc2 ,(h2)(t)

)

⎞

⎟
⎟
⎟
⎟
⎠

1≤ c1 ,c2 ≤C 

8: Compute the matrix Q =

(Sc1c2 )1≤ c1 ,c2 ≤C=

(
∑Nt

h=1Cov
(
xc1 ,(h)(t) , xc2 ,(h)(t)

)
)

1≤ c1 ,c2 ≤C 

9: Compute L1 eigenvectors from Q− 1S 
10: Calculate TRCA filters W1

l , l = 1,2,⋯,L1 

11: Construct the first-order feature (FOF) matrix as per Γc
i,l,TRC = Ici *W1

l ,c =

1,2, l = 1,2,⋯,L1 

12 end for 
13: for the CCA convolutional layer do 
14 Calculate the cross-covariance matrix sij of Xi and Xj 

15 Calculate the two-lead project directions αl and βl , l = 1,2,⋯, L2 by the 
Lagrange multiplier technique 

16 Compute CCA filters Uc
l , l = 1,2,⋯,L2 

17: Calculate the primary feature blocks (PFBs) as per Γc
i,l,CCA = Ici *Uc

l ,c = 1,
2, l = 1,2,⋯,L2 

18: end for 
19: for the PCA convolutional layer do 
20: Calculate the second-order pending matrices Yc, c = 1,2 
21: Construct the covariance matrix (Yc)(Yc)

T 

22: Compute L3 eigenvectors 
23: Construct PCA filters W2

ℓ,c,ℓ = 1,2,⋯,L3 

24: Calculate the second-order feature (SOF) matrices Οc
i,l =

{
Γc

i,l*W2
ℓ,c

}L3

ℓ=1 
25: end for 
26: Compute the decimal image Ψ2

i,l,TRC =
∑L3

ℓ=12ℓ− 1H
(

Γ1
i,l,TRC*W2

ℓ,1 ,Γ
2
i,l,TRC* 

W2
ℓ,2

)
and Ψ2

i,l,CCA =
∑L3

ℓ=12ℓ− 1H
(

Γ1
i,l,CCA*W2

ℓ,1 ,Γ
2
i,l,CCA*W2

ℓ,2

)

27: Calculate two histogram vector fi,TRC and fi,CCA as features of MDF-Net  
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proposed a novel ECG recognition method using MDF-Net for dis-
tinguishing AFIB and VFIB. MDF-Net, which can be seen as the fusion of 
TRPC-Net and CPC-Net, is used to extract multi-angle deep features from 
two-lead ECGs. TRPC-Net was developed to mine inter-lead task-related 
features, while CPC-Net was adopted to calculate inter-lead correlation 
features. Then, we used the LSVM to classify these TRPC-Net-based and 
CPC-Net-based features to obtain two sets of decision values. Finally, 
these decision values were then fused by the weighted softmax with 
average (WSA) to obtain the final labels, by which inter-lead task-related 
features and correlation features were fully utilized. In classifying 
normal, AFIB, and VFIB heartbeats, the proposed method achieved ac-
curacies of 99.39 % and 97.17 % with a classification time of 0.0138 s 
for each heartbeat in intra- and inter-patient experiments, respectively. 
In addition, the proposed method performed well on noisy data and 
extremely imbalanced data, in which abnormal heatbeats are much less 
than normal heartbeats. In conclusion, the proposed method is expected 
to be applied in the clinic to detect AFIB and VFIB patients. 

In future work, we will improve the MDF-Net algorithm to reduce the 
feature dimensions by using the pooling layer or other methods, thereby 

achieving the processing of 12-lead ECG data. At the same time, other 
types of noise will be adopted to verify the noise robustness of the 
proposed method. In addition, we will recruit new healthy subjects and 
AFIB and VFIB patients through Jiangsu Provincial People's Hospital to 
further verify the performance of the proposed method. 
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Appendix A 

Here, we present a detailed explanation MDF-Net, consisting of five processing layers: a scanning layer, a TRCA convolutional layer, a CCA 
convolutional layer, a PCA convolutional layer, and a fully connected layer  

1) Scanning layer 

We adopt Ic
i ∈ ℜm×n, i = 1,2,⋯,N, c = 1,2 to represent two-lead ECG matrices, where N represents the number of ECG matrices and C represents 

the number of channels. Each Ic
i is scanned by a k1 × k2 patch to extract the sample blocks with a step of one. We then reshape these sample blocks into 

mean-removed vectors Xc
i =

[
xc

i,1, x
c
i,2,⋯, xc

i,mn

]
∈ ℜk1k2×mn. After processing all the Ic

i , the first-order pending (FOP) matrices are calculated as Xc =
[
Xc

1,Xc
2,⋯,Xc

N
]
∈ ℜk1k2×Nmn for each-lead ECG.  

2) TRCA convolutional layer 

TRCA was developed to mine task-related components r(t) and task-unrelated components u(t) from data in different channels. In this work, we 
need to extract r(t) and u(t) from Xc using mixing coefficients a1,c and a2,c according to eq. (1). 

Xc(t) = ac
1r(t)+ ac

2u(t), c = 1, 2 (1)  

where t represents the tth sample. Hence, r(t) should be extracted from Xc, c = 1, 2 according to Eq. (2). 

y(t) =
∑C

c=1
wcxc(t) =

∑C

c=1

(
wcac

1r(t)+wcac
2u(t)

)
(2)  

where 
∑C

c=1wcac
1 and 

∑C
c=1wcac

2 are 1 and 0, respectively. Here, inter-trial covariance maximization is adopted to address the above issues. Specif-
ically, we adopt Xc,h, c = 1,2 and yh(t), h = 1,2,⋯,Nt as the hth trial in Xc, c = 1, 2 and the corresponding TRC, respectively. Next, all the possible 
combinations of the inter-trial covariance of y(t) are shown in Eqs. (3) and (4). 

S = (Sc1c2 )1≤ c1 ,c2 ≤C=

⎛

⎜
⎜
⎜
⎜
⎝

∑Nt

h1 ,h2=1

h1∕=h2

Cov
(
xc1 ,(h1)(t) , xc2 ,(h2)(t)

)

⎞

⎟
⎟
⎟
⎟
⎠

1≤ c1 ,c2 ≤C (3)  
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∑Nt

h1 ,h2=1

h1∕=h2

Ch1h2 =
∑Nt

h1 ,h2=1

h1∕=h2

Cov
(
y(h1)(t) , y(h2)(t)

)

=
∑Nt

h1 ,h2=1

h1∕=h2

∑C

c1 ,c2=1
wc1 wc2 Cov

(
xc1 ,(h1)(t) , xc2 ,(h2)(t)

)

= wT Sw

(4) 

Next, Eq. (5) is used as the constraint for Var(y(t) ) representing the variance of y(t). 

Var(y(t) ) =
∑C

c1 ,c2=1
wc1 wc2 Cov(xc1 (t) , xc2 (t) )

= wT Qw
= 1

(5) 

Furthermore, Eq. (6) is employed to optimize Eq. (4). 

ŵ = argmax
w

wT Sw
wT Qw

(6) 

Then, we calculate the TRCA filters W1
l according to Eq. (7). 

W1
l = matk1 ,k2

(
ql
(
Q− 1S

) )
, l = 1, 2,⋯, L1 (7)  

where ql() is employed to calculate eigenvectors of L1 maximum eigenvalues from Q− 1S, and each eigenvector is reconstructed to W1
l by matk1 ,k2 (). 

Finally, as per Γc
i,l,TRC = Ic

i *W1
l , c = 1,2, l = 1,2,⋯,L1, we acquire L1 TRCA-based primary feature blocks (TPFBs) Γc

i,l,TRC for each lead ECG.  

3) CCA convolutional layer 

Here, we need to calculate a series of αl and βl, l = 1,2,⋯, L2 for constructing the CCA filters. To address this issue, we calculate the first set of 
vectors α1 and β1 according to Eq. (8). 

Maximize αT
1 S12β1

s.t.αT
1 S11α1 = 1, βT

1 S22β1 = 1
(8)  

where the autocovariance of Xc, c = 1,2 is expressed by S11 and S22, while the cross-covariance between X1 and X2 is expressed by S12. Hence, we 
adopt the Lagrange multipliers λ and ν to optimize Eq. (9). 

J(α1, β1) = αT
1 S12β1 −

λ
2
(
αT

1 S11α1 − 1
)
−

ν
2
(
βT

1 S22β1 − 1
)

(9) 

For Eq. (9), we need to maximize J(α1, β1) to obtain α1 and β1. To address this problem, Eq. (10) will be acquired by computing the partial de-
rivative of J(α1, β1). 
{

S− 1
11 S12S− 1

22 S21α1 = λ2α1

S− 1
22 S21S− 1

11 S12β1 = λ2β1
(10)  

where α1 and β1 can be obtained by calculating the eigenvectors from S− 1
11 S12S− 1

22 S21and S− 1
22 S21S− 1

11 S12, respectively. Moreover, we can calculate the 
vectors αl and βl,1 < l < L2 as per Eq. (11). 

Maximize αT
l S12βl

s.t.αT
l S11αl = 1, βT

l S22βl = 1, l = 2, 3,⋯, L2

αT
l− 1S11αl = 0, βT

l− 1S22βl = 0
(11) 

Here, we calculate the CCA filters Uc
l , c = 1, 2 according to Eq. (12). 

{
U1

l = matk1 ,k2 (αl) ∈ ℜk1×k2

U2
l = matk1 ,k2 (βl) ∈ ℜk1×k2

, l = 1, 2,⋯,L2 (12)  

where matk1 ,k2 ( • ) reconstructs αl and βl to matrices Uc
l , c = 1,2. Finally, according to Γc

i,l,CCA = Ic
i *Uc

l , c = 1,2, l = 1,2,⋯,L2, we calculate L2 CCA 
primary feature blocks (CPFBs) Γc

i,l,CCA for each-lead ECG, where * expresses the convolution operation.  

6) PCA convolutional layer 
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Similar to the scanning layer, a k1 × k2 patch scans TPFB Γc
i,l,TRC or CPFB Γc

i,l,CCA matrices to obtain a series of mean-removed patches, which are 
then reconstructed to vectors yc

i,l,1,y
c
i.l,2,⋯,yc

i,l,mn ∈ ℜk1×k2 . To make the process clear, we only employ TPFBs Γc
i,l,TRC as pending data to describe the 

subsequent steps. After processing all the Γc
i,l,TRC by the above operations, Yc

i,l =
[
yc

i,l,1, y
c
i.l,2,⋯, yc

i,l,mn

]
∈ ℜk1k2×mn, Yc

i =
[
Yc

i,1,Y
c
i.2,⋯,Yc

i,L1

]
∈ ℜk1k2×L1mn, 

and Yc =
[
Yc

1,Y
c
2,⋯,Yc

N
]
∈ ℜk1k2×L1Nmn are obtained. Among them, Yc represents the second-order pending (SOP) matrix. 

Then, we calculate the L3 PCA filters W2
ℓ,c as Eq. (13). 

W2
ℓ,c = matk1 ,k2

(
qℓ
(
(Yc)(Yc)

T ) )
∈ ℜk1×k2 , c = 1,⋯,C,ℓ = 1,⋯, L3 (13)  

where ql() is employed to calculate eigenvectors of L3 maximum eigenvalues from the covariance matrix of Yc, and each eigenvector is reconstructed 

to W2
ℓ,c by matk1 ,k2 (). Finally, according to Οc

i,l =
{

Γc
i,l*W2

ℓ,c

}L3

ℓ=1
, we acquire L3 second-order feature blocks (SFBs) Οc

i,l for each-lead ECGs. After 

processing all Γc
i,l,TRC and Γc

i,l,CCA, Οc
i,l,TRC and Οc

i,l,CCA will be obtained.  

7) Output layer 

In this layer, we convert each SFB Οc
i,l,TRC to a binary matrix according to Eq. (14). 

H(d) =
{

1 if d > 0
0 if d ≤ 0 (14)  

where d represents an element in the SBF. Then, decimal matrix Ψ i,l is calculated as per Ψ i,l =
∑L3

ℓ=12ℓ− 1H
(

Γ1
i,l*W2

ℓ,1,Γ
2
i,l*W2

ℓ,2

)
, of which the values are 

in the range of 
[
0, 2L3 − 1

]
. Next, a u1 × u2 window with overlap R is used to scan decimal matrix Ψ i,l to obtain the blocks bl,p,l = 1,⋯,L1,p = 1,⋯P. 

Next, by using the histogram statistical method, all blocks bl,p are processed to yield the feature vector fi =
[
hist

(
b1,1

)
,⋯, hist

(
bL2 ,P

) ]
. After processing 

all Οc
i,l,TRC and Οc

i,l,CCA, we obtain two sets of feature vectors fi,TRC and fi,CCA. The MDF-Net algorithm is shown in Table 13. 
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