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A B S T R A C T

Kidney transplantation can significantly enhance living standards for people suffering from end-stage renal
disease. A significant factor that affects graft survival time (the time until the transplant fails and the patient
requires another transplant) for kidney transplantation is the compatibility of the Human Leukocyte Antigens
(HLAs) between the donor and recipient. In this paper, we propose 4 new biologically-relevant feature
representations for incorporating HLA information into machine learning-based survival analysis algorithms.
We evaluate our proposed HLA feature representations on a database of over 100,000 transplants and find
that they improve prediction accuracy by about 1%, modest at the patient level but potentially significant at a
societal level. Accurate prediction of survival times can improve transplant survival outcomes, enabling better
allocation of donors to recipients and reducing the number of re-transplants due to graft failure with poorly
matched donors.
1. Introduction

Kidney transplantation is the therapy of choice for many people
suffering from end-stage renal disease (ESRD). A successful kidney
transplant can enhance a patient’s living standards and diminish the
patient’s risk of dying. Although allograft (organ or tissue transplanted
from one individual to another) and patient survival have improved
because of new surgical technologies and effective immunosuppression,
a transplant is not a lifetime treatment. Allografts, or simply grafts,
will stop functioning over time [1], requiring re-transplantation for the
patient after graft failure. There is a significant societal demand for
kidney transplants, with over 90,000 people on the waiting list in the
United States alone.

The time to graft failure or graft survival time is determined by
a variety of factors, including the age, race, and overall health of
the donor and recipient. The compatibility of the donor and recipient
also plays a key role, particularly with respect to their Human Leuko-
cyte Antigens (HLAs) [2]. Prior research has demonstrated that the
number of mismatches (MM) between donor and recipient HLAs can
significantly affect the graft survival time [3–5].
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In this paper, we aim to predict the graft survival time for a trans-
plant given a variety of covariates on the donor and recipient. We
propose multiple feature representations for incorporating HLA informa-
tion into survival analysis models. By building a base model without
HLA information and then comparing to models that contain more
detailed representations of HLAs, we can identify whether the HLA
information can improve prediction accuracy.

Our main contribution is 4 new feature representations for HLA
types and pairs that account for biological mechanisms behind HLA
compatibility, differences in categorization of HLAs, and differences in
the way categorical variables are treated in different survival analysis
models. We find that incorporating HLA information can improve the
accuracy of predicted graft survival time by about 1%. While this is
a modest improvement for an individual patient, it could translate
to significant improvements at the societal level by increasing graft
survival times, thus enabling more transplant recipients with the same
number of donors, and potentially reducing the size of the waiting list.

We first reported preliminary results from this paper in the con-
ference publication [6]. This paper extends those results with the
following new contributions:
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• We propose 2 new target encoding approaches for HLA types
designed to improve prediction accuracy with random survival
forests and other tree-based survival analysis models.

• We repeat our experiments over 10 different random train, valida-
tion, and test splits, unlike our preliminary results in [6] that used
only a single split. In doing so, we establish statistical significance
for our main findings and can further conclude that the observed
improvements from incorporating HLA features, while small, are
unlikely to be due to chance alone.

• We present a detailed comparison of prediction accuracy when
including also post-transplant covariates for prediction.

• We add a more detailed discussion of the potential clinical sig-
nificance and impact of our biologically-relevant HLA feature
representations.

. Background and motivation

Chronic kidney disease (CKD) is a public health issue and a general
erm for heterogeneous disorders affecting a kidney’s function, which
ay lead to ESRD. According to 2019 reports of United States Renal
ata System, CKD affects at least 10% of adults in the U.S., with nearly
50,000 Americans requiring kidney transplantation. In the absence
f kidney donors, life support therapy for these patients is associated
ith exorbitant morbidity, mortality, and tremendous financial burden.
uccessful kidney transplantation may save about $55,000 per year in
edicare costs for every functioning transplant [7].

Unfortunately, the waiting list for kidney transplantation continues
o grow. Based on 2019 OPTN data, over 41,000 new patients were
dded to the kidney transplant waiting list, while only 23,401 total
ransplants were performed, with 11% of them being patients returning
o the waiting list due to previous transplant failure. These numbers
ighlight the need to improve transplant survival in kidney transplant
ecipients.

.1. Human Leukocyte Antigens (HLAs)

HLAs are a category of surface proteins encoded in a distinct gene
luster [8]. These HLAs, which are highly polymorphic, play a funda-
ental role in the body’s immune system function. In organ transplan-

ation, donor HLAs are also recognized as foreign to be attacked by
he recipient’s immune system [9]. Each human inherits 2 copies (1
aternal and 1 paternal) of each HLA gene. In the cluster, 3 specific

oci, HLA-A, -B and -DR, are of utmost clinical significance for kidney
ransplantation. Thus, 6 HLAs (2 copies of each of HLA-A, -B, and -DR)
re routinely typed in the clinic. An HLA is typically represented by the
ocus and a 2-digit number such as A1. This representation is known as
he HLA serological type; we refer to it as just the HLA type in this
aper. For example, a donor may have the following 6 HLA types: A3,
9, B5, B7, DR5, and DR6.

It is important to note that the 2-digit numbers are just categories
nd not actual numerical values. For example, A9 and A10 are not
ecessarily more similar than A9 and A3 despite the numbers 9 and
0 being closer than 9 and 3. Furthermore, as HLA typing methods
volved, some crudely defined antigens (which we now call broads)
ere found to actually consist of groups of finer, previously unknown
ntigens (which we now call splits). For example, the splits and asso-
iated antigens of the broad antigen HLA-A9 are A23 and A24. Thus,
ome instances of the splits A23 and A24 may be coded as the broad
9 in transplant databases.

The clinical importance of HLA stems from the sheer polymor-
hism [10], resulting in donor HLAs being in most instances different
rom recipient HLAs. Each HLA type present in the donor but not in the
ecipient leads to an HLA mismatch (MM). There may be 0 to 6 HLA-
/B/DR MM between a donor and recipient, with higher MM generally
esulting in shorter graft survival times [2]. In addition to the number
f mismatches, prior work has also demonstrated that specific HLAs of
he donor and recipient can also impact the outcome of kidney allograft
2

urvival [11].
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Fig. 1. Examples of right censoring in the kidney transplantation setting we consider.

2.2. Survival analysis

Survival analysis is a well-established technique in statistics used
to predict time to an event of interest during a specific observed time
interval. It is a form of regression where the objective is to predict
the survival time, i.e. the time until an event of interest occurs. For
many data points, however, the exact time of the event is unknown due
to censoring, and thus, standard regression models are not well-suited
to handle such time-to-event problems. Right censoring is the most
common form and applies to our survival time prediction problem.
Although a subject’s status is known at the beginning of the study, the
subject’s event might not be observed. Some of the censoring conditions
in our kidney transplantation problem setting are shown in Fig. 1.

Many survival analysis algorithms have been proposed to handle
censored data—we refer readers to the survey [12]. We consider 3 ma-
chine learning-based survival analysis algorithms in this paper, which
we describe in Section 4.2.

3. Data description

This study uses data from the Scientific Registry of Transplant Re-
cipients (SRTR) and includes data on all donors, wait-listed candidates,
and transplant recipients in the U.S., submitted by the members of the
Organ Procurement and Transplantation Network (OPTN).

Inclusion criteria. We acquired 469,711 anonymous cases on all kidney
transplants between 1987 and 2016 from the registry. We apply the fol-
lowing inclusion criteria to the data. We consider only transplants with
deceased donors, recipients aged 18 yr or older, and only candidates
who are receiving their first transplant. We include only transplants
between 2000 and 2016 due to the introduction of new therapy regimes
and a new kidney allocation system [13] around the year 2000. Finally,
we include only recipients with peak Panel Reactive Antibody (PRA)
less than 80 percent since patients with high PRA levels experience
increased acute rejection rate and graft failure [14]. After applying the
inclusion criteria, subjects with missing values in any basic covariates
except cold ischemia time (see Section 4.1.1) or HLAs are removed from
the study. After the preceding stages, 106,372 transplants remain for
the purpose of developing predictive models, with 74.6% of them being
censored.

Target variable. There are three primary endpoints (targets) in survival
analyses for kidney transplantation: patient survival, all-cause graft
loss, and death-censored graft loss. In the SRTR database, data on
patient survival was compiled based on reports from transplant centers,
as well as the Centers for Medicare and Medicaid Services and Social
Security Administration’s Death Master File [15]. Record of patient
death and patient death date from any of these sources was used to

define the patient survival variable.

ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
ión. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



Artificial Intelligence In Medicine 145 (2023) 102675M. Nemati et al.
Fig. 2. Illustration of data processing and survival analysis pipeline.
Table 1
Number of covariates in each feature set in pre- and post-transplant settings.

Feature set Number of covariates

Pre-transplant Post-transplant

Basic 23 29
Basic + MM (total) 24 30
Basic + MM (A-B-DR) 26 32
Basic + Types (binary) 252 258
Basic + Types (target) 29 35
Basic + Pairs 3661 3667
Basic + Frequent pairs 227 233
All 3894 3900

We use death-censored graft loss as the clinical endpoint (prediction
target) in this study. This means that patients who died with a func-
tioning graft are treated as censored since they did not exhibit the
event of interest (graft loss), as shown in example B in Fig. 1. Graft
loss is determined based on the record of either graft failure, return
to maintenance dialysis, re-transplant, or listing for re-transplant. For
censored instances, the censoring date is defined to be the last follow-up
date.

4. Methods and technical solutions

Research questions. We pose two main research questions in this study.
First, does incorporating donor and recipient HLA information into
a graft survival time predictor improve prediction accuracy? If so,
what type of representation for the HLA information results in the
highest prediction accuracy? We first describe the different HLA feature
representations we propose in Section 4.1 and then discuss the survival
analysis algorithms we use in Section 4.2. Our data processing pipeline
is shown in Fig. 2.

4.1. Feature representations

We consider 8 different feature sets ranging from 23 to 3900 covari-
ates. Some of the covariates are pre-transplant covariates, meaning that
they are available prior to the transplant time, while others are post-
transplant covariates, available only at the time of transplant or after
a transplant has been performed and the patient has been discharged.
The number of covariates for each feature set is shown in Table 1.

We first consider prediction using only the pre-transplant covariates,
as they can be used to predict graft survival prior to the transplant being
performed and could potentially be used in the process of matching
donors and recipients. We also consider prediction using both pre- and
post-transplant covariates, which should be more accurate and can still
be useful to a clinician.
3
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4.1.1. Basic features
Pre-transplant basic features consist of age, sex, race, and body

mass index (BMI). Race is encoded using a one-hot representation.
The post-transplant covariates employed are donor and recipient serum
creatinine levels at the time of transplant, recipient serum creatinine at
discharge time, whether the patient needs dialysis within the first week
of the transplant, and the cold ischemia time (CIT), which denotes the
amount of time the kidney was preserved after the blood supply has
been cut off. There are a total of 23 and 29 features for the pre- and
post-transplant settings, respectively.

Missing values for CIT are present in 6173 transplants, which cor-
responds to about 5.8% of the total number of transplants considered.
Instead of discarding these transplants and losing about 5.8% of the
data, we opt to impute the missing values using the mean over all
other transplants, since CIT is a continuous variable. Utilizing the mean
helps to maintain the distribution and statistical characteristics of this
variable.

4.1.2. HLA mismatches
We first consider the number of mismatches (MM) between donor

and recipient, which has been found to be a significant factor in the
time to graft failure. We consider two possible representations: the total
number of MM (0 to 6), as well as the separate A-B-DR MM (0 to 2
each). These result in 1 and 3 features appended to the basic features,
respectively.

4.1.3. HLA types
We consider directly encoding the HLA types of the donor and

recipient. The digits in an HLA type should be treated as categories and
not numeric values, e.g. A2 and A1 differing by 1 does not imply that
they are more similar than A2 and A23. The number of distinct HLA
types at loci A, B, and DR are 30, 62, and 21, respectively, for donors,
and 30, 65, and 21, respectively, for recipients.

During the pre-processing stage, after applying the inclusion cri-
teria, we eliminate 136 transplants (about 0.1%) containing missing
values for HLA types because encoding HLA types and construction
of HLA pairs requires this information. (These 136 transplants have
already been removed to arrive at the total number of 106,372 trans-
plants considered.) Unlike with CIT, which is a continuous variable,
HLA types are categorical, so mean imputation is not possible. Fur-
thermore, imputing the missing values with the most frequent type is
not an effective solution. Such an approach could introduce distortions
in the relationship between HLA types and survival time, especially
considering that HLA pairs would be constructed using these imputed
HLA types.
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
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Fig. 3. An example of one-hot-like HLA type and pair encoding. The features shown in the gray boxes are encoded as 1’s while all other features for the HLA-A locus are
encoded as 0’s. Green and red labels represent biologically relevant and irrelevant pairs, respectively. Section 4.1.4 provides a comprehensive explanation of the mechanism used
to determine the biological relevancy of an HLA pair. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Binary encoding. One focus of our study is to address the methodolog-
ical challenges arising from HLA broad and split antigens. We propose
to encode HLA types using a binary one-hot-like encoding that also
maps splits back to broads so that a split like A23 has a one in both the
columns for A23 and A9. We encode donors and recipients separately
so that each transplant has at least 12 ones (6 donor, 6 recipient),
and possibly more due to splits. An example of the binary encoding
applied to donor and recipient HLA types for the HLA-A locus is shown
in Fig. 3. This encoding results in 229 features appended to the basic
features.

Target encoding. One disadvantage to the proposed binary encoding is
that it converts 12 categorical features for the donor and recipient HLA
types into 229 binary features. This may have an adverse effect on the
accuracy of tree-based models. (Indeed, we observe that it leads to a
decrease in the prediction accuracy of the random survival forest but
not that of the Coxnet or gradient boosting, as we show in Section 6.1.)
To mitigate this disadvantage, we propose an alternative encoding: a
target encoding approach that encodes HLA types with a much lower
dimensionality, resulting in 6 real-valued features as opposed to 229
binary features. This target encoding approach was not considered in
our preliminary results in [6].

The proposed technique relies on a transformation that maps each
category of a high-cardinality categorical variable to the target vari-
able’s probability estimate. In a typical supervised learning setting, the
numerical representation corresponds to the target’s expected value
given the categorical feature’s category [16]. In our setting, however,
we have two additional challenges. The first is censoring, which pre-
vents us from observing the time to event for the majority of instances.
Secondly, each person inherits two copies of each HLA, one paternal
and one maternal. These two HLA types are typically stored as two
different covariates, e.g. DON_A1 and DON_A2 denoting the two HLA-A
types that the donor possesses. However, the ordering of the two types
does not matter, so that (DON_A1, DON_A2) = (3, 9) and (DON_A1,
DON_A2) = (9, 3) both denote a donor possessing A3 and A9.

To perform the target encoding procedure, we consider the graft
survival time in two scenarios: one in which the graft survival time is
a continuous target, and the other in which the graft survival time is a
binary target. Examples of both types of encodings are shown in Fig. 4.
In the first setting, which we denote as regression-based target encoding,
the encoding values are simply the average of graft survival times (for
uncensored cases) or censoring times (for censored cases) grouped by
distinct HLA types.

In the second setting, which we denote as classification-based target
encoding, we take into account the censoring status of each trans-
plant. By using the number of post transplant years as a criterion, we
transform the continuous target to binary values which represent the
functioning or failed grafts. For determining the encoding values, we
eliminate all censored transplants that have not reached the specified
4
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number of years. For these transplants, we cannot determine whether
a graft is still functioning or has failed.

The encoding for each HLA type is then calculated as follows:

Encoding at year 𝑡 =
# of failed transplants at year 𝑡

# of functioning or failed transplants at year 𝑡
.

This encoding is simply the average of binarized target (1: failed,
0: functioning) for each HLA type. To investigate the effect of this
criterion on our model, we choose one, five, ten, fifteen, and twenty
post-transplant years to binarize the target, which result in five distinct
HLA type features with distinct encoding values for each type. This also
enables us to compare different target encoding approaches.

To address the ordering problem of each HLA type, we take the
average of two encodings calculated for each HLA locus to create a
unique encoding for each HLA type regardless of locus. This allows our
encoding to be invariant to the ordering of the two HLA types that
a donor or recipient possesses for each locus. For example, a donor
possessing both A3 and A9 will have their HLA-A target encoding set
to the average of the encodings for A3 and A9.

4.1.4. HLA pairs
An HLA pair is the combination of the HLA types of a donor and

a recipient. For instance, if a donor possesses HLA-A3 and a recipient
possesses A23, the HLA pair (A3, A23) is associated with the transplant.
Similar to how we encode HLA types, we can use a one-hot-like
encoding for HLA pairs by placing a one in the column for each HLA
pair associated with a transplant.

This does not, however, account for the biological mechanisms
underlying HLA compatibility. If the donor has HLA types that the
recipient does not, the recipient’s immune system may reject the trans-
plant. There is no problem if the recipient has HLA types that are
not present in the donor, which creates an asymmetry in roles of the
donor and recipient HLA types. As a result, some HLA pairs are not
biologically relevant. To distinguish between biologically relevant and
irrelevant pairs, it is essential to consider the number of donor-recipient
mismatches. Fig. 3 illustrates an instance in which the donor and
recipient HLA-As are A3 and A23. Given that A23 is a split of A9,
both the donor and the recipient have the HLA types A3, A23, and A9
encoded in our encoding mechanism.

Applying the biological concept of broads and splits into our en-
coding methodology generates four different cases in pairing the HLAs.
Combining the HLAs of the donor and recipient in each case yields
four distinct pairs. In the case where the donor and recipient HLAs are
A3 and A23, for instance, there are four possible pairings: (A3, A3),
(A3, A23), (A23, A3), and (A23, A3). For this transplant’s encoding,
we would typically insert one into each column of the four mentioned
pairs. However, this does not account for the underlying biological
mechanisms of HLA pairs.

As both of the donor’s HLA types are present in the recipient’s HLA
types, the number of mismatches is zero. Due to this zero mismatch,
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
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Fig. 4. Two examples of target encoding calculation for each HLA type. The encodings for the two HLA types for each locus are averaged to form the final target encoding for
the locus.
the mismatched pairs (A3, A23) and (A23, A3) are deemed biologically
irrelevant; therefore, the ones in the columns of irrelevant pairs should
be replaced with zeros and we also maintain one in the columns of only
active HLA pairs (A3, A3), and (A23, A23). Other cases are handled in
a similar fashion.

The HLA pair encoding results in 3638 features appended to the
basic features. Due to the large number of features for the HLA pair
encoding, we also consider a smaller frequent pairs representation where

e remove all HLA pairs observed in less than 1000 transplants, which
esults in 204 features.

.1.5. All features
We consider also a combined feature set by concatenating all of

he above feature representations. For HLA types, we use the bi-
ary one-hot-like encoding. The total number of features is 3894 in
he pre-transplant setting, which is dominated by the 3638 HLA pair
eatures.

.2. Survival analysis algorithms

oxnet. The Cox Proportional Hazards (Cox PH) model is one of the
ost widely used models for survival analysis. It models the hazard

atio using a weighted linear combination of covariates. The coefficient
ector is estimated by maximizing the partial likelihood. We use a
ox PH model with combined 𝓁1 and 𝓁2 regularization, known as the

elastic net, which leads to the Coxnet model [17]. The model has 2
hyperparameters: 𝜆, which controls the strength of regularization, and
, which denotes the ratio between the 𝓁1 and 𝓁2 penalties. We use a

grid search with 𝜆 uniformly distributed on a log scale between 10−4

and 10−2 and 𝑟 uniformly distributed between 0.1 and 1.

Random survival forest. Random forest is a bootstrap aggregating (bag-
ging) ensemble learning algorithm with decision trees as base learners.
Ishavan et al. [18] proposed the random survival forest (RSF) algorithm
that can handle right-censored data. We use an RSF with 500 trees and
consider random selection of the square root of the number of features
for each split. We perform a grid search on the maximum depth of each
5

tree in the range {5, 10, 15}.
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Gradient boosted regression trees. Gradient boosting (GB) is an ensem-
ble learning technique that combines the predictions of many weak
learners. Boosting algorithms using survival regression trees as their
weak learners have been developed to be used in survival analysis
problems [12]. We use stochastic gradient boosting with 500 trees
using a 50% subsample to fit each tree. We perform a grid search on
the maximum depth of each tree in the range {1, 2, 3}.

5. Empirical evaluation

To evaluate the accuracy of our predictors, we randomly split the
data into 3 sets: 60% training, 20% validation, and 20% testing. The
validation set is used for hyperparameter tuning. For each algorithm,
we choose the set of hyperparameters with the highest validation set
C-index (see Section 5.1) and then retrain it on the 80% set containing
both the training and validation sets. We then finally evaluate each
algorithm and feature set on the 20% test set, which was initially held
out and not used at any point to prevent test set leakage. Furthermore,
we repeat the above process of calculating the accuracies of algorithms
10 times using 10 different splits to avoid drawing conclusions based
on a single data split and the potential variance associated with that
random split. Our experiments are conducted using the scikit-survival
Python package [19].

5.1. Evaluation metrics

We consider two metrics to evaluate the accuracy of our survival
time predictions. First, we use Harrell’s concordance index (C-index),
which is perhaps the most widely used accuracy metric for survival pre-
diction models [20]. The C-index is merely dependent on the ordering
of predictions and is calculated by counting all possible pairs of samples
and concordant pairs. A pair is a concordant pair if the risk 𝜂𝑖 < 𝜂𝑗 and
𝑇𝑖 > 𝑇𝑗 , where 𝑇𝑖 is the survival time for patient 𝑖.

We also consider the cumulative/dynamic area under receiver oper-
ating characteristic curve (AUC) metric that measures how accurately
a model can predict the events that happen before and after a specific
time 𝑡 [21]. We consider the mean cumulative/dynamic AUC over 5

equally-spaced time points.
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Table 2
Average test set C-index accuracy using only pre-transplant covariates across 10 different data splits. The Wilcoxon test p-values are calculated
with respect to the basic feature set. Other feature sets also include the basic features. Best feature set for each predictor is listed in bold.

Feature set Coxnet Random survival forest Gradient boosting

C-index p-value C-index p-value C-index p-value

Basic 0.625 – 0.634 – 0.636 –
MM (total) 0.627 0.006 0.635 0.006 0.637 0.012
MM (A-B-DR) 0.627 0.006 0.636 0.012 0.638 0.006
Types (binary) 0.626 0.012 0.630 1 0.637 0.006
Pairs 0.627 0.006 0.620 1 0.637 0.006
Freq. pairs 0.627 0.006 0.631 1 0.638 0.006
All 0.627 0.006 0.614 1 0.637 0.006
Table 3
Average test set mean cumulative/dynamic AUC accuracy using only pre-transplant covariates across 10 different data splits. The Wilcoxon test
p-values are calculated with respect to the basic feature set. Other feature sets also include the basic features. Best feature set for each predictor
is listed in bold.

Feature set Coxnet Random survival forest Gradient boosting

Mean AUC p-value Mean AUC p-value Mean AUC p-value

Basic 0.635 – 0.655 – 0.653 –
MM (total) 0.641 0.006 0.659 0.006 0.658 0.006
MM (A-B-DR) 0.641 0.006 0.659 0.018 0.658 0.006
Types (binary) 0.635 1 0.654 1 0.654 1
Pairs 0.640 0.006 0.651 1 0.655 0.012
Freq. pairs 0.640 0.006 0.658 0.006 0.657 0.006
All 0.640 0.006 0.645 1 0.657 0.006
c
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Table 4
RSF type feature set mean survival prediction accuracy using only pre-transplant
covariates across 10 different data splits for different HLA type encodings. Best encoding
version is listed in bold for each metric.

HLA type encoding C-index p-value Mean AUC p-value

Binary 0.630 – 0.654 –
Target (Regression-based) 0.633 0.006 0.652 1
Target (Classification: 1 yr) 0.630 1 0.651 1
Target (Classification: 5 yr) 0.633 0.006 0.652 1
Target (Classification: 10 yr) 0.633 0.006 0.653 1
Target (Classification: 15 yr) 0.633 0.006 0.653 1
Target (Classification: 20 yr) 0.634 0.006 0.655 0.316

5.2. Statistical significance testing

Our preliminary results from [6] used a single train, validation, and
test split. It is difficult to draw conclusions from the results because
the observed improvements from incorporating the HLA feature rep-
resentations are small and may be just due to variance from the single
random split. A major goal of this study is to more definitively evaluate
how our proposed HLA feature representations affect the accuracy
of graft survival prediction algorithms. Since the accuracy gain from
incorporating the new features may be minor in comparison to our
baseline criterion, one might wonder if the gain is due to chance factors
like a specific data train and test split. To investigate whether this is the
case, we conduct our experiments with 10 different data train and test
splits, as explained in Section 5. This strategy enables us to conduct an
appropriate statistical significance test.

To compare the test set accuracy of our augmented data to our
basic feature set, we use the Wilcoxon signed rank test. The reason for
using this test is that we only run each algorithm 10 times, so it is best
to avoid making normality assumptions about the population of test
set accuracies. In this setting, a non-parametric test like the Wilcoxon
signed rank test (rather than a paired t-test) is a better candidate
to make a comparison about the two populations by using pairs of
matched samples [22]. We do also perform a paired t-test to provide a
comparison to the results of the Wilcoxon signed rank test.

To determine whether there is a significant difference between the
6

basic and augmented feature sets, we form the following null and s

Descargado para Anonymous User (n/a) en National Library of Health and S
Para uso personal exclusivamente. No se permiten otros usos sin autorizac
lower-tail alternative hypotheses:

𝐻null ∶ 𝑀basic = 𝑀augmented vs.
𝐻alternative ∶ 𝑀basic < 𝑀augmented,

where 𝑀 denotes the median accuracy metric (either C-index or mean
cumulative/dynamic AUC) over the 10 splits. We compute the p-values
for these tests and compare them to the level of significance 𝛼 = 0.05.

We consider 6 different augmented feature sets, each of which we
ompare against the basic features, so we have 6 different hypotheses.
ince multiple comparison tests are conducted, the Bonferroni correc-
ion method is applied to adjust the p-values. The Bonferroni correction
s a multiple-comparison correction approach utilized when multiple
ependent or independent statistical tests are conducted simultane-
usly [23]. To control the excessive occurrence of false positives,
hich is equivalent to rejecting the null hypothesis, the p-values of
ach individual comparison must be multiplied by the total number of
ossible pairwise comparisons between each group to account for the
umber of comparisons being conducted. Therefore, we multiply the
-values of each comparison by 6, the total number of comparisons.

. Results

.1. Effects of feature representations

The two main research questions are both centered around the
ffects of incorporating HLA information into graft survival time pre-
iction. From the results in Tables 2 and 3, notice that incorporating
LA information almost always results in an improvement in predic-

ion accuracy in the pre-transplant prediction setting. The amount of
mprovement compared to the basic features varies for the differing
eature representations and evaluation metrics. In addition to the mean
ccuracy metrics, the tables also show the p-values from the Wilcoxon
igned rank test. The differences between the C-indices for each feature
et and the C-index for the basic features on each of the 10 data splits
long with p-values from a paired t-test are shown in Appendix A.1.

LA mismatches. In all cases, adding HLA MM (either total or separate
-B-DR MM) improves the accuracy of the predictive models. We notice
inimal differences in accuracy from including total MM and A-B-
R MM. Additionally, the p-values suggest that the improvement is

tatistically significant at the 𝛼 = 0.05 level.
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
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Table 5
Survival prediction accuracy using pre- and post-transplant covariates. Best feature set for each predictor and each metric is listed in bold.

Feature set Coxnet Random survival forest Gradient Boosting

C-index Mean AUC C-index Mean AUC C-index Mean AUC

Basic 0.665 0.673 0.676 0.690 0.677 0.687
MM (total) 0.667 0.678 0.676 0.692 0.678 0.690
MM (A-B-DR) 0.667 0.678 0.676 0.693 0.678 0.689
Types 0.666 0.672 0.667 0.687 0.678 0.686
Pairs 0.667 0.677 0.658 0.681 0.677 0.688
Freq. pairs 0.667 0.677 0.669 0.687 0.678 0.689
All 0.667 0.677 0.654 0.680 0.677 0.687
w
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The maximum improvement in prediction accuracy observed across
oth evaluation metrics and all three algorithms is obtained from the
M (total) feature set. The relative improvement of mean AUC from

.635 for the basic features to 0.641 when including MM (total) is about
%.

LA types. We first consider the binary encoding for HLA types. Re-
ults for the target encoding are shown in Section 6.2.

For Coxnet and gradient boosting, including HLA types resulted in
etter accuracy than the basic features. However, for all of the predic-
ors, including HLA types resulted in worse accuracy than including
LA MM. Since the Coxnet is linear in the features, it cannot learn

nteractions between features, and thus, cannot learn compatibilities
etween different HLA types, so this result is not too surprising for
oxnet. On the other hand, the tree-based predictors are non-linear
nd should be able to learn donor-recipient HLA compatibilities, so it is
omewhat surprising that RSF and GB also perform worse. We discuss
ome possibilities below when considering HLA pairs.

For RSF, notice that including HLA types leads to a C-index even
ower than just using the basic feature set. This does not happen with
oxnet or GB and leads us to consider target encoding approaches for
he HLA types when using RSF, which we discuss in Section 6.2.

The p-values for Coxnet and GB suggest that, when HLA types are
dded to basic features, there is a statistically significant improvement
n test set accuracy when measured using the C-index, but not the
ean AUC. This may be due to the algorithms’ hyperparameters being

ptimized using C-index rather than mean AUC.

LA pairs. Unlike with HLA MM, the results with HLA pairs vary by
odel. The inclusion of all HLA pairs benefits the Coxnet more than

ny other feature. Since it is linear in the features, it requires HLA pair
eatures in order to learn compatibilities between donor and recipient
LAs. It is also robust to overfitting in high dimensions due to the
lastic net penalty. Thus, it is not surprising the HLA pairs lead to the
ighest C-index for Coxnet.

On the other hand, the nonlinear predictors behave differently as
hey see a minimal gain (GB) or even a significant decrease (RSF) in
ccuracy from the inclusion of all HLA pairs. This indicates that the
igh dimensionality may cause a problem for tree-based predictors,
articularly for the RSF. The high dimensionality results from the one-
ot-like encoding mechanism we are using for HLA pairs, which can be
isadvantageous for trees because it splits a single categorical variable
nto multiple variables, potentially requiring many splits for a single
ategorical variable with a large number of categories. When restricting
o just the most frequent HLA pairs, resulting in a much smaller number
f HLA pair features (204 compared to over 3600), the accuracy of
B now increases rather than decreases, and results are mixed for RSF

decrease in C-index but increase in mean AUC).

ll. The accuracy when all features are included seems to be simi-
ar to that of including all HLA pairs, which contribute the highest
umber of features. Both Coxnet and GB have statistically significant
mprovements when using all features compared to the basic feature
7

et. a
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6.2. Effects of target encoding

We saw in the previous section that the addition of binary-encoded
HLA types has a negative impact on RSF’s performance due to its
high dimensionality. We compare the accuracy of RSF using different
target encodings for the HLA types to that of the binary encoding. To
formalize the comparison as a statistical test, we consider the following
null and alternative hypotheses:

𝐻null ∶ 𝑀binary = 𝑀target vs. 𝐻alternative ∶ 𝑀binary < 𝑀target,

here 𝑀 denotes the median accuracy metric (C-index or mean AUC)
ver the 10 data splits. The p-values are computed using the Wilcoxon
igned rank test with Bonferroni correction in the same manner as
escribed in Section 5.2. The differences between the C-indices of the
arget encodings and the binary encoding are shown in Appendix A.2.

The type feature set test accuracy using the proposed regression and
lassification-based target encoding approaches is shown in Table 4.
he C-index values for the binary and target-encoded type set test
ccuracy suggests that both target encoding approaches can improve
SF’s predictive power. The p-values also indicate that there is a
tatistically significant improvement for the C-index of target encoding
except for the 1-yr classification). The mean AUC, on the other hand,
oes not improve, which could again be due to the hyperparameters
eing optimized using C-index.

.3. Prediction with post-transplant covariates

When we include also the post-transplant covariates, for all models,
he C-index and mean cumulative/dynamic AUC improve by about
.03–0.04 compared to using only pre-transplant covariates. The high-
st C-indices are 0.667, 0.676, and 0.678 for Coxnet, random survival
orest and gradient boosting, respectively, as shown in Table 5. The re-
ults indicate that integrating post-transplant covariates tremendously
elps the survival prediction algorithms improve their accuracy, as one
ight expect.

The trends across HLA feature representations are roughly the same
s in the pre-transplant case, although the relative improvement in
ccuracy when including the HLA features is slightly lower compared
o using only pre-transplant features. This is reasonable because the
ost-transplant covariates carry information about how the recipient’s
mmune system is responding to the transplant, which is what the HLA
eatures aim to predict in the pre-transplant setting.

. Related work

A broad group of studies has used data-driven statistical models to
redict graft survival times or measure risk factors’ impact on graft sur-
ival. Prior work includes multivariate analysis using Cox proportional
azards (Cox PH) models with a small number of covariates [24–26].
here has been more recent work on machine learning-based sur-
ival analysis applied to kidney transplantation, including an ensemble
odel that combines Cox PH models with random survival forests [27]
nd a deep learning-based approach [28].
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Fig. A.5. Difference between C-index of each feature set and C-index of basic feature
et on all 10 data splits for the Coxnet. For the Types feature set, 9 of 10 splits result
n improved C-index. For all other feature sets, all 10 splits result in improved C-index.

Our results compare favorably to prior studies [24–26,28] using
he same SRTR data we use in this study. Each study differs in in-
lusion criteria, time duration, and several other factors that prevent
direct comparison; however, we include their reported results here

or reference. Two older studies [24,25] using Cox PH models without
egularization achieved C-indices of 0.62 and 0.61, respectively. A more
ecent study also using a Cox PH model with only pre-transplant covari-
tes [26] including HLA MM achieved a C-index of 0.64; however, their
tudy included both living and deceased donors while ours considers
nly deceased donors. Transplant outcomes with living donors are
uch more favorable [26], which may result in easier prediction.
nother recent study [28] used a deep learning approach applied to
oth pre- and post-transplant covariates to achieve a C-index of 0.655,
ess than the 0.676 we achieved.

Several other recent studies have focused on prediction of patient
urvival rather than graft survival, with [27,29] achieving C-indices
f 0.70 and 0.724, respectively. Prediction of patient survival is much
asier than prediction of graft survival, which we focus on in this
aper. For example, [25] considered both patient and graft survival
nd achieved a C-index of 0.68 for patient survival compared to 0.61
or graft survival. We also argue that graft survival is the more relevant
linical endpoint, as a patient who survives a transplant but suffers a
raft failure will require a re-transplant and returns to the waiting list.

. Significance and impact

Transplantation outcome prediction is instrumental for clinical
ecision-making, as well as allocation policy development. The kidney
llocation policy by the OPTN was developed to encourage fairness
equal access to treatment) and effectiveness (the longest predicted
urvival) [30] in transplantation. Informed clinical decision making
llows for avoidance of high-risk transplants and thus reduces number
f graft losses. However, accurate prediction of transplant outcomes
emains a daunting challenge due to the high complexity of human
iology.

In addition, failure to account for complexities of HLA results in
nintended consequences in transplantation. As such, OPTN’s good
ntention to promote HLA matching initially resulted in de facto dis-
rimination against African Americans, whose HLA gene locus is highly
8

iverse and who therefore were not selected for transplantation as
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Fig. A.6. Difference between C-index of each feature set and C-index of basic feature
set on all 10 data splits for Random Survival Forest. MM (total) shows improved C-index
in all 10 splits, while MM (A-B-DR) shows improved C-index in 9 of 10 splits. All other
feature sets result in decreased C-index in all 10 splits.

Fig. A.7. Difference between C-index of each feature set and C-index of basic feature
set on all 10 data splits for Gradient Boosting. MM (total) shows improved C-index in
9 of 10 splits. All other feature sets show improved C-index in all 10 splits.

frequently as Caucasians and other races [31]. The requirement for
HLA matching was later relaxed, but the problem of racial dispar-
ities in access to high-quality transplants persists until today [32].
By modifying our approach to HLA immunogenicity quantification,
adding biologically-relevant representations of HLA, we attempt to
build improved models for transplant outcome prediction, which may
help address the pressing problem of poor long-term transplantation
outcomes.

Addition of HLA features improves our predictive model and pres-
ents clinical interest for two reasons. First, physicians are most com-
fortable making decisions with HLA information at hand. There is a
growing consensus in the transplantation field that HLA is a critical
consideration for pre-transplant patient evaluation [33]. In the U.S., na-
tionwide sharing of fully HLA-matched kidneys is mandated in certain
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
ión. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.
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Table A.6
Comparison of Wilcoxon signed rank test and paired t-test p-values for C-index.

Coxnet Random survival forest Gradient boosting

Wilcoxon t-test Wilcoxon t-test Wilcoxon t-test

MM (total) 0.006 0 0.006 0 0.012 0.001
MM (A-B-DR) 0.006 0 0.012 0.003 0.006 0
Types 0.012 0.001 1 1 0.006 0.001
Pairs 0.006 0 1 1 0.006 0.005
Freq. pairs 0.006 0 1 1 0.006 0
All 0.006 0 1 1 0.006 0.003
Fig. A.8. Difference between C-index of each target encoding approach and C-index of binary encoding of Types feature set on all 10 data splits for random survival forest. All
encodings except the classification-based encoding at 1 yr (Classification_1) show improved C-index in all 10 splits.
a
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situations, and transplant centers typically require labs to provide HLA
information before a crossmatch (a final pre-transplant test). Therefore,
clinicians, governmental entities, and payers who are interested in
predicting transplantation outcome are typically interested in making
sure HLA compatibility is factored into the model.

Second, due to the large size of the transplant waiting list and
exorbitant cost of pre-transplant kidney replacement therapy, even a
small improvement in post-transplant outcomes would result in large
economic and social impact over time, as was described in simulations
by Segev et al. [34]. They showed that as much as $750 million could
be saved if transplant rates were to improve by 5.7% in a 4000 patient
pool. It would require a separate study to quantify the impact of a 1%
increase in prediction accuracy on long-term graft survival, however, it
is reasonable to think that implementation of improved predictive mod-
els in transplant allocation would result in improvement in transplant
survival, with downstream societal impact. Our findings are thus useful
for assisting clinical decision making aimed at improving long-term
allograft survival.
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Appendix. Evaluation metrics across data splits

A.1. Effects of feature representations

The difference between the C-index of each feature set (𝑀augmented)
nd the C-index of the basic feature set (𝑀basic) is shown in Figs. A.5–
.7 for Coxnet, random survival forest, and gradient boosting, re-
pectively. Notice that, for all the cases with 𝑝-value 0.006 from the
ilcoxon signed rank test, 𝑀augmented > 𝑀basic for all 10 data splits.
hile the improvement in C-index from adding HLA features is small,

t is consistent across the 10 data splits, leading to the low p-values in
able 2.

In Tables A.6 and A.7, we compare the p-values computed by
he Wilcoxon signed rank test (the ones shown in Tables 2 and 3,
espectively) with those computed using a paired t-test. The p-values
rom the paired t-test are lower, suggesting that the Wilcoxon signed
ank test is more conservative about rejecting null hypotheses.
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Table A.7
Comparison of Wilcoxon signed rank test and paired t-test p-values for mean AUC.

Coxnet Random survival forest Gradient boosting

Wilcoxon t-test Wilcoxon t-test Wilcoxon t-test

MM (total) 0.006 0 0.006 0 0.006 0
MM (A-B-DR) 0.006 0 0.018 0.007 0.006 0
Types 1 1 1 1 1 1
Pairs 0.006 0 1 1 0.012 0.001
Freq. pairs 0.006 0 0.006 0.001 0.006 0
All 0.006 0 1 1 0.006 0
A.2. Effects of target encoding

The difference between the C-index of each target encoding for
HLA types (𝑀target) and the C-index of the binary encoding (𝑀binary) is
hown in Fig. A.8 for random survival forest. The improvement offered
y target encoding is consistent across all approaches except for the
lassification-based encoding at 1 yr.
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