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A B S T R A C T   

Facial wrinkles are important indicators of human aging. Recently, a method using deep learning and a semi- 
automatic labeling was proposed to segment facial wrinkles, which showed much better performance than 
conventional image-processing-based methods. However, the difficulty of wrinkle segmentation remains chal
lenging due to the thinness of wrinkles and their small proportion in the entire image. Therefore, performance 
improvement in wrinkle segmentation is still necessary. To address this issue, we propose a novel loss function 
that takes into account the thickness of wrinkles based on the semi-automatic labeling approach. First, consid
ering the different spatial dimensions of the decoder in the U-Net architecture, we generated weighted wrinkle 
maps from ground truth. These weighted wrinkle maps were used to calculate the training losses more accurately 
than the existing deep supervision approach. This new loss computation approach is defined as weighted deep 
supervision in our study. The proposed method was evaluated using an image dataset obtained from a profes
sional skin analysis device and labeled using semi-automatic labeling. In our experiment, the proposed weighted 
deep supervision showed higher Jaccard Similarity Index (JSI) performance for wrinkle segmentation compared 
to conventional deep supervision and traditional image processing methods. Additionally, we conducted ex
periments on the labeling using a semi-automatic labeling approach, which had not been explored in previous 
research, and compared it with human labeling. The semi-automatic labeling technology showed more consistent 
wrinkle labels than human-made labels. Furthermore, to assess the scalability of the proposed method to other 
domains, we applied it to retinal vessel segmentation. The results demonstrated superior performance of the 
proposed method compared to existing retinal vessel segmentation approaches. In conclusion, the proposed 
method offers high performance and can be easily applied to various biomedical domains and U-Net-based ar
chitectures. Therefore, the proposed approach will be beneficial for various biomedical imaging approaches. To 
facilitate this, we have made the source code of the proposed method publicly available at: https://github. 
com/resemin/WeightedDeepSupervision.   

1. Introduction 

Facial wrinkles are major indicators for estimating human age [1] 
and identifying human emotions [2]. Numerous researchers have pro
posed facial wrinkle segmentation methods, and cosmetics companies 
continue to launch various types of wrinkle treatments. Facial wrinkle 
segmentation is an important area of research for preventing facial 
aging. 

Most wrinkle segmentation approaches have been developed based 
on Hessian or Gabor filters [3–6]. The components of the Hessian matrix 
are partial second-order derivatives. The eigenvalues of a 2D image can 

be used to characterize the key features of each pixel. The Gabor filter is 
a linear filter which a Gaussian kernel modulated by a sinusoidal func
tion. Through convolution with a Gabor filter, the magnitude and di
rection of a component of a particular frequency can be emphasized in 
the corresponding image. Applying pre/post-processing filters to a 
Gabor-filtered image enables the detection of facial wrinkles [7,8]. 
Despite having reliable performance, the aforementioned approaches 
were considered to have limitations because they depend on geometric 
assumptions about wrinkles that can limit performance in particular 
images. In addition, the filter parameters must be fine-tuned [7] to 
improve the performance of wrinkle segmentation, because the optimal 
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parameters for each face image can differ. 
In the field of image recognition research, studies have primarily 

focused on machine learning and feature fusion [9–12]. Recently, large- 
scale training datasets have been extensively used with deep-learning 
techniques. Extensive studies based on deep learning have been con
ducted in the area of biomedical imaging. Many research studies have 
been proposed to utilize deep learning for segmentation, especially in 
medical imaging modalities such as MRI [13], CT [14], and ultrasound 
[15]. Notably, segmentation research focusing on human organs has 
been introduced, targeting the heart [16], brain tissues [17,18], and 
liver [19]. In contrast, there have also been research endeavors aimed at 
segmenting bones from various organs [20–22]. Additionally, methods 
for segmenting small ocular vessels and retinas have been proposed 
[23–26]. Furthermore, deep learning-based segmentation research has 
been conducted on histopathological or pathological images observed 
through microscopes [27,28]. Indeed, various approaches using deep 
learning have been suggested to perform segmentation of skin diseases 
on the human face and skin [29–32]. 

Basically, these datasets are typically labeled manually for specific 
objects. However, because the shape and thickness of facial wrinkles 
vary, it is challenging to precisely label wrinkles manually. Therefore, 
because of the difficulty in generating wrinkle labels, there has been no 
adequate research on wrinkle segmentation for the entire face based on 
deep learning. A semi-automatic labeling strategy utilizing deep 
learning was proposed in a recent study [33] to mitigate the expenses 
associated with labeling facial wrinkles. Rough labels of facial wrinkles 
and an adaptive thresholding technique [34] were used to create 
wrinkle labels (ground truth). Using these wrinkle labels, a deep 
learning-based wrinkle segmentation model was trained, which out
performed more traditional image-processing-based techniques in terms 
of performance. 

Despite the application of semi-automatic labeling, the detection of 
wrinkles on faces requires further improvement due to the lower seg
mentation performance compared to other biomedical domains. To 
address this issue, this study employed deep supervision [35–37] to 
improve wrinkle segmentation performance. Recently, numerous 
methods in the field of biomedical image recognition have incorporated 
deep supervision to enhance their performance. During the training 
phase, deep supervision extracted feature maps from each decoder of the 
training model and calculated multiple losses. In general, the decoders 
in the training model have smaller spatial dimensions owing to down
sampling. Thus, to make them the same size as the ground truth, 
upsampling layers were utilized. However, upsampling cannot accu
rately depict thin objects, such as facial wrinkles. In particular, as the 
spatial dimension decreases, it becomes more difficult to depict the 
detailed shapes of facial wrinkles, and the training loss becomes more 
inaccurate. 

To address this issue, we propose a new technique based on the deep 
supervision of wrinkle segmentation. We found that when calculating 
the loss for facial wrinkle inference, it is necessary to compute the loss 
differently for downsampled decoders. Thus, the proposed method em
ploys weighted wrinkle maps (WWM) to calculate training losses from 
downsampled decoders more precisely. The WWM was generated pri
marily from the ground truth by average pooling and upsampling. The 
use of WWM as weight factors during the computation of training losses 
was implemented to reduce incorrect losses. Loss computation utilizing 
WWM is defined as weighted deep supervision. 

The proposed method was compared to conventional image- 
processing methods and deep supervision. The dataset was acquired 
using a specialized skin analysis device [38] and wrinkle labeling was 
accomplished using a semi-automatic technique [33]. The proposed 
method demonstrated significantly superior performance compared 
with conventional image-processing techniques. Furthermore, it pro
duced better performance than deep supervision. In addition, we 
measured the consistency of the labels generated by humans and those 
generated by semi-automatic labeling for the same images. In our 

experiment, three labelers generated wrinkle labels for the same images, 
and we applied a semi-automatic labeling technique to generate wrinkle 
labels. We calculated and compared the consistency of each generated 
wrinkle label based on this correlation. The correlation coefficient of the 
semi-automatic labeling technique was much higher, indicating that 
using semi-automatic labeling was much more effective in generating 
consistent wrinkle labels than labeling directly by humans. Finally, we 
analyzed the scalability and limitations of the proposed method. 

The main novelty of this paper can be summarized as follows:  

• Weighted wrinkle map: We propose a weighted wrinkle map that 
considers the spatial dimensions of the decoder layers when 
computing losses. 

• Weighted deep supervision: We propose a new deep-learning frame
work that uses WWM to compute training losses.  

• Consistency of wrinkle labels: We show a better performance of semi- 
automatic labeling than that of a human labeling job for wrinkle 
segmentation. 

The rest of this paper is organized as follows: In Section 2, we provide 
a brief introduction to wrinkle segmentation models based on traditional 
image processing and deep supervision. In Section 3, the proposed 
weighted deep supervision method is described in detail. In Section 4, 
we compare the wrinkle detection performance of our proposed method 
with that of existing methods and conduct experiments to compare the 
consistency of human labeling and semi-automatic labeling. Section 5 
discusses the scalability and limitations of the proposed method. Finally, 
we present our conclusions in Section 6. 

2. Related works 

2.1. Wrinkle segmentation based on image processing 

The eigenvalues of the Hessian matrix represent the magnitude of 
displacement along the respective eigenvectors. Using this knowledge, 
the Frangi filter [3] was developed to detect the vesselness of magnetic 
resonance angiography. The Frangi filter was incorporated into a Hybrid 
Hessian Filter (HHF) to approximate the wrinkle-related structure on the 
horizontal gradient map [4]. Following a series of additional processes, 
such as thresholding, the wrinkles were refined. Hessian Line Tracking 
included the HHF as one of the phases to exploit wrinkle connectivity [5] 
as a follow-up study. However, the method of extracting wrinkles using 
gradients in only one direction is ineffective for extracting wrinkles in 
multiple dimensions. 

The Gabor filter response highlights the signal components of the 
corresponding orientations and frequencies. In Cula et al.’s method [6], 
Gabor filter was incorporated to extract wrinkles using a local orienta
tion map generated based on the gradient information of the target 
image. Batool et al. extracted wrinkle candidate structures by passing 
them through a Gabor filter bank and selecting the maximum value for 
each pixel [8]. To obtain good results, appropriate Gabor filter param
eters should be set for individual images. It was difficult to determine the 
optimal filter parameters for input images, which varied significantly 
depending on individual differences, shooting conditions, and image 
resolution. 

In addition, these image-processing methods do not distinguish be
tween hair, eyebrows, and eyes. Therefore, additional pre-processing is 
required. 

2.2. Deep supervision 

Deep supervision calculates multiple losses in multiple layers of a 
training model. These losses are used to update the training model, 
which exhibits better performance than a single loss. Deep supervision is 
typically applied in U-Net [39] structures such as M-Net [35], AG-Net 
[36], U-Net3+ [37]. M-Net and AG-Net computed four losses from the 
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four decoders, with the exception of the bottom decoder for retinal 
vessel segmentation. U-Net3+ computed the losses for all decoders and 
updated a training model for liver and spleen segmentation in the CT 

images. These approaches demonstrated better performance than a 
single loss in their experiment. However, deep supervision has primarily 
been applied to downsampled decoders. As a result, the loss may be 
inaccurate for thin objects, such as wrinkles. 

3. The proposed method 

This section provides a detailed description of the proposed facial 
wrinkle segmentation technique. First, we present an outline of the 
overall structure of the proposed method. The procedure for pre- 
processing facial images to detect facial creases is described below. 
Subsequently, a method for creating the proposed weighted wrinkle map 
is described. The final section describes the procedure for calculating the 
losses using the proposed weighted deep supervision. 

3.1. Overview of the wrinkle segmentation model 

Fig. 1 shows the overall structure of the proposed wrinkle segmen
tation based on U-Net [33,40]. Furthermore, it is based on deep super
vision, which extracts feature maps from each decoder and computes 
multiple losses. However, except for feature map F1, the losses were 
calculated using the proposed weighted deep supervision. 

3.2. Pre-processing 

Facial wrinkle segmentation has mainly been studied for the fore
head and areas around the eyes [41–43]. The forehead contains many 
expressive muscles that move frequently, and the areas around the eyes 
have thin skin and expressive muscles that result in wrinkles. By 
focusing on these two areas, we were able to estimate the overall aging 
of the face. This study also presents the development of facial wrinkle 
segmentation techniques for these specific areas. To detect wrinkles 
around the forehead and eyes, we applied Jin et al.’s [44] method to 
detect landmark points. Landmarks are a method of extracting key
points, such as eyes, eyebrows, nose, mouth, and jawline. In Fig. 2, the 
red dots represent the landmarks, each with coordinates (x, y). The 
leftmost point was defined as P1, the rightmost point as P2, and the 
middle point between the eyes as P3. However, because there was no 
landmark on the forehead, a virtual landmark was created and defined 
as P4. The y-coordinate of P4 is the same as y1 in Table 1, and is 

×

Fig. 1. Overview of the proposed wrinkle segmentation model. An original image I and a texture map T are concatenated and used as input. ‘Conv’ is the con
volutional layer, and ‘BN’ is the batch normalization layer, and Leaky ReLU is the activation function. The numbers at the bottom left of the features indicate the 
width or height size, and the numbers above the features indicate the number of channels. On the right, there are ground truth and weighted wrinkle maps. The red 
boxes represent the weighted deep supervision proposed in this paper. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 2. Example of cropping a face using landmark points (red). First, three 
points (P1, P2, and P3) are selected, and P4 is estimated from the three points. 
Then, two points (x1, y1) and (x2, y2) are computed. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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calculated using P1, P2, and P3. Finally, the two points (x1, y1) and (x2, 
y2), representing the green box drawn in Fig. 2 are calculated as shown 
in Table 1. 

3.3. Semi-automatic wrinkle labeling 

Because facial wrinkles are quite diverse in shape and length and 
their boundaries are ambiguous, it is difficult for a labeling annotator to 
label them by hand. Therefore, as shown in Fig. 3, a semi-automatic 
labeling technique [33] was applied to generate the wrinkle labels. As 
shown in Fig. 3, a labeling annotator creates a rough wrinkle annotation 
map. This map is converted into a binary mask M. Then, a texture map T 
is extracted from the original image I using Eq. (1). 

T(x, y) =
(

1 −
I(x, y)

1 + IG(σ)(x, y)

)

× 255, (1)  

where G is a Gaussian kernel, σ is a sigma value, and IG(σ) is a Gaussian 
filtered image, x and y are coordinates. Then, to remove the non
wrinkled texture from the texture map, we used Eq. (2), as follows: 

T′(x, y) =
{

T(x, y), if M(x, y) > 0
0, otherwise . (2) 

Finally, an adaptive thresholding method [34] was applied to 
generate the ground truths. 

3.4. Weighted wrinkle map 

This subsection explains the generation of the WWM using Algorithm 
1. Decoders D1, D2, and D3 in Fig. 1 have reduced spatial dimensions 
owing to the downsampling. Therefore, it was necessary to adjust the 
weights of each area in the GT by considering the reduced spatial di
mensions. Wrinkle detection performance can be improved by calcu
lating the loss using the adjusted weights. The images in the first column 
of Fig. 4 show the results of Steps 1 and 2 of Algorithm 1. The scale factor 
s represents a reduction in the spatial dimension at a ratio of 1/s. Thus, 
the representation of the fine details of the feature map was reproduced 
using the ground truth through a process of downsampling and 
upsampling, resulting in Steps 3 and 4. Therefore, the role of WWM is to 
decrease the weights of areas where wrinkles cannot be properly rep
resented through upsampling and to maintain high weights for areas 
where wrinkles are indispensable. 

Algorithm 1. Generating a weighted wrinkle map (WWM).  

Input: A ground truth image GT ∈ ℝh×w, scale factor s 
Output: A weighted wrinkle map WWM ∈ ℝh×w 

Step 1. Compute the means of sub-blocks in GT 
a. GT is partitioned into a hd × wd grid format, where hd = h/s, wd = w/s 
b. For each grid, the average values are calculated to generate 

WWMdown ∈ ℝhd×wd . 
Step 2. Up-sample WWMdown using nearest interpolation to generate WWM ∈ ℝh×w. 
Step 3. Calculate the mean value of WWM and replace zero values with the 
computed mean value. 
Step 4. Set the values of WWM to 1 at the same positions as where the values of GT 
are 1. 

Fig. 3. Overview of semi-automatic labeling [33]. First, the binary mask M is generated by roughly labeling wrinkle areas. The proposed texture map T is created 
from the original image I. Then, non-wrinkle textures are removed by multiplying with T and M, and the wrinkle texture map T’ is created. Finally, the ground truth 
GT is generated by adaptive thresholding from T’. 

Table 1 
Methods for calculating coordinates to crop the face.  

Coordinate Definition 

x1 x of P1 

x2 y of P2 

y1 x of P3 − (x2 − x1) × 0.66 
y2 y1 + (x2 − x1)  
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3.5. Loss functions 

Two loss functions were used to train the proposed wrinkle seg
mentation model. We used the DICE coefficient loss for the last decode 
layer. The DICE coefficient loss is defined as 

LossDICE n = 1 − 2

∑

i
pn,iqi

∑

i
pn,i +

∑

i
qi
, (3)  

where pn,i is ith value of nth predicted output, such as Fn and q is the 
ground truth. For the remaining decoder layers, we propose a weighted 
DICE coefficient loss defined as 

LossWDICE n = 1 − 2
2 ×

∑

i
pn,iqiwn,i

∑

i
pn,iwn,i +

∑

i
qiwn,i

, (4)  

where wn,i is ith value of nth WWM. Thus, the final loss can be computed 
as 

Loss = LossDICE 1 +
∑4

i=2
LossWDICE i, (5)  

where i is ith feature map, or WWM. In this study, the method of training 
the wrinkle segmentation model based on the above loss function was 
defined as weighted deep supervision. 

3.6. Learning rate scheduler 

Learning rate schedulers are widely used to train deep learning 
models with high performance. In the proposed method, a cosine 
annealing learning rate scheduler (CALRS) [45] was used in the training 
phase. CALRS is defined as below: 

γt = γi
min +

1
2
(
γi

max − γi
min

)
(

1+ cos
(

Tcur

Ti
π
))

, (6)  

where γi
min + γi

max are the range for the learning rate in the ith run, and 
Tcur is the number of epochs that have progressed from the last restart, 
and t is the batch iteration. We used CALRS to adjust learning rate to 
update the weights of the proposed wrinkle segmentation model. 

4. Experiments 

4.1. Experimental Environments 

To evaluate the performance of the proposed weighted deep super
vision method, 300 facial images were acquired using a specialized skin 
diagnosis device, Lumini KIOSK v2 [38]. Facial images were obtained 
from various locations with different lighting and color temperatures, 
making this database quite challenging. All acquired images included a 
person’s face facing forward, as shown in Fig. 2. We performed 6-fold 
cross-validation experiments on 300 images to obtain the experi
mental results. The acquired image was 1280 (H) × 960 (W), and all 
images included a frontal face. All the acquired images were cropped 
and resized to 640 (H) × 640 (W) by pre-processing using landmark 
detection [44], as described in Section 3.2. Subsequently, ground truths 
(GT) for wrinkles were obtained using a semi-automatic labeling tech
nique and expert consultation. To create texture map T, the sigma value 
was set to 5, and the size of the Gaussian kernel was set to 21 × 21. 

In the training phase, data augmentation techniques for scaling, 
shifting, rotating, brightness, color changing, and flipping were used 
randomly when the training images were loaded. Adam [46] was 
applied as the optimizer to update the weights of the proposed wrinkle 
segmentation model. The period of the cosine-annealing learning rate 
scheduler (CALRS) [45] and the maximum epoch of the training phase 
were set to 200. The initial learning rate was set to 0.01, and the min
imum learning rate was set to 0.000001. The weight decay was defined 
based on L2-norm with a value of 0.0001, and the batch size was 4. All 

Fig. 4. Example of the weighted wrinkle maps in Algorithm 1.  
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experimental results were obtained using PyTorch and an NVIDIA RTX 
3090 GPU on Ubuntu 20.04. 

4.2. Metrics 

Several metrics were chosen to evaluate the proposed method using 
previous approaches. The Jaccard Similarity Index (JSI), accuracy, 
specificity, and sensitivity were evaluated. The JSI has been frequently 
employed in previous wrinkle segmentation methods [4–6,33] and is 
defined as follows: 

J(A,B) =
|A ∩ B|
|A ∪ B|

, (7)  

where A is a prediction and B is the ground truth. Accuracy, sensitivity, 
and specificity are defined as follows [47]: 

Accuracy =

(
TN + TP

TN + TP + FP + FN

)

, (8)  

Sensitivity =

(
TN

TN + FN

)

, (9)  

Specificity =

(
TN

TN + FN

)

. (10)  

where TP represents true positives, TN is true negatives, FP is false 
positives, and FN represents false negatives. 

4.3. Performance of wrinkle segmentation 

We selected U-Net [33,41] as the baseline and compared the wrinkle 
segmentation performance by applying weighted deep supervision and 
deep supervision separately with 6-fold cross-validation. Table 2 

presents a statistical summary of each method based on the averages and 
variances of the metrics. The weighted deep supervision demonstrated 
the best performance among the four metrics. In the case of JSI, although 
the use of deep supervision resulted in a 0.68 % improvement, the use of 
weighted deep supervision led to a 2.05 % improvement. This is because 
the discriminative power for wrinkles increased, leading to an 
improvement in accuracy, as well as sensitivity and specificity. This 
demonstrates that weighted deep supervision is more effective than 
conventional deep supervision in enhancing wrinkle segmentation per
formance. Fig. 5 shows examples of the results obtained using each 
method. 

In addition, we compared our proposed method with traditional 
wrinkle detection methods that use image-processing techniques, such 
as Hessian [4] or Gabor [8]. However, when attempting to detect 
wrinkles on the entire face using traditional methods, other features, 
such as eyes, eyebrows, and hair, are also detected as wrinkles, resulting 
in very low performance. Therefore, to conduct a fair experiment, we 
measured the performance only on the forehead and around the eyes in 
the facial images. First, we selected one from the 6-fold split training set 
and manually cropped the forehead and eye areas. We then filled the 
non-skin areas with black to prevent traditional methods from detecting 
eyebrows or hair as wrinkles. Table 3 presents the wrinkle detection 
results for each method on the forehead and around the eyes. Our pro
posed method showed significantly higher performance than traditional 
methods. Figs. 6 and 7 show examples of the results of each method. 

4.4. Inefficiency of deep supervision for wrinkle segmentation 

Deep supervision has been extensively employed in biomedical 
image recognition. However, deep supervision is inefficient for thin 
objects such as wrinkles. The two feature maps F1 and F4 are shown in 
Fig. 8. These features were extracted from decoders D1 and D4 as 

Table 2 
Statistical comparison of facial wrinkle segmentation.  

Metric JSI (%) Accuracy (%) Sensitivity (%) Specificity (%) 

U-Net 42.30 ± 1.05 98.57 ± 0.13 62.92 ± 0.82 99.24 ± 0.10 
U-Net + DS 42.98 ± 0.81 98.60 ± 0.12 63.47 ± 0.76 99.19 ± 0.08 
U-Net + WDS 44.35 ± 0.94 98.67 ± 0.12 63.84 ± 0.40 99.25 ± 0.08  

Fig. 5. Comparison of wrinkle results on entire face. (a) is an original image, (b) is a ground truth, (c) is a result of U-Net without deep supervision, (d) is a result of 
U-Net with deep supervision, and (e) is a result of the proposed method, weighted deep supervision. 

Table 3 
Comparison of JSI performance. DS is deep supervision, WDS is weighted deep 
supervision.  

Part Hessian Gabor U-Net U-Net + DS U-Net + WDS 

Forehead  0.173  0.142  0.472  0.469  0.486 
Eyes  0.181  0.159  0.443  0.455  0.460 
Average  0.177  0.151  0.458  0.462  0.473  
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illustrated in Fig. 1. In the case of F4, the spatial dimension decreased to 
1/8, resulting in a blurred image when upsampled again by a factor of 
eight. Therefore, it is difficult to precisely represent the shape of the 
wrinkles. In contrast, F1 was more specific than F4. However, this may 
not be appropriate because the training loss for F4 is consistently higher 
than that for F1, which may lead to a larger proportion of F4 in the 
training phase. As the final performance is determined through F1, this is 
not correct. 

To examine the results further from a loss perspective, we compared 
the training losses for deep and weighted deep supervision. In Fig. 9, the 
training loss of LossDICE4 under deep supervision is relatively high 
compared to that of LossDICE1. Thus, the loss of LossDICE4 can significantly 
affect the overall model training. However, because F1 is the final pre
diction result, its loss should have more weight in model training. In the 
case of weighted deep supervision, LossDICE1 was maintained at a higher 
level than LossWDICE4. Therefore, LossDICE1 had a greater influence on 
training. As a result, it can be observed that LossDICE1 of weighted deep 
supervision is lower than that of deep supervision. Hence, it can be 
concluded that the training performance of weighted deep supervision is 
superior. 

Furthermore, we explain the main reason why LossWDICE4 in Fig. 9 is 
lower than LossDICE1. The main reason is that LossWDICE4 was computed 

using a weighted wrinkle map (WWM). As shown in Fig. 4, the WWM has 
lower values excluding the wrinkle label area as the scale value s in
creases. This generates relatively lower losses for false positives. In other 
words, LossWDICE4 calculates the loss with higher weights only in the 
actual wrinkle label area, which helps improve LossDICE1. But it is not 
appropriate to detect the final output from D4 just because LossWDICE4 is 
lower than LossDICE1. The final output of wrinkle segmentation should be 
predicted in the final decoder D1. 

4.5. Comparison for human labeling and semi-automatic labeling 

In this subsection, we compare the consistency of wrinkle labels 
between human and semi-automatic methods. In our test, three labeling 
annotators created 100 wrinkle ground truths images from 100 facial 
images. Next, we assumed that the 100 wrinkle ground truths were 
rough wrinkle labels, as shown in Fig. 2 and then generated semi- 
automatic wrinkle ground truths. Fig. 10 shows an example of the 
three ground truths created by three labeling annotators. To compare 
the consistency of these ground truths, we computed the correlation 
coefficient [48,49] as follows: 

Fig. 6. Comparison of wrinkle results on foreheads. (a) is an original image, (b) is a ground truth, (c) is a result of Hessian approach [4], (d) is a result of Gabor filter 
approach [8], (e) is a result of U-Net without deep supervision, (f) is a result of U-Net with deep supervision, and (g) is a result of the proposed method, weighted deep 
supervision. 
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Correlation(X, Y) =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2 ∑n

i=1
(yi − y)2

√ , (8)  

where X and Y are ground truths, and xi and yi are ith elements in X and 
Y, respectively. x and y represent the mean values of X and Y. As shown 
in Table 5, the correlation of semi-automatic labeling was higher than 
that of the three annotators’ jobs. The semi-automatic labeling approach 
determines the intersection area between a rough wrinkle annotation of 
labeling annotators and wrinkle textures. This implies that the shape and 
thickness of wrinkle labels are determined by the texture map. Thus, the 
semi-automatic labeling approach has higher consistency. 

5. Discussion 

5.1. Applicability 

To assess the effectiveness and generalization of weighted deep su
pervision, we considered retinal vessel segmentation, which deals with 
thin objects similar to wrinkles. We selected AG-Net [50], which uses 
deep supervision in this field, as the baseline and applied weighted deep 
supervision. AG-Net already employs attention; however, for additional 
comparisons, we added Atrous Spatial Pyramid Pooling (ASPP) [51] to 
the final encoder. To compare the performance, we selected the DRIVE 
dataset [52], which is widely used in vessel segmentation and consists of 
20 training and 20 testing images. The resolution of each image was 
adjusted to 584 (H) × 584 (W) by zero-padding the horizontal axis to 
584 (H) × 565 (W). Subsequently, we configured all the experimental 
settings to be identical to those of the wrinkle segmentation experi
ments. Table 6 presents the results of the deep supervision and weighted 
deep supervision of AG-Net. To ensure fairness, we simultaneously re
ported the performance of AG-Net and the results obtained in our 
environment. As shown in Table 6, the weighted deep supervision also 
demonstrated superiority in retinal vessel segmentation. Therefore, we 
anticipate that weighted deep supervision will help improve perfor
mance when segmenting objects similar to wrinkles or retinal vessels. 
The addition of ASPP enabled further performance improvements. The 
experimental code for retinal vessel segmentation is publicly available in 
our code repository, enabling easy replication. 

Fig. 7. Comparison of wrinkle results around the eyes. (a) is an original image, 
(b) is a ground truth, (c) is a result of Hessian approach [4], (d) is a result of 
Gabor filter approach [8], (e) is a result of U-Net without deep supervision, (f) is 
a result of U-Net with deep supervision, and (g) is a result of the proposed 
method, weighted deep supervision. 

Fig. 8. Comparison of wrinkle representation between feature map F1 and feature map F4.  
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5.2. Limitation 

In this study, wrinkle segmentation performance was limited to 
44.35 % based on the JSI. This is significantly lower than the perfor
mance levels of approximately 70–90 % in fields such as retinal vessel 
segmentation [50], polyp segmentation [53], and brain tumor seg
mentation [54]. To analyze this, we calculated the ratio of wrinkle labels 
in our dataset to the entire facial area using Eq. (12) as follows: 

rate =

∑

i
GT(i)

H × W
, (12)  

where H is the height and W is the width of GT, and GT(i) is ith value of 
GT. Using Eq. (12), we can calculate the ratio of the wrinkle label, which 
results in a value of 0.015. By applying this equation to the retinal vessel 
dataset DRIVE, we obtained a value of 0.084. Therefore, the data 
imbalance was severe in our dataset because of the significantly smaller 
proportion of wrinkles. A case similar to ours can be observed in the 
research of Zheng et al. [55], where the performance of wrinkle 

Fig. 9. Example of loss comparison between deep supervision and weighted deep supervision.  

Fig. 10. An example of human labels and semi-automatic labels.  

Table 5 
The comparison of human and semi-automatic labels based on correlations.   

Annotator 1 
and 
Annotator 2 

Annotator 1 
and 
Annotator 3 

Annotator 2 
and 
Annotator 3 

Average 

Human labels  0.378  0.308  0.259  0.315 
Semi-automatic 

labels  
0.554  0.490  0.433  0.492  

Table 6 
Comparison of retinal vessel segmentation performance on the DRIVE dataset 
using AG-Net, with weighted deep supervision (WDS) and atrous spatial pyra
mid pooling (ASPP).  

Metric IoU Accuracy Sensitivity Specificity 

AG-Net [50]  0.6965  0.9692  0.8100  0.9848 
AG-Net  0.6934  0.9697  0.8081  0.9847 
AG-Net + WDS  0.7036  0.9706  0.8227  0.9850 
AG-Net + WDS + ASPP  0.7068  0.9709  0.8274  0.9851  
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segmentation was only 15.12 % based on the IoU criteria. Because 
wrinkles account for only a very small portion of the entire facial area, 
wrinkle segmentation is an extremely challenging problem. To improve 
the performance of wrinkle segmentation, it is necessary to improve U- 
Net, which is the baseline model of our study, or to apply other models to 
enhance the performance. Additionally, performing wrinkle detection 
by cropping the image into facial regions is expected to improve the 
performance, but it will also increase the time required for detection. 

5.3. Comparison of segmentation model performance 

In this sub-section, we aim to discuss wrinkle segmentation by 
comparing our proposed method with other segmentation models. We 
evaluated the wrinkle segmentation performance using commonly used 
models in general segmentation research, such as PSPNet [56], Deep
labV3+ [51], and SegNet [57], in addition to the U-Net we employed. 
We trained each model using one of the six folds from the training set 
used in Section 4. We used the same set of hyperparameters for all 
models. Table 7 presents the performance of each model in various 
metrics. PSPNet exhibited the lowest overall performance. This can be 
attributed to its encoder-decoder structure, which does not include skip 
connections, making it difficult to represent thin objects like wrinkles 
effectively. For DeeplabV3+, the mere application of 4× upsampling at 
the final output was deemed insufficient to capture the shape of wrin
kles. SegNet, on the other hand, employed unpooling instead of 
upsampling, but it was found to be less effective for wrinkle segmenta
tion. Similar results were observed in flood area segmentation studies 
using aerial photographs, indicating that SegNet performs worse than U- 
Net in segmenting thin and elongated objects like wrinkles. However, 
SegNet, like U-Net, has an encoder-decoder structure, making it easy to 
apply the WDS (weighted deep supervision) and we also observed per
formance improvements with 4.74 % JSI. Therefore, the U-Net archi
tecture can be considered suitable for wrinkle detection. 

6. Conclusion 

In this study, we propose an improved facial wrinkle segmentation 
model based on weighted deep supervision. We generated weighted 
wrinkle maps through average pooling and upsampling, and used them 
to calculate more precise losses in the downsampled decoders. In our 
experiments, the proposed weighted deep supervision approach showed 
better performance than the deep supervision approach in multiple 
metrics. We also compared semi-automatic labels with human labels. 
The semi-automatic labels showed higher consistency than human labels 
did. However, the JSI of our proposed method was lower than that of 
other similar applications such as retinal vessel segmentation, polyp 
segmentation, brain tumor segmentation, and so on. Although the 
wrinkle dataset used in this study included various lighting conditions, it 
was determined that relying solely on improving the loss function based 
on the U-Net architecture led to low performance. Therefore, we plan to 
implement a network that is more suitable for small-object segmentation 
to improve wrinkle segmentation performance in future research. 
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[52] Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B. Ridge-based 
vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23 
(4):501–9. 

[53] Fan D-P, et al. Pranet: parallel reverse attention network for polyp segmentation. 
In: Medical image computing and computer assisted intervention—MICCAI 2020: 
23rd International Conference, Lima, Peru, October 4–8, 2020, proceedings, part 
VI. 23; 2020. p. 263–73. 

[54] Ranjbarzadeh R, Bagherian Kasgari A, Jafarzadeh Ghoushchi S, Anari S, Naseri M, 
Bendechache M. Brain tumor segmentation based on deep learning and an 
attention mechanism using MRI multi-modalities brain images. Sci Rep 2021;11 
(1):1–17. 

[55] Zheng Q, Purwar A, Zhao H, Lim GL, Li L, Behera D, et al. Automatic facial skin 
feature detection for everyone. In: Proc. IS&T int’l. symp. on electronic imaging: 
imaging and multimedia analytics at the edge; 2022. 300-1–300-6. 

[56] Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE 
conference on computer vision and pattern recognition (CVPR), Honolulu, HI, 
USA; 2017. p. 6230–9. https://doi.org/10.1109/CVPR.2017.660. 

[57] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder- 
decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 
2017;39(12):2481–95. 1 Dec. https://doi.org/10.1109/TPAMI.2016.2644615. 

S. Kim et al.                                                                                                                                                                                                                                      

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.

https://doi.org/10.3390/jcm12020400
https://doi.org/10.3390/jcm12020400
https://doi.org/10.1038/s41597-023-02188-x
https://doi.org/10.1136/bjo-2022-321472
https://doi.org/10.1136/bjo-2022-321472
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0135
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0135
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0135
https://doi.org/10.1158/0008-5472.CAN-22-2146
https://doi.org/10.1158/0008-5472.CAN-22-2146
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0145
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0145
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0145
https://doi.org/10.3390/diagnostics13111894
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0155
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0155
https://doi.org/10.1109/ACCESS.2022.3222788
https://doi.org/10.1109/ACCESS.2022.3222788
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0165
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0165
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0165
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0170
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0170
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0175
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0175
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0175
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0180
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0180
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0180
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0185
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0185
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0185
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0185
https://en.lulu-lab.com/lumini.html
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0195
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0195
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0195
https://github.com/milesial/Pytorch-U-Net
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0205
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0205
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0210
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0210
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0210
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0210
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0215
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0215
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0220
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0220
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0225
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0225
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0230
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0230
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0230
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0240
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0240
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0245
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0245
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0245
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0245
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0250
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0250
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0255
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0255
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0255
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0260
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0260
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0260
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0260
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0265
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0265
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0265
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0265
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0270
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0270
http://refhub.elsevier.com/S0933-3657(23)00193-8/rf0270
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/TPAMI.2016.2644615

	Facial wrinkle segmentation using weighted deep supervision and semi-automatic labeling
	1 Introduction
	2 Related works
	2.1 Wrinkle segmentation based on image processing
	2.2 Deep supervision

	3 The proposed method
	3.1 Overview of the wrinkle segmentation model
	3.2 Pre-processing
	3.3 Semi-automatic wrinkle labeling
	3.4 Weighted wrinkle map
	3.5 Loss functions
	3.6 Learning rate scheduler

	4 Experiments
	4.1 Experimental Environments
	4.2 Metrics
	4.3 Performance of wrinkle segmentation
	4.4 Inefficiency of deep supervision for wrinkle segmentation
	4.5 Comparison for human labeling and semi-automatic labeling

	5 Discussion
	5.1 Applicability
	5.2 Limitation
	5.3 Comparison of segmentation model performance

	6 Conclusion
	Declaration of competing interest
	Acknowledgement
	References


