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A B S T R A C T

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive im-
pairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention
and early intervention treatment of AD. Although some computational methods have been developed for
AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have
potential disease information. In addition, the results of some methods lack interpretability. In this work, we
proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN)
and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the
structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE
genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image
characteristics from each local patch, (2) the position self-attention block for capturing the dependencies
between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch
features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results,
respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4%
classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2%
and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of
focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be
effectively used for diagnosing AD and MCI patients.
1. Introduction

Alzheimer’s disease (AD) is the most common irreversible primary
degenerative disease of the central nervous system in middle or late
life [1]. AD begins with a gradual loss of memory and cognitive
function, and its pathologic characteristic is the degeneration of spe-
cific nerve cells, the presence of neuritis plaques and neurofibrillary
tangles [2]. As a transient clinical stage from normal control (NC)
to dementia, mild cognitive impairment (MCI) is a critical period for
controlling AD progression. Until now, although there is no effective
way to reverse the progression of AD, accurate and early diagnosis of
AD/MCI is crucial for subsequent effective clinical intervention treat-
ments, delaying the onset of cognitive symptoms, maintaining residual
brain functions, and reducing complications [3].

Considering that structural magnetic resonance imaging (sMRI)
can describe morphological changes in brain imaging, some machine
learning-based methods have been developed to identify AD patients,
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MCI patients and normal controls (NC) through sMRI images [4–
6]. However, these traditional machine learning-based methods rely
heavily on the quality of handcrafted features (e.g., cortical thickness,
hippocampal volume and gray matter densities) extracted from sMRI
images, and also believe that the chosen features are the most discrim-
inating information, which may neglect some important discriminative
information inherent in sMRI images.

Given that deep learning (DL) methods, especially convolutional
neural networks (CNNs), can generally automatically learn the in-
formative features that have better representations of the data than
the handcrafted features, they have been widely applied in various
medical image analysis tasks [7]. It has been proved that CNNs have
the excellent ability to learn high-level features from sMRI images for
greatly improving the performance of brain disease diagnosis [8]. Ac-
cording to the brain partition with different scales, existing CNN-based
AD diagnosis methods for sMRI images can be roughly categorized
into 2D slice-level methods [9,10], 3D patch-level methods [11–14],
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region-level methods [15], and 3D subject-level methods [16,17]. In 2D
slice-level methods [9,10], the 2D slices extracted from the 3D sMRI
volume are inputted into 2D CNNs for NC/MCI/AD classification. 2D
slice-level methods can increase the number of training samples by
extracting more 2D slices from a single 3D sMRI image to alleviate
the curse of dimensionality. However, these methods independently
analyze all slices of a subject with the 2D convolutional filters, losing
the 3D space dependence information of 3D sMRI images. That is, the
3D spatial information is not adequately modeled by 2D slice-level
methods. In addition, there are many ways to select 2D slices, which
will affect the robustness of classification models. In 3D patch-level
methods [11–14], the 3D patches extracted from the 3D sMRI images
are inputted into 3D CNNs for AD diagnosis. These methods can use
more training samples of 3D patches to train the models to alleviate
the curse of dimensionality. The lower number of parameters can be
learned by using the same network for all patches, while more de-
tailed features can be learned by using different networks for different
patches. However, how to select 3D patches and combine these local
patches to represent the whole brain structure well is still a challenge
in 3D patch-level methods. In addition, most of these 3D patches are
not informative for AD diagnosis because they are not affected by AD
disease. In region-level methods [15], the regions of interest (ROI) are
segmented from brain sMRI images and then fed into 2D/3D CNN
models for AD diagnosis. However, these methods just focus on the
ROIs (e.g., hippocampus), while AD alterations span over multiple
brain areas, and segmenting these ROIs is resource-intensive. In 3D
subject-level methods [16,17], the whole sMRIs are inputted into CNN
models for NC/MCI/AD classification at the subject level. Although
these methods fully integrate the spatial information of sMRI images,
they risk overfitting due to the small number of samples compared to
the size of the input sMRI [14]. In addition, 3D subject-level methods
have higher computational complexity.

Although existing AD diagnosis methods have achieved better clas-
sification results, most of them focus on brain neuroimaging data, such
as sMRI, PET and DTI, but rarely consider the potential impact of the
clinical (i.e., demographic, neuropsychological, etc.) and genetic data,
so the improvement of performance is constrained. Most large-scale
genome-wide association studies (GWAS) have revealed associations
between single nucleotide polymorphisms (SNPs) and the risk of AD,
and SNPs in AD-related genes can profoundly induce significant degra-
dation of certain brain functions [18], such as Apolipoprotein E (APOE)
𝜖4 gene is a high-risk pathogenic gene of AD. APOE 𝜖4 allele carriers are

ore prone to amyloid deposition, which increases the risk of AD by
∼4 folds [19,20]. AD clinical data, such as demographic, neuropsycho-
ogical and cognitive assessment, can measure and track AD processes
o help clinicians diagnose [21]. Demographic factors (e.g., age and
ender) can influence AD progression. Frequent neuropsychological
ssessments can easily detect within-subject changes. Cognitive assess-
ent (e.g., mini-mental state examination, MMSE) can capture subtle

linical decline to discern the treatment effects among participants
ith earlier AD disease. In addition, most multi-modality DL methods
dopt the 3D subject-level way. However, high-dimensional images
ay lead to the CNNs unable to effectively learn the detailed structural

eatures. In contrast, most ROI- and patched-based methods fragment
he connections between brain regions, ignoring the correlations be-
ween brain structures. Moreover, the results of most existing deep
earning-based AD diagnosis methods are less interpretable because
f the black-boxed learning procedure. Therefore, it is necessary to
evelop effective AD diagnosis methods to improve AD classification
ccuracy and interpretability simultaneously.

In this work, we proposed a novel method (called DANMLP) that
oins dual attention CNN and MLP for AD diagnosis by integrating
he sMRI, clinical and APOE genetic data. DANMLP consists of the
atch-CNN, position self-attention block, channel self-attention block
nd two MLPs. The Patch-CNN is used to learn the features within
2

ach sMRI patch. The position self-attention block emphasizes the
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feature pairs with positional correlation within a patch. The channel
self-attention block emphasizes the features with channel correlation
between patches and obtains output features of each brain region.
One MLP is used to extract AD discriminant features from the clinical
and genetic data, and the other MLP is adopted to fuse the features
extracted from image, clinical and genetic data for NC/MCI/AD clas-
sification. Our work aims to improve AD classification accuracy and
interpretability simultaneously. The experimental results on the ADNI
database demonstrate that our DANMLP is effective in AD diagnosis,
which can improve the interpretability of the results.

In summary, the main contributions of our work are as follows:
(1) A joint framework of dual attention CNN and MLP is proposed

to integrate sMRI, clinical and genetic data to improve the diagnosis
performance of AD.

(2) The Patch-CNN is designed to extract the discriminative features
within each patch in 3D sMRI images.

(3) A 3D dual attention block is introduced to capture the inter-
position and inter-channel dependencies to effectively extract the spa-
tial structure information of the brain and obtain the output features
of each brain region for improving the interpretability of AD diagnosis
results.

The rest of this paper is organized as follows. Section 2 intro-
duces the related works. Section 3 presents the materials of sMRI
imaging, clinical and APOE genetic data used in this work and our
proposed DANMLP method. Section 4 shows the experimental settings
and results. Section 5 shows the discussion. Section 5 concludes this
paper.

2. Related work

2.1. Alzheimer’s disease diagnosis with single-modality data

Most research on AD diagnosis mainly focuses on neuroimaging,
in which position emission tomography (PET) and magnetic resonance
imaging (MRI) receive more attention. For example, Abramova et al.
proposed a multi-view separable pyramid network (MiSePyNet) for AD
diagnosis by learning the feature representations from axial, coronal
and sagittal views of PET [22]. Although PET, as a good indicator of
brain metabolism level, can capture cerebral glucose metabolic rate at
resting state and reveal metabolic aberrations before structural brain
changes, it is expensive and requires administration or inhalation of a
radioisotope as a tracer. While as non-invasive medical imaging tech-
niques, such as functional MRI (fMRI) [23], diffusion tensor imaging
(DTI) [24] and structural MRI (sMRI) [9,15,16], use a strong magnetic
field and radio frequency pulse to image the internal body structures,
which are often used to study the pathological brain changes associated
with AD in vivo. fMRI can demonstrate changes in blood sample
levels of the brain and assesses brain activity in different states. DTI
can show the direction of nerve conduction bundles in the brain’s
white matter, enabling fine imaging of central nerve fibres. sMRI is
sensitive to morphological changes caused by brain atrophy, and it can
capture changes in brain anatomy. For example, Gan et al. proposed
a functional connectivity network (FCN) analysis framework to reveal
the pathological basis of brain diseases based on fMRI images [23].
De and Chowdhury employed three VoxCNNs to separately train three
types of 3D volumetric data of Echo Planar Imaging (EPT), Fractional
Anisotropy (FA) and Mean Diffusivity (MD) in each DTI scan, and used
a random forest (RF) classifier to classify the derived metadata in the
form of region-averaged FA and MD values, then the outputs of three
VoxCNNs and one RF are combined with a modulated rank averaging
decision fusion approach to realize AD classification [24]. Folego et al.
developed an ADNet method to realize the multiclass AD biomarker
identification task by combining 3D CNN with domain adaptation and
using the whole sMRI as input. ADNet is prone to overfitting due to

excessive computational complexity [16].
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2.2. Alzheimer’s disease diagnosis with multi-modality data

AD is a complex and heterogeneous disease, and using single-
modality data for AD diagnosis is often insufficient. In view that
multi-modality data can provide complementary information to im-
prove AD diagnostic accuracy, some methods of using multi-modality
data (i.e., fMRI, DTI, sMRI) have been developed for AD diagnosis.
Combining the information from different types of multi-modality data
can help to improve AD diagnostic accuracy compared with single-
modality methods. For example, Gupta et al. used multiple toolboxes
(e.g., DPARSF, FSL, etc.) to extract features from sMRI, fMRI, and
DTI, then adopted the multiple kernel learning (MKL) framework to
perform AD classification [25]. The performance of this method largely
depends on the quality of feature extraction. Huang et al. took both
sMRI and PET images of the hippocampal area as the inputs of 3D
VGG-variant CNNs to separately learn the features from sMRI and PET
images, then concatenated these features to a fully connected network
for AD diagnosis [26]. Kang et al. took both sMRI and DTI images as
the inputs of the VGG-16 network to learn the slice features of subjects
with transfer learning, then adopted the LASSO algorithm to perform
feature selection for reducing the feature dimension and redundant
information, finally fed the selected features into support vector ma-
chine (SVM) classifier to distinguish early MCI from NC [27]. Although
existing multi-modality methods show encouraging performance on the
AD classification task, most of them are restricted to using the multi-
modality neuroimaging data of sMRI, fMRI and PET, and adopting the
simple integration strategies, while these multi-modality neuroimaging
data contain more redundant information. Simply integrating these
multi-modality neuroimaging data would generate redundant noises,
which is unfavorable to training the AD classification models and im-
proving their performance. In addition, integrating multi-modality AD
data simply by increasing the number of modalities does not increase
AD diagnosis power. Considering that sMRI can sensitively capture the
changes of brain anatomy and is often used in clinical diagnosis due to
its non-invasive and low-cost, and there is more complementary infor-
mation among clinical, genetic data and sMRI data, here we will design
dual attention CNN and MLP to separately learn the AD discriminative
features from sMRI images, clinical and genetic data, and then design
another MLP to fuse these learned features to realize AD diagnoses.

2.3. Attentional mechanisms in medical imaging

The basic idea of the attentional mechanism comes from the ani-
mal’s visual system, which is able to focus attention on critical areas
when processing large amounts of visual input. The attention mecha-
nism can not only be used as the judgment basis for validating deep
learning models, but also can improve their performance by allowing
the models to focus more on important features and ignore unim-
portant features. The attentional mechanisms used in medical images
can be broadly classified into three types: hard attention [28],soft
attention [29,30] and self-attention [31,32]. Guan et al. first used
the hard attention mechanism in medical image processing to classify
thorax disease based on chest X-ray images by designing a three-branch
attention-guided CNN (AG-CNN) model [28]. However, since the hard
attention mechanism takes the non-differentiable form of one-hot en-
coding, it cannot be trained by back-propagation algorithms commonly
used in deep learning, and the training process is often done through
reinforcement learning. Unlike the hard attention mechanism, the soft
attention mechanism can be easily combined with deep learning, be-
cause its learning process is differentiable. For example, Schlemper
et al. introduced the attention gates into the standard CNNs model to
focus on the target features of varying shapes and sizes [29]. Abramova
et al. introduced a squeeze-and-excitation (SE) blocks module into
U-Net to reconcile the weight of each channel [30]. Although these
methods have made some progress, they only emphasize the influence
3

of a single feature on the classification result and ignore the correlation
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between features. The self-attention mechanism can solve this problem
by making each output feature contain the relationship between the
input features. For example, Li et al. developed a 3D self-attention
CNN for Low-Dose CT denoising by employing self-attention to capture
extensive spatial information within and between CT slices [31]. Shen
et al. proposed a multiscale temporal self-attention and dynamic graph
convolution hybrid network (MTS-DGCHN) for EEG-based stereogram
recognition by using the temporal self-attention block to learn temporal
continuity information of EEG signals [32]. Considering the superiority
of the self-attention mechanism, and that AD is a complex and heteroge-
neous disease with numerous connections between brain regions during
the progression of the disease, we will adopt a 3D dual self-attention
mechanism to fully emphasize the correlation between features in terms
of both positions and channels for AD diagnose in this work.

3. Material and methods

In this section, we first present the data used in this work. Then, we
introduce how to preprocess these data. Finally, we show our DANMLP
model in detail.

3.1. Data and preprocessing

sMRI, clinical and genetic data used in this work were obtained
from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.l oni.usc.edu/). In the ADNI database, the subjects are
divided into three categories: Alzheimer’s disease (AD), mild cognitive
impairment (MCI) and normal control (NC) by the standard clinic crite-
ria, such as mini-mental state examination (MMSE) scores, clinical de-
mentia rating (CDR) scores, neuropsychiatric inventory-questionnaire
(NPI-Q) scores, and geriatric depression scale (GDS) scores, func-
tional assessment questionnaire (FAQ) scores. We selected 750 subjects
from the ADNI database, including 250 AD, 250 MCI, and 250 NC
subjects, who have all the magnetization-prepared rapid gradient-
echo (MPRAGE) T1-weighted image (sMRI), clinical (i.e., age, gender,
MMSE, CDR, etc.) and APOE genotyping data. Each subject’s sMRI,
clinical and APOE genotyping data were taken within ±6 months.
The demographic, neuropsychological and cognitive assessment of 750
subjects from the ADNI database is shown in Table S1.

For subsequent better feature learning and AD diagnosis, we
adopted the typical procedures of Anterior Commissure (AC)–Posterior
Commissure (PC) correction that can eliminate noise introduced by
subject movement during the sMRI scan for more accurate localization
and comparison of brain structures in Statistical Parametric Mapping
12 (https://www.fil.ion.ucl.ac.u k/spm/software/spm12/), and skull-
stripping, and cerebellum removal in Computational Anatomy Toolbox
12 (http://dbm.neuro.uni-jena.de/cat/) to preprocess the original sMRI
images downloaded from ADNI. Then, the corrected sMRI images
were segmented into Gray Matter (GM), White Matter (WM), and
Cerebrospinal Fluid (CSF) according to the tissue probability map
(TPM) template. The GM, WM and CSF images [were] normalized to
the Montreal Neurological Institute standard space (MNI) using affine
linear registration to generate images with 121 × 145 × 121 voxels.
Finally, we removed the border area without information to obtain the
images with 100 × 120 × 100 voxels. Only GM images were used in
this work.

For the genetic data, the APOE locus contains three alleles, 𝜖2, 𝜖3
and 𝜖4, which can generate three pure heterozygotes (i.e., 𝜖2/2, 𝜖3/3,
𝜖4/4) and three heterozygotes (i.e., 𝜖2/3, 𝜖2/4, 𝜖3/4) for a total of six
common phenotypes. ADNI recorded the phenotypes of the subjects.
We counted the number (i.e., 0, 1, 2) of APOE 𝜖2 and APOE 𝜖4

contained in each subject to indicate the APOE genotype.
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Fig. 1. Schematic of DANMLP model framework. DANMLP comprises three components: 3D dual attention CNN (3D-DACNN), MLP feature extractor and MLP classifier. 3D-DACNN
is a patch-level network used to learn the features of sMRI images, which consists of a Patch-CNN with I CNN branches, I position self-attention blocks and a channel self-attention
block. MLP feature extractor is used to learn the features from clinical and genetic data. MLP classifier is adopted to fuse the features learned from images, clinical and genetic
data for NC/MCI/AD classification. (a) The architecture of the position self-attention block. This block is used to augment the position-dependent features within the patch. (b)
The architecture of the channel self-attention block. This block is used to emphasize interdependent feature maps between patches.
3.2. Overall architecture of DANMLP model

We denote the subject dataset as 𝐷 =
{(

𝑋𝑛, 𝑍𝑛, 𝑦𝑛
)

|𝑛 = 1, 2,… , 𝑁
}

,
where 𝑁 is the total number of subjects; 𝑋𝑛 =

{

𝑃𝑛,𝑖 |𝑖 = 1, 2,… , 𝐼
}

is
the sMRI image of 𝑛th subject, 𝑃𝑛,𝑖 ∈ R𝑤1×𝑤2×𝑤3 is the 𝑖th patch of sMRI
image with 𝑤1 ×𝑤2 ×𝑤3 size, and 𝐼 is the total number of patches; 𝑍𝑛
is the clinical and APOE genotype data of 𝑛th subject; 𝑦𝑛 is the label
of 𝑛th subject, 𝑦𝑛 ∈ 𝑌 =

{

𝑦1 =′′ 𝐴𝐷′′, 𝑦2 =′′ 𝑀𝐶𝐼 ′′, 𝑦3 =′′ 𝑁𝐶 ′′}. Our
DANMLP model (Fig. 1) consists of three key components: the 3D dual
attention CNN (3D-DACNN) to learn the features from sMRI images,
the MLP feature extractor to learn the features from the clinical and
APOE genotype data, the MLP classifier to realize AD diagnosis by
concatenating the outputs of 3D-DACNN and MLP feature extractor.
The main mathematical notations used in this study are listed in Table
S2.

3.2.1. 3D dual attention CNN
To effectively learn the features from sMRI images, we designed

3D dual attention CNN (3D-DACNN) network that consists of a Patch-
CNN with eight CNN branches, eight position self-attention blocks,
and a channel self-attention block. The Patch-CNN is used to learn
the features from different patches of sMRI. The position self-attention
block emphasizes feature pairs with positional dependencies within a
patch. The channel self-attention block emphasizes the features with
channel dependencies between patches, and fuses the features from
different CNN branches. In the following, we will describe each block
of the 3D-DACNN in detail.
4
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Patch-CNN The Patch-Net serves to learn more abstract features
from the original patches 𝑃𝑛,𝑖(𝑛 = 1, 2,… , 𝑁, 𝑖 = 1, 2,… , 𝐼), and to re-
duce the size of the feature map. In our DANMLP model framework, the
deep Patch-CNN has 𝐼 CNN branches, each of which processes the patch
at the corresponding location. That is, the 𝑖th CNN branch processes
patch 𝑃𝑖. Each CNN branch composed of four convolutional blocks
stacked on top of each other has the same structure. Each convolutional
block contains a 3D convolutional layer, a ReLU activation function,
and a 3D max-pooling layer. Specifically, each input feature map 𝐻 𝑙

𝑖
of the 𝑙th block from the 𝑖th branch is processed by a 3D convolution
kernel, followed by a ReLU activation function. For the initial block of
the 𝑖th branch, 𝐻 (1)

𝑖 = 𝑃𝑖. Formally, the value at position
(

𝑥1, 𝑥2, 𝑥3
)

on the 𝑗th feature map in the 𝑙th convolutional block is given by the
following formula,

𝑔𝑙,𝑥1 ,𝑥2 ,𝑥3𝑖,𝑗 = 𝑅𝑒𝐿𝑈

(

𝑏𝑙𝑖,𝑗 +
∑

𝑚

𝐴1−1
∑

𝑎1=0

𝐴2−1
∑

𝑎2=0

𝐴3−1
∑

𝑎3=0
𝑘𝑙,𝑎1 ,𝑎2 ,𝑎3𝑖,𝑗,𝑚 ℎ𝑙,𝑥1+𝑎1 ,𝑥2+𝑎2 ,𝑥3+𝑎3𝑖,𝑚

)

(1)

where
(

𝐴1, 𝐴2, 𝐴3
)

is the size of the 3D convolution kernel 𝐾 𝑙
𝑖 , 𝑘

𝑙,𝑎1 ,𝑎2 ,𝑎3
𝑖,𝑗,𝑚

is the
(

𝑎1, 𝑎2, 𝑎3
)

-th value of the kernel connected to the 𝑚th feature
map in the previous layer. ReLU(⋅) is a non-linear activation function
that outputs the input value when it is greater than or equal to zero,
and outputs zero otherwise.

We then use the 3D max-pooling layer to reduce the dimensionality
of the feature maps, and the output of 𝑙th block 𝐻 𝑙+1 is given by the
𝑖,𝑗
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following formula,

ℎ𝑙+1,𝑥1 ,𝑥2 ,𝑥3𝑖,𝑗 =
𝑈1−1max
𝑢1=0

𝑈2−1max
𝑢2=0

𝑈3−1max
𝑢3=0

𝑔𝑙,𝑠1𝑥1+𝑢1 ,𝑠2𝑥2+𝑢2 ,𝑠3𝑥3+𝑢3𝑖,𝑗 (2)

here
(

𝑈1, 𝑈2, 𝑈3
)

is the filter size of the 3D max-pooling layer,
(

𝑠1, 𝑠2, 𝑠3
)

is the stride size.
Among them, the size of the convolution kernel is 3 × 3 × 3. The

pooling layer with a filter size of 2 × 2 × 2 and a stride size of (2, 2, 2)
is used for down-sampling. The number of convolution kernels from
block1 to block4 is set to 15, 25, 50, and 50 in order.

Position Self-Attention Block To better capture the position de-
pendent features within each patch, we added the position self-attention
block at the end of each branch in Patch-CNN. The output 𝐹𝑖 ∈ R𝑐×𝑙×𝑤×𝑑

of 𝑖th Patch-CNN’s branch is fed into three different 3D convolution
layers to generate three new feature maps 𝑄𝑖, 𝐾𝑖 and 𝑉𝑖, where
{

𝑄𝑖, 𝐾𝑖
}

∈ R
𝑐
𝑟 ×𝑙×𝑤×𝑑 , 𝑉𝑖 ∈ R𝑐×𝑙×𝑤×𝑑 , and 𝑟 denotes the reduction ratio.

Then, we computed the position self-attention matrix describing the
feature similarity between positions. That is, we transform 𝑄𝑖 and 𝐾𝑖
nto 𝑄̂𝑖 and 𝐾̂𝑖 through the reshaping operation of 𝑐

𝑟 × (𝑙 ×𝑤 × 𝑑) size,
nd perform matrix multiplication on 𝑄̂𝑇

𝑖 and 𝐾̂𝑖 to obtain the position
elf-attention matrix 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑃 𝑖 ∈ R(𝑙×𝑤×𝑑)×(𝑙×𝑤×𝑑) of 𝑖th CNN branch

by a softmax layer.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑃 𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄̂𝑇
𝑖 𝐾̂ 𝑖) (3)

where Softmax(⋅) is a probability distribution function that maps the in-
put to the (0,1) range. Its formula is 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝛿𝑟
)

= exp
(

𝛿𝑟
)

∕
∑𝐽

𝑗=1 exp
𝛿𝑗
)

, here 𝛿𝑟 is the 𝑟th element of the input vector 𝛿, and 𝐽 represents
he length of 𝛿.

We use 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑃 𝑖 to re-weight 𝑉𝑖, and reshaped 𝑉𝑖 (with 𝑐×𝑙×𝑤×𝑑
ize) into 𝑉𝑖(with 𝑐 × (𝑙 ×𝑤 × 𝑑) size). Multiply 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑃 𝑖 and 𝑉𝑖 to
btain the corrected feature map 𝑉 ∗ ∈ R𝑐×(𝑙×𝑤×𝑑).

𝑖
∗ = 𝑉𝑖𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑃 𝑖 (4)

To prevent the gradient vanishing, we adopt a skip connection
etween new feature map 𝑉 ∗

𝑖 and original feature map 𝐹𝑖. Meanwhile,
e reshape the 𝑉 ∗

𝑖 with 𝑐 × (𝑙 ×𝑤 × 𝑑) size to 𝑉 ∗
𝑖 with 𝑐 × 𝑙×𝑤× 𝑑 size.

Finally, we multiply 𝑉 ∗
𝑖 by a learnable parameter 𝜇, and perform

n element-wise sum operation with the features to obtain the position
elf-attention output 𝐹𝑃 𝑖 ∈ R𝑐×𝑙×𝑤×𝑑 of 𝑖th patch.

𝑃 𝑖 = 𝜇𝑉 ∗ + 𝐹𝑖 (5)

These position self-attention blocks can capture the features with
osition dependency regardless of their distance in the position dimen-
ion. Thus, we can enhance the feature representation of regions where
trophy occurs together within the same patch.

According to the channel direction, we concatenate the position self-
ttention outputs 𝐹𝑃 𝑖 to obtain the position self-attention feature map
∈ R𝑐′×𝑙×𝑤×𝑑 (𝑐′ = 𝑐 × 𝐼) of one subject.

= 𝑐𝑜𝑛𝑐𝑎𝑡
(

𝐹𝑃1, 𝐹𝑃 2,… , 𝐹𝑃𝐼
)

(6)

Channel Self-Attention Block Considering that AD is a neurologi-
al disease that gradually triggers brain atrophy on a whole-brain scale,
nd the structure used in Patch-CNN disrupts the intrinsic connections
f the brain, we employ the channel self-attention block to explicitly in-
erdependencies between patches for enhancing interdependent feature
aps between patches.

The position self-attention feature map 𝐸 ∈ R𝑐′×𝑙×𝑤×𝑑 is fed to the
hannel self-attention block. Then, we reshape E to a matrix 𝐸̂ with
′ × (𝑙 ×𝑤 × 𝑑) size, and perform matrix multiplication between 𝐸̂ and
ts transpose to generate the channel self-attention matrix 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐶 ∈
𝑐′×𝑐′ by a Softmax layer. Matrices 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐶 and 𝐸̂ are multiplied to
btain the calibration matrix 𝐸∗ ∈ R𝑐′×(𝑙×𝑤×𝑑).

𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐶 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(

𝐸̂𝐸̂𝑇 ) (7)

∗ ̂
5

𝐸 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐶𝐸 (8)
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By reshaping the size of 𝐸∗ to produce matrix 𝐸̂∗ with size 𝑐′ ×
𝑙 × 𝑤 × 𝑑, we multiply 𝐸̂∗ by a learnable parameter 𝜀, and perform an
element-wise sum operation to obtain the channel self-attention output
𝐸𝐶 of one subject.

𝐸𝐶 = 𝜀𝐸̂∗ + 𝐸 (9)

The channel self-attention block considers the connections between
features in the channel dimension, and emphasizes the feature pairs
with strong relevance, meanwhile preserving the connections between
key features and unimportant features and avoiding the loss of poten-
tially relevant features. Therefore, features between patches can be well
fused in this way.

Finally, the channel self-attention output 𝐸𝐶 is inputted into a sim-
ple fully connected layer to reduce the feature dimension for obtaining
the embedding features 𝑋∗ of sMRI images.

𝑋∗ = Re𝐿𝑈
(

𝑊1𝐸𝐶 + 𝑏1
)

(10)

where 𝑊1 and 𝑏1 are the weight and bias, respectively.

3.2.2. MLP feature extractor
Compared with neuroimaging data, the clinical and genetic data are

one-dimension data, so we can represent subjects in the form of vectors.
While multilayer perceptron (MLP) is a forward-structured artificial
neural network, which maps the input vectors to the embedding output
vectors. Therefore, we adopt MLP to learn the embedding features from
clinical and APOE genotyping data. In our DANMLP model, the MLP
feature extractor consists of alternately stacked twice fully connected
layers, ReLU activation functions, and dropout layers used to mitigate
overfitting. The feature matrix 𝑍 derived from clinical and APOE geno-
typing data of all subjects is inputted into the MLP feature extractor to
learn the embedding feature matrix 𝑍∗.

𝑍∗ = 𝑅𝑒𝐿𝑈 (𝑊3
(

𝑅𝑒𝐿𝑈
(

𝑊2𝑍 + 𝑏2
))

+ 𝑏3) (11)

where 𝑊2 and 𝑊3 are the trainable weight matrices, 𝑏2 and 𝑏3 are the
trainable bias matrices.
3.2.3. MLP classifier

The output matrix 𝑋∗ from 3D-DACNN and the output matrix 𝑍∗

from the MLP feature extractor are concatenated to form an embedding
matrix 𝑇 , which is fed into an MLP classifier to obtain the label 𝑦̂𝑛 of
𝑛th subject.

𝑇 = 𝑐𝑜𝑛𝑐𝑎𝑡
(

𝑋∗, 𝑍∗) (12)

𝑦̂ = 𝐿𝑜𝑔𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊5
(

𝑅𝑒𝐿𝑈
(

𝑊4𝑇 + 𝑏4
))

+ 𝑏5) (13)

where 𝑊4 and 𝑊5 are the trainable weight matrices, 𝑏4 and 𝑏5 are the
trainable bias matrices.

The loss function used in DANMLP is defined as follows:

𝑁𝐿𝐿 = − 1
𝑁

𝑁
∑

𝑛=1

[

𝑦𝑛 log
(

𝑦̂𝑛
)

+
(

1 − 𝑦𝑛
)

log
(

1 − 𝑦̂𝑛
)]

(14)

where 𝑁 is the total number of subjects, 𝑦𝑛 is the true label of 𝑛th
subject, and 𝑦̂𝑛 is the predictive result of DANMLP.

. Results

In this section, we first describe the experimental settings and evalu-
tion metrics, then present the experimental results of our DANMLP and
ther comparison methods, as well as the ablation results of DANMLP.
inally, in order to improve the interpretability of our DANMLP, we
ill examine the discriminative brain regions at overall and individual

evels, respectively.
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
ión. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.
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Table 1
Results of DANMLP and other five methods in 5CV test.

Method AD vs. MCI MCI vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC

VoxCNN 0.824 0.832 0.816 0.896 0.556 0.664 0.448 0.562
ResNet 0.886 0.896 0.876 0.937 0.614 0.640 0.588 0.671
Xing’s method 0.778 0.768 0.788 0.867 0.568 0.552 0.584 0.593
3DAN 0.870 0.908 0.832 0.925 0.614 0.476 0.752 0.645
Spasov’s method 0.928 0.948 0.908 0.959 0.790 0.740 0.840 0.878
DANMLP 0.930 0.940 0.920 0.953 0.824 0.764 0.884 0.895

4.1. Experimental settings and evaluation metrics

Experimental Settings We evaluated our DANMLP on the classifica-
tion tasks of AD subjects versus MCI subjects (AD vs. MCI) and MCI
subjects versus NC subjects (MCI vs. NC) in five-fold cross validation
(5CV) test. For the 5CV test (as shown in Fig. S1), all subjects are
randomly divided into five blocks of approximately equal size. One of
the five blocks is singled out in turn as the test sample set to evaluate
the model performance, and the other four blocks are used as the
training and validation sample sets (the sample ratio for training and
validation sets is 3:1) to train the model. In each binary classification
task, the sample size of each class is equal in training, validation, and
test sets. This process is repeated for 5 iterations, each time setting aside
a different test block. The average results from 5 folds (or models) are
used to evaluate the performance of different methods.

Our DANMLP is trained using the Adam optimizer for 40 epochs.
The initial learning rates for the MLP feature extractor and 3D-DACNN
are set to 0.001 and 0.0001, respectively. Besides, we used the anneal-
ing algorithm to adjust the learning rate, that is, when the loss does not
decrease in 5 epochs, the learning rate decreases by 0.1 times. Other
hyperparameters of DANMLP are set as follows: batch size = 10, patch
number = 8, patch size = 60 × 70 × 60, reduction ratio = 5, dropout
rate = 0.5. All experiments run on Linux OS with 24G×4 NVIDIA RTX
3090 GPU, 40 × 2.4 GHz Intel Xeon CPU, and 128 GB RAM. PyTorch
3.7 was adopted to implement our DANMLP. Additionally, we designed
the experiments of training DANMLP with different optimization al-
gorithms (as shown in Table S3 and Fig. S2). We also designed the
experiments to investigate the training time and inference speed of
DANMLP with different parameter sizes (as shown in Table S4). Form
Table S3 and Fig. S2, we can see that the Adam optimization technique
outperforms the other three optimization techniques in terms of ACC,
AUC and SPE. Thus, here we adopt the Adam optimization technique
in our DANMLP model. From Table S4, we can see that the training
time is almost independent of the model size, while the inference time
increases with the increase of the model size. Considering our computer
hardware settings, we selected the DANMLP model with 33M (millions)
parameters in this work.

Evaluation Metrics We used four metrics to evaluate the classifi-
cation performance of DANMLP, including accuracy (ACC), sensitivity
(SEN), specificity (SPE), and the area under the receiver operating char-
acteristic curve (AUC). These metrics are defined as follows: 𝐴𝐶𝐶 =

𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 , 𝑆𝐸𝑁 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , 𝑆𝑃𝐸 = 𝑇𝑁
𝑇𝑁+𝐹𝑃 , where TP, TN,

P, and FN are denoted as true positive, true negative, false positive,
nd false negative values, respectively. The ROC (Receiver Operating
haracteristic) curve can be plotted by varying the threshold of the
inary classifier and calculating the true positive rate (𝑇𝑃𝑅 = 𝑆𝐸𝑁)
nd false positive rate (𝐹𝑃𝑅 = 1 − 𝑆𝑃𝐸). AUC is the area under the

ROC curve.

4.2. Performance comparison of DANMLP with other methods

To evaluate the performance of our DANMLP for diagnosing AD and
MCI patients, we compared our DANMLP with other five state-of-the-
art methods, such as VoxCNN [33], ResNet [33], Xing’s methods [34],
6
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Table 2
The ablation experimental results of DANMLP in 5CV test.

Method AD vs. MCI MCI vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC

DANMLP-MLPFE 0.880 0.912 0.848 0.934 0.676 0.752 0.600 0.710
DANMLP-PCSA 0.894 0.880 0.908 0.950 0.766 0.732 0.800 0.820
DANMLP-CSA 0.918 0.920 0.916 0.950 0.788 0.792 0.784 0.876
DANMLP-PSA 0.924 0.924 0.924 0.952 0.784 0.772 0.796 0.878
DANMLPsub 0.890 0.892 0.888 0.943 0.772 0.692 0.852 0.868
DANMLP 0.930 0.940 0.920 0.953 0.824 0.764 0.884 0.895

3DAN [17] and Spasov’s method [35]. VoxCNN [33] used a VGG-
like network architecture to diagnose AD by designing four volumetric
convolutional blocks for extracting features from sMRI images, two
deconvolutional layers with the batch norm and dropout for regular-
ization. ResNet [33] built 21 layers containing six VoxRes blocks, each
with 64 3D filters, to realize AD diagnosis from sMRI data. Xing’s
method [34] used approximate rank pooling to transform the 3D sMRI
image volume into a 2D image, then pre-trained 2D VGG 11 to extract
the features that were sent to a small classifier with an attention module
for AD diagnosis. 3DAN [17] built a 3D attention network by inte-
grating an attention mechanism with a 3D CNN for AD diagnosis from
sMRI data. Spasov’s method [35] presented a deep learning architecture
by using dual learning and 3D separable convolutions to identify MCI
patients from sMRI, local Jacobian determinant image, demographic,
neuropsychological, and APOE 𝜖4 genetic data. Considering that the
comparison methods did not publicly share their datasets, to ensure
fairness in comparing our DANMLP with other methods, we imple-
mented the codes of other methods on our dataset under the same
classification task. The codes of VoxCNN, ResNet, and Xing’s method
are available online from the website they provided. The results of our
DANMLP and the other five methods are shown in Table 1.

From Table 1, we can see that for the classification task of MCI
vs. NC, the performance of our DANMLP is superior to the other
five methods, and the accuracy of DANMLP achieves 0.824, which is
0.268, 0.210, 0.256, 0.210, and 0.034 higher than that of VoxCNN,
ResNet, Xing’s method, 3DAN and Spasov’s method, respectively. For
the classification task of AD vs. MCI, the accuracy of DANMLP achieves
0.930, which is 0.106, 0.044, 0.152, 0.060 and 0.002 higher than that
of VoxCNN, ResNet, Xing’s method, 3DAN and Spasov’s method, respec-
tively. In addition, we find that the results of our DANMLP and Spasov’s
method are obviously better than that of the other four methods based
on sMRI data only, indicating that integration of the multi-modality
imaging, clinical and genomic data can effectively improve the perfor-
mance of AD diagnosis, realizing early diagnosis of MCI. Although the
performance of Spasov’s method using the whole sMRI images as input
is very close to our DANMLP, Spasov’s method additionally inputs the
local Jacobian determinant image information. That is to say, Spasov’s
method inputs an additional data source than our DANMLP. If DANMLP
also inputs the Jacobian determinant images, its performance should
be superior to Spasov’s method. The results in Table 1 show that our
DANMLP has excellent performance in AD-related classification tasks,
especially our DANMLP can effectively distinguish MCI patients from
the NC population.

In addition, we also adopted the floating point operations (FLOPs)
[36] to measure the computational complexity of DANMLP and the
other five methods. The FLOPs of DANMLP and the other five methods
are shown in Table S5, from which we can see that the computational
complexity of DANMLP is lower than that of the other five methods.

4.3. Ablation studies for DANMLP

To evaluate the contributions of diverse architecture components in
our DANMLP, we conducted the ablation experiments in the 5CV test.

The ablation experimental results of DANMLP are shown in Table 2.

ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
ión. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.
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In Table 2, DANMLP-MLPFE denotes that we remove the MLP feature ex-
tractor in DANMLP framework; DANMLP-PCSA denotes that we remove
the position self-attention blocks and the channel self-attention block in
DANMLP framework; DANMLP-CSA denotes that we remove the channel
elf-attention block in DANMLP framework; DANMLP-PSA denotes that
e remove the position self-attention blocks in DANMLP framework;
ANMLPsub denotes that we utilize one CNN branch and the position

elf-attention mechanism to extract the features of sMRI image, while
he rest of the DANMLP framework remains unchanged. Fig. S3 gives
he schematic diagrams of DANMLP-MLPFE, ANMLP-PCSA, DANMLP-CSA,

DANMLP-PSA, and DANMLPsub.
As shown in Table 2, we can see that for MCI vs. NC task, the

CC of DANMLP is 0.148, 0.058, 0.036 and 0.040 higher than that of
ANMLP-MLPFE, DANMLP-PCSA, DANMLP-CSA, DANMLP-PSA, respectively.
or AD vs. MCI task, the ACC of DANMLP is 0.050, 0.036, 0.012 and
.006 higher than that of DANMLP-MLPFE, DANMLP-PCSA, DANMLP-CSA,

DANMLP-PSA, respectively. These results indicate that the position self-
attention blocks, the channel self-attention block, and the MLP feature
extractor used in our DANMLP can effectively improve the performance
of AD diagnosis. Although the channel self-attention module does not
contribute much for improving the performance of DANMLP in AD
vs. MCI task (the ACC and AUC of DANMLP are 0.012, 0.003 higher
than that of DANMLP-CSA, respectively), its contribution is significant
or improving the performance of DANMLP in MCI vs. NC task (the ACC
nd AUC of DANMLP are 0.036, 0.019 higher than that of DANMLP-
SA), which is a more challenging classification task as the features
etween MCI subject and NC subject are more similar in this task. From
able 2, we can also find that for the classification task of MCI vs. NC,
he ACC of DANMLP is 0.052 higher than that of DANMLPsub; for the

classification task of AD vs. MCI, the ACC of DANMLP is 0.04 higher
than that of DANMLPsub. These results show that when the training
samples of AD/MCI subjects are small, the patch-based multi-channel
CNNs approach performs better than the subject-based approach.

The contribution of joining the position self-attention blocks and
the channel self-attention block for improving the performance of
DANMLP is much more than that of using only the position/channel
self-attention blocks, and MLP feature extractor, while the contribution
of channel self-attention is much more than that of position self-
attention. These results show that the position self-attention blocks can
effectively capture the discriminative features within patches, while
the channel self-attention block captures the discriminative features
between patches by fusing the features from different branches. The
feature information extracted by the channel self-attention block and
the position self-attention blocks is complementary, which helps to
improve the performance of AD-related classification tasks. In addition,
from Table 2, we can also find that the contribution of the MLP feature
extractor for the MCI vs. NC task is greater than that for AD vs. MCI
task, indicating that the introduction of genetic and clinical information
helps improve the accuracy of AD early diagnosis, and also show
that for some MCI patients with slight brain atrophy, their genotype
features may vary significantly different from those of NC population.
Therefore, integrating genetic and clinical data in sMRI imaging data
can effectively improve the accuracy of MCI vs. NC classification.

4.4. Discriminative brain regions for AD and MCI

To investigate the brain regions focused by DANMLP, we conducted
the experiments on the output characteristics of each brain region.
First, using the Anatomical Automatic Labeling (AAL) template [37] to
segment the gray matter image to get 90 brain regions (ROIs) that are
used as the inputs of DANMLP, we obtained the feature maps of every
brain region from the channel self-attention block. Then, we summed
the elements in each brain region feature map to get the ROI index 𝛺𝑛,𝑗
(j = 1, 2,… , 90) of the brain region. Finally, we adopted the Spearman
rank correlation analysis and 𝑡-test to select the significant brain regions
7

that DANMLP focuses on.
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The process of selecting the significant brain regions is as follows:
(1) Build two variables 𝑋𝑗 and 𝑌 . 𝑋𝑗 = [𝛺1𝑗 , 𝛺2𝑗 ,… , 𝛺𝑛𝑗 ,… , 𝛺𝑁𝑗 ] is
composed of the ROI indices of 𝑗th brain region from AD and MCI
subjects (or MCI and NC subjects), 𝑗 = 1, 2,… ,… , 90, N=500, and
𝑌 = [𝑦̂1, 𝑦̂2,… , 𝑦̂𝑛,… , 𝑦̂𝑁 ] is composed of the DANMLP output values
𝑦̂𝑛 of AD and MCI subjects (or MCI and NC subjects); (2) Calculate the
Spearman rank correlation coefficient 𝑟𝑆 between 𝑋𝑗 and 𝑌 ; (3) Employ
𝑡-test to determine the significance level of |

|

𝑟𝑆 || (i.e., absolute value of
𝑟𝑆 ).

Table S6 and Table S7 list the top 10 significant brain regions
focused by DANMLP for AD vs. MCI and MCI vs. NC tasks, respectively.
From Table S6, we can see that for AD vs. MCI task, the amygdala,
hippocampus, and parahippocampal gyrus are all highly discriminatory
brain regions. It is consistent with the conclusions of many existing
AD-related studies [38–40]. The amygdala is closely related to emotion
and memory [41]. The hippocampus has been proven to be the earliest
damaged area of AD, which is associated with cognitive decline and
memory impairment [15,42]. The parahippocampal gyrus is closely
linked to the hippocampus, which is also affected by AD [43]. From
Table S7, we can find that the supplementary motor areas, cuneus
and precuneus, that induce MCI have been confirmed by other studies
[44–47].

4.5. Individual level view of some AD and MCI subjects

To further analyze the brain regions focused by DANMLP,
individual-level visualization was performed on AD and MCI subjects.
In the classification task of AD vs. MCI, our goal is to visualize the
brain regions with more severe lesions in AD subjects compared to MCI
subjects. Therefore, we visualize the brain regions of AD subjects based
on MCI subjects. In the classification task of MCI vs. NC, our goal is to
visualize the brain regions with more severe lesions in MCI subjects
compared to NC subjects. Therefore, we visualize the brain regions of
MCI subjects based on NC subjects.

Taking the visualization process of AD subjects as an example, the
calculation process is as follows: (1) Calculate the average ROI index
𝛺̄𝑀𝐶𝐼

𝑗 of the 𝑗th brain region for all MCI subjects in test set using
the formula 𝛺

𝑀𝐶𝐼
𝑗 =∑𝑁𝑀𝐶𝐼

𝑛=1 𝛺𝑀𝐶𝐼
𝑛,𝑗 ∕𝑁𝑀𝐶𝐼 , where 𝛺𝑀𝐶𝐼

𝑛,𝑗 denotes the
ROI index of the 𝑗th brain region for the 𝑛th MCI subject, and 𝑁𝑀𝐶𝐼

represents the total number of MCI subjects in the test set; (2) Calculate
the absolute value 𝜌𝐴𝐷𝑛,𝑗 =

|

|

|

|

𝛺𝐴𝐷
𝑛,𝑗 −𝛺

𝑀𝐶𝐼
𝑗

|

|

|

|

of the difference between 𝛺𝐴𝐷
𝑛,𝑗

and 𝛺̄𝑀𝐶𝐼
𝑗 ,where 𝛺𝐴𝐷

𝑛,𝑗 is the ROI index of the 𝑗th brain region in the
𝑛th AD subject, and we take 𝜌𝐴𝐷𝑛,𝑗 as the visualization value of the 𝑗th
brain region for the 𝑛th AD subject compared with the MCI subjects;
(3) To eliminate the influence of outliers, the color bar range is set
from 0 to the threshold value 𝛾𝐴𝐷. The threshold 𝛾𝐴𝐷 can be calculated
using the formula 𝛾𝐴𝐷 = 𝜌𝐴𝐷 + 𝑘𝜎𝐴𝐷, where 𝜌𝐴𝐷 represents the mean
visualization value of all brain regions for all AD subjects in the test set,
𝜎𝐴𝐷 represents their standard deviation, 𝑘 is an adjustment coefficient
(here we set 𝑘 = 3); (4) Display all the visualization values 𝜌𝐴𝐷𝑛,𝑗 of
the 𝑛th AD subject using BrainNet [48]. Fig. 2a shows the visualization
results of five AD subjects.

To visualize the brain region of the MCI subject in the classification
task of MCI vs. NC, we can calculate the visualization value 𝜌𝑀𝐶𝐼

𝑛,𝑗 for
the 𝑗th brain region of the 𝑛th MCI subject and threshold 𝛾𝑀𝐶𝐼 by using
the same calculation steps as described above for AD subjects. Fig. 2b
shows the visualization results of five MCI subjects.

From Fig. 2a, we can observe that compared to MCI subjects, the
brain regions with lesions in AD subjects are mainly concentrated in the
temporal lobe regions (including the hippocampus). When comparing
the true positive and false negative subjects in Fig. 2a, all brain regions
of false negative subjects are more similar to MCI subjects, especially
with lower visualization values in the temporal lobe regions. Similar
results are also found in MCI vs. NC classification tasks (Fig. 2b). In
addition, by comparing Fig. 2a and Fig. 2b, we can also observe that
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
ión. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.
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Fig. 2. Visualization results of discriminative brain regions identified by DANMLP for some AD and MCI subjects. (a) Visualization results of five AD subjects in the classification
task of AD vs. MCI. The left panel (True positives) displays three correctly classified AD subjects, and the right panel (False negatives) shows two AD subjects misclassified as
MCI subjects. (b) Visualization results of five MCI subjects in the classification task of MCI vs. NC. The left panel (True positives) displays three correctly classified MCI subjects,
and the right panel (False negatives) shows two MCI subjects misclassified as NC subjects. The color bar represents the size of the visualization values 𝜌𝐴𝐷𝑛,𝑗 ∕𝜌

𝑀𝐶𝐼
𝑛,𝑗 for each AD/MCI

subject, which can reflect the degree of pathological changes in certain regions of the brain. The higher the visualization value 𝜌𝐴𝐷𝑛,𝑗 (or 𝜌𝑀𝐶𝐼
𝑛,𝑗 ) of a brain region, the greater the

difference of this brain region between AD and MCI (or MCI and NC).
compared to the classification task of AD vs. MCI, the MCI vs. NC
task is more difficult, resulting in smaller and more complex differ-
ences between their features. Overall, the discriminative brain region
visualization results of DANMLP can display the variability of AD-
related brain region features among subjects, which can help physicians
accurately diagnose AD and MCI patients.

5. Discussion

In this section, we first present the experimental results of compar-
ing our 3D-DACNN with other feature extraction methods, and the ex-
perimental results of comparing the position and channel self-attention
mechanisms used in DANMLP with other attention mechanisms. We
then give the experimental results of comparing the gray matter images
used in DANMLP with other types of images. Finally, we analyze the
limitations of DANMLP.

5.1. Effect of different feature extraction methods on DANMLP

To investigate the performance of DANMLP with different fea-
ture extraction methods, we compared 3D-DACNN used in our DAN-
MLP with other four most popular feature extraction methods of
wavelet transform [49], dictionary learning [50], deep neural network
(DNN) [51], and recurrent neural network (RNN) [52] in 5CV test,
by replacing the 3D-DACNN part of DANMLP with each of other four
8
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feature extraction methods. The results of DANMLP with different
feature extraction methods are shown in Fig. 3 and Table S8.

From Fig. 3 and Table S8, we can see that the results of 3D-DACNN
used in our DANMLP outperform the other four feature extraction
methods in both binary classification tasks. For the MCI vs. NC clas-
sification task, the ACC of 3D-DACNN is 0.156, 0.130, 0.080, and
0.048 higher than that of the wavelet transform, dictionary learning,
DNN, and RNN, respectively. For the AD vs. MCI classification task,
the ACC of 3D-DACNN is 0.070, 0.068, 0.034, and 0.042 higher than
that of the wavelet transform, dictionary learning, DNN, and RNN,
respectively. These results indicate that the 3D CNN used in DANMLP
is powerful in processing high-dimensional neuroimaging data such as
sMRI. The reason may be that 3D CNN can effectively capture the
three-dimensional spatial information contained in sMRI, and better
detect the spatial structure and morphological features in neuroimag-
ing, thus improving the classification performance. Compared to 3D
CNN, wavelet transform, and dictionary learning may have limitations
in extracting high-level features, while DNN and RNN may suffer from
overfitting problems.

5.2. Effect of different attention mechanisms on DANMLP

To further discuss the performance of our position self-attention
block and channel self-attention block, we compared them with the
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
ión. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.
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Fig. 3. Results of DANMLP with different feature extraction methods. (a) Results of AD vs. MCI. (b) Results of MCI vs. NC.
Table 3
Performance of DANMLP with different attention mechanisms in 5CV test.

Method AD vs. MCI MCI vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC

DANMLP-CBAM 0.910 0.904 0.916 0.950 0.786 0.692 0.880 0.886
DANMLP-scSE 0.900 0.904 0.896 0.950 0.782 0.700 0.864 0.886
DANMLP-simAM 0.898 0.936 0.860 0.948 0.742 0.696 0.788 0.850
DANNLP-CA 0.882 0.916 0.848 0.941 0.688 0.720 0.656 0.763
DANMLP 0.930 0.940 0.920 0.953 0.824 0.764 0.884 0.895

Table 4
Results of DANMLP using different images as inputs in 5CV test.

image AD vs. MCI MCI vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC

WM 0.864 0.900 0.828 0.934 0.776 0.648 0.904 0.876
CSF 0.874 0.884 0.864 0.933 0.778 0.640 0.916 0.858
GM+WM+CSF 0.882 0.900 0.864 0.937 0.770 0.692 0.848 0.873
GM 0.930 0.940 0.920 0.953 0.824 0.764 0.884 0.895

other four attention mechanisms. Considering that both the convolu-
tional block attention (CBAM) [53] and the spatial and channel squeeze
& excitation (scSE) [54] contain the position and channel attention
blocks that can be used separately, we replaced the position self-
attention block and channel self-attention block in DANMLP with the
corresponding position attention block and channel attention block in
CBAM and scSE, respectively. For the simple parameter-free attention
(simAM) [55], and the coordinate attention (CA) [56], we adopted the
attention structures of simAM and CA in the position and channel self-
attention block of DANMLP. The experimental results are shown in
Table 3.

From Table 3, we can see that the position and channel self-
attention mechanism used in our DANMLP is powerful in improving
the classification performance. For MCI vs. NC classification task, the
ACC of DANMLP is 0.038, 0.042, 0.082, and 0.136 higher than that of
DANMLP-CBAM, DANMLP-scSE, DANMLP-simAM, and DANMLP-CA,
respectively. For AD vs. MCI classification task, the ACC of DANMLP
is 0.020, 0.030, 0.032, and 0.048 higher than that of DANMLP-CBAM,
DANMLP-scSE, DANMLP-simAM, and DANMLP-CA, respectively. These
results show that our position and channel self-attention blocks can ef-
fectively improve the classification performance, the position attention
block can further extract the important features within patches, and
the channel attention block can effectively integrate the features across
patches.

5.3. Effect of different images on DANMLP

Generally speaking, without prior knowledge, the features learned
9

automatically by deep learning are superior to handcrafted features.
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However, it has been demonstrated that gray matter is associated
with memory impairment and cognitive decline, which is an important
biological marker for AD [57,58]. Many studies have used gray matter
for AD-related research [59,60]. To investigate the effectiveness of
using gray matter (GM) images for early diagnosis of AD, we conducted
comparative experiments using white matter (WM) and cerebrospinal
fluid (CSF) images, as well as unsegmented sMRI (i.e., GM+WM+
CSF). These images are used as the inputs of DANMLP. The results of
DANMLP using different images as inputs are shown in Table 4.

As shown in Table 4, we can see that GM images achieve better
performance in both AD-related classification tasks. For the classifi-
cation task of MCI vs. NC, the ACC of GM images is 0.048, 0.046,
0.054 higher that of WM images, CSF images, and unsegmented images
(i.e., GM+WM+CSF), respectively. For AD vs. MCI task, the ACC of GM
images is 0.066, 0.056, 0.048 higher that of WM images, CSF images,
and unsegmented images, respectively. In fact, GM atrophy has been
proven to be a primary marker of neurodegeneration, and it can serve
as a biomarker for early diagnosis of AD [61,62]. While WM and CSF
also have some discriminatory power for AD, their sensitivity is far less
than that of GM [63,64]. We note that the performance of unsegmented
images is significantly worse than GM images across all metrics, maybe
that WM and CSF introduce the noises in AD vs. MCI and MCI vs. NC
tasks.

5.4. Limitations and future work

Although our proposed DANMLP method has achieved good per-
formance in AD-related diagnosis and discrimination of pathological
regions, there are still the following limitations: (1) DANMLP uses
patch-CNN with eight branches to extract features for each patch.
Although it achieves better results, the network is relatively large
with many parameters. In the future, we will consider designing a
lightweight network. (2) The size of the input patch is fixed. However,
AD-induced brain atrophy may occur in regions of multiple different
sizes. The fixed-size patch is not conducive to extracting the features of
large-scale atrophy. It is more reasonable to use multi-scale patches as
inputs. (3) DANMLP just studied the classification task of NC, MCI and
AD, and used the data from the ADNI database. More sub-types of AD-
related diseases and related data should be considered. In future work,
we should study more subdivisions of diagnosis of AD-related disorders,
such as subjective cognitive decline (SCD), early mild cognitive impair-
ment (EMCI), and late mild cognitive impairment (LMCI). In addition,
considering the important role of genes in the development of AD and
the generation of numerous gene expression data, we should develop
a new method to integrate the neuroimaging and gene expression data
for exploring the correlation between various brain regions and genes,
so as to uncover the pathogenesis of AD-related disorders.
ocial Security de ClinicalKey.es por Elsevier en noviembre 16, 2023. 
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6. Conclusions

In this work, we proposed a novel AD/MCI diagnosis method of
DANMLP by joining dual attention CNN and MLP based on the sMRI,
clinical and genetic data. Patch-CNNs in DANMLP are used to extract
image features of local patches. The position self-attention block in
DANMLP is used to effectively capture the discriminative features
within patches, while the channel self-attention block is used to capture
the discriminative features between patches. MLP feature extractor is
used to learn the embedding features of clinical and genetic data.
The experimental results demonstrate that our DANMLP is superior
to other methods in the classification tasks of AD vs. MCI and MCI
vs. NC. DANMLP can successfully capture AD-related brain regions
(i.e., hippocampus, amygdala), and the individualized visualization of
focal areas can effectively help clinicians in the early accurate diagnosis
of AD.
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