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Chronic kidney diseases affect more than 10% of the world’s 
population, and most cases arise from disorders of the kidney’s filtration 
barrier, which is located within a million microvascular units called glom-

eruli.1 Although it has been known for many decades that, in the kidney, glomeruli 
are the site of plasma ultrafiltration and urine production, both the molecular 
design and function of the filtration barrier remained elusive until recently.2,3 
Moreover, several decades since the recognition that inhibitors of the renin–angio-
tensin system are beneficial in reducing proteinuria and slowing the progression 
of diabetic kidney disease, patients are still at risk for end-stage kidney failure 
from diabetes and other proteinuric kidney diseases.

Evidence is emerging about the added value of sodium–glucose cotransporter 2 
(SGLT2) inhibitors, beyond their glucose-lowering effect, when they are used to 
treat patients with or without diabetes who have proteinuria and declining kidney 
function.4-6 Various mechanisms have been proposed to explain the renoprotective 
effect of SGLT2 inhibitors,7 including a reduction in pressure within the glomeru-
lar capillaries, with resulting protection of glomerular podocytes, which are the 
targets of injury in most, if not all, proteinuric kidney diseases. Reduction of the 
glomerular pressure appears to be mediated by constriction of the afferent arte-
rioles, small vessels that supply the glomerular microcirculation with enormous 
amounts of blood from the circulation. As discussed below, such observations 
align closely with our current understanding of the respective roles of glomerular 
capillary pressure, the glomerular basement membrane (GBM), and podocytes in 
regulating glomerular permeability to albumin and other proteins.

Kidney function depends on the bulk filtration of large volumes of water and 
small solutes to clear potential toxins that are derived from intracellular metabo-
lism and gastrointestinal microbial metabolism, as well as to maintain salt and 
water and acid–base homeostasis. The glomeruli produce as much as 180 liters of 
glomerular filtrate per day in healthy adults, yet only very small amounts of albu-
min leak into the urine, the end product, with its much smaller volume.8 Although 
estimates of the fraction of albumin in the glomerular filtrate (as compared with 
in plasma) have varied according to the techniques used to measure it, and some 
filtered albumin is unquestionably retrieved by tubular reabsorption,9-11 the amount 
of plasma proteins that escape with the glomerular filtrate is tiny and depends on 
the selective permeability of the glomerular filtration barrier.12

Diseases that reduce the glomerular capillary surface area available for filtra-
tion or that alter the intrinsic permeability of the capillary wall reduce the glo-
merular filtration rate (GFR). Although downstream compensatory mechanisms 
maintain the glomerular–tubular balance and regulate fluids, electrolytes, and the 
acid–base balance at physiologic levels, even small reductions in the GFR are associ-
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ated with increased cardiovascular morbidity 
and mortality and reduced overall survival.1,13,14 
Albuminuria, another manifestation of diseases 
that affect the glomerular capillary wall by alter-
ing its selective permeability, is also associated 
with increased cardiovascular morbidity and 
mortality, even at levels of urine albumin not 
generally regarded as pathologic and even in the 
absence of hypertension and diabetes.15,16 In 
this review, we discuss current insights, based 
on classic studies that defined the size- and 
charge-selective properties of the glomerular 
filter,17 to help explain how the unique structure 
and composition of the glomerular capillary 
wall maintain highly selective filtration proper-
ties when healthy, and how that changes with 
kidney disease.

Effec t s of Pod o c y te Da m age

The capillaries in each of the million or so glom-
eruli in the human kidneys contain a filtration 
device. Each filtration device consists of three 
layers: specialized and fenestrated endothelium 
that lines the luminal side of the capillary wall; 
an extracellular matrix–based GBM that contains 
type IV collagen, laminin-521, and nidogen, as 
well as sulfated proteoglycans; and podocytes 
that cover the outer surface of the GBM, closely 
enveloping the glomerular capillaries through 
extensions (foot processes) that interdigitate with 
those of adjacent podocytes (Fig. 1).18,19 The podo-
cyte foot processes of neighboring cells are 
separated by filtration slits that are bridged by 
a membrane-like cell junction, called a slit dia-
phragm20; the foot processes are firmly attached 
to the GBM by various proteins that lead to cell–
matrix adhesion.21 The intricate structure of 
podocytes allows for ultrafiltration of the large 
volumes of fluid and small solutes that are neces-
sary for normal clearance of toxic wastes; albu-
min and most other plasma protein components 
are retained in the bloodstream.

The identification of mutations in genes ex-
pressed by podocytes as the genetic cause of al-
buminuria in both familial and sporadic kidney 
disease has spurred research into podocyte patho-
biology and furthered our understanding of the 
glomerular filtration barrier.22-28 Such studies 
started about two decades ago with the identifi-
cation of the genetic cause of congenital nephrot-
ic syndrome of the Finnish type, a rare autosomal 
recessive disorder caused by mutations in NPHS1. 

These mutations result in a severe albuminuria 
in infants and young children, along with pro-
gressive kidney failure.

NPHS1 encodes the immunoglobulin super-
family protein nephrin, a major constituent of 
the slit diaphragm (Fig.  1). Nephrin molecules 
bridge the distance between two adjacent foot 
processes to form a 40-nm membrane-like cell 
junction.22,29,30 Part of a large multiprotein com-
plex at the filtration slit (Fig. 1), nephrin recruits 
adaptor proteins to induce signaling to the podo-
cyte cytoskeleton.31-35 It is now clear that nephrin-
based protein interactions, which are essential 
for shaping the unique podocyte ultrastructure, 
mediate signal transduction by responding to 
mechanical cues and controlling cytoskeletal 
rearrangements in podocytes (Fig. 1). Moreover, 
podocin, a product of NPHS2, has been shown to 
interact with nephrin at the slit diaphragm31 and 
to organize the lipid environment of the slit-
diaphragm complex as a mechanosensor at the 
filtration slit that also contains ion channels.26,27,33 
Podocin is the most commonly mutated protein 
in children and adolescents who have “steroid-
resistant” nephrotic syndrome (nephrotic syn-
drome that does not remit with glucocorticoid 
therapy).

A number of additional podocyte-expressed 
genes have been identified that, when mutated, 
cause albuminuria, including the cytoskeletal 

Figure 1 (facing page). Morphologic Features of Podocyte 
Foot Processes on Ultra-High-Resolution Imaging.

Scanning electron microscopy shows the outer aspect 
of glomerular capillaries, where plasma ultrafiltration 
occurs (Panels A and C). Stimulated emission depletion 
microscopy shows the slit diaphragm connecting adja-
cent foot processes (Panels B and D) (magenta indicates 
nephrin, and green, podocin). Color coding of adjacent 
interdigitating foot processes (Panels C and D) shows 
the interaction between neighboring podocytes. Also 
shown is a schematic representation of the slit-diaphragm 
protein complex that bridges the distance between neigh-
boring foot processes and allows the formation of a fil-
tration slit (Panel E). Nephrin and Neph1 are transmem-
brane proteins with extracellular domains that connect 
adjacent foot processes. The cytoplasmic tails of these 
proteins interact with scaffold proteins such as ZO-1 
(zonula occludens 1), signaling adapters such as Nck, 
and kinases such as phosphatidylinositol 3-kinase (PI3K) 
to regulate the actin cytoskeleton. The membrane pro-
tein podocin clusters at the membrane, interacts with 
nephrin, and coordinates the protein and lipid environ-
ment at the slit-diaphragm protein complex, which ren-
ders TRPC6 (transient receptor potential cation channel 6) 
a mechanosensitive channel.
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genes ACTN4 and INF225,36; these observations are 
consistent with the critical role of the actin cyto-
skeleton of podocytes in maintaining the foot-
process architecture and the integrity of the 
glomerular filtration barrier. Studies of these 
mutations and the resultant mutant proteins 
have clearly indicated that podocyte injury can 

cause albuminuria. Moreover, numerous acquired 
diseases, including diabetic nephropathy, mini-
mal change disease, focal and segmental glomeru-
losclerosis, membranous nephropathy, hyperten-
sive kidney disease, human immunodeficiency 
virus–associated nephropathy, and lupus nephri-
tis, also affect podocytes, causing dysfunction of 
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the filtration barrier and albuminuria. When 
podocytes are injured, the intercellular junctions 
and cytoskeletal structure of the foot processes 
are altered, and the cells are characterized by a 
simplified architecture, called foot-process efface-
ment.37,38 These changes are, in principle, revers-
ible, underlining the dynamic structure of podo-
cytes. However, podocytes are postmitotic cells 
and have a very limited capacity for self-renewal.39-42 
Thus, podocyte loss, whether due to detachment 
or cell death, results in irreversible damage and 
scarring of the renal filtration units.43

The hypothesis that podocyte loss is a culprit 
in the development of glomerulosclerosis was 
formulated more than 30 years ago39,41 and has 
subsequently been proved both experimentally 
and clinically.44-47 Among persons with steroid-
resistant nephrotic syndrome, mutations have 
also been identified in genes encoding mito-
chondrial proteins, which lead to mitochondrial 
dysfunction and impaired respiratory enzyme 
activity.48 Such mutations have similarly been ob-
served in a mouse model of proteinuria in which 
oxygen free radical damage occurs in podo-
cytes.49 Although numerous mutations involving 
podocyte proteins have been identified — a list 
that keeps growing as technological advances 
are made and more genes are found to modulate 
the function of podocytes50 — most forms of 
podocyte injury are acquired and of these, many 
are antibody-mediated.

Effects of Podocyte Autoimmunity

Some of the earliest examples of acquired podo-
cyte autoimmunity were derived from studies in 
Heymann nephritis, a model of membranous 
nephropathy in rats in which circulating anti-
bodies bind to the target antigen, megalin, in 
coated pits on the soles of podocyte foot pro-
cesses, where they activate complement and cause 
morphologic changes that are characteristic of 
human membranous nephropathy. These changes 
include foot-process effacement, slit-diaphragm 
dislocation, severe proteinuria, and generation 
of reactive oxygen species, with disorganization 
of the GBM through new matrix production and 
lipid peroxidation of type IV collagen.51,52 The 
antigen in most cases of human membranous 
nephropathy was subsequently identified and 
was shown to be the target of circulating auto-
antibodies to the M-type phospholipase A2 recep-

tor (PLA2R). PLA2R is expressed on human 
podocytes and is shed along with anti-PLA2R 
autoantibodies to form subepithelial immune 
deposits.53 A growing list of additional podocyte 
target antigens have subsequently been identi-
fied in anti-PLA2R antibody–negative cases of 
membranous nephropathy.54-57 Though much less 
common than anti-PLA2R antibodies, these anti-
bodies lead to the same or very similar patho-
logical features and are manifested clinically as 
nephrotic syndrome or severe albuminuria.

In addition to autoantibodies to podocyte 
antigens as a cause of glomerulopathy, there are 
two unusual but highly informative examples of 
glomerulopathies caused by alloantibodies di-
rected at podocyte proteins. In babies with a 
truncating mutation of NPHS1 (Fin-major), the 
slit-diaphragm protein nephrin is absent and 
end-stage kidney failure develops early in life as a 
result. When such patients receive a kidney trans-
plant, nephrotic syndrome sometimes recurs. 
However, the mechanism is different from that of 
congenital nephrotic syndrome. In patients in 
whom nephrin was never expressed, the syndrome 
is due to the development of antinephrin alloanti-
bodies directed at a neoantigen in the trans-
planted kidney.58,59 This observation was recapitu-
lated in a rodent model by injecting antibodies 
directed at the extracellular region of nephrin.60

A second example of alloimmune nephropa-
thy involving a podocyte antigen was described 
in babies born with nephrotic syndrome whose 
mothers had a deficiency of neutral endopepti-
dase (NEP) that was due to sensitization in previ-
ous pregnancies with a NEP-positive partner.61,62 
Transplacental passage of the maternal IgG anti-
NEP antibodies bound NEP on the fetal podo-
cytes and induced membranous nephropathy in 
the neonate, manifested as severe proteinuria. 
Podocyte injury with simplification of the foot 
processes and secondary changes in the GBM is 
common to all these conditions.

Although such studies clearly support the 
critical role of podocytes in maintaining a func-
tional kidney filtration barrier, defects in the 
GBM, as well as injury to glomerular endothelial 
cells, can also cause albuminuria, reinforcing the 
concept that all three layers of the filtration bar-
rier are required for permselective glomerular 
ultrafiltration. The contribution of the GBM may 
be exemplified by the fact that mutation of com-
ponents of laminin-521 in Pierson’s syndrome, 
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an inherited mutation in the laminin β2 chain,63

as well as mutations in the α3, α4, and α5 chains of 
type IV collagen in Alport’s syndrome,64 results 
in albuminuria and progressive kidney disease. 
Moreover, damage to the glomerular endothelium 
can also cause albuminuria. For example, in pre-
eclampsia, interference in vascular endothelial 
growth factor (VEGF) signaling to the glomeru-
lar endothelial cells causes albuminuria and ne-
phrotic syndrome.65 Preeclampsia, which affects 
5 to 10% of pregnant women in the United States, 
is a complex hypertensive disease characterized 
by overexpression of soluble fms-like tyrosine ki-
nase 1 (sFlt-1), a soluble VEGF receptor that binds 
and neutralizes VEGF. The resultant lack of VEGF 
leads to maternal vascular dysfunction and organ 
damage.66,67 Similarly, anti-VEGF therapy with beva-
cizumab in patients with cancer can cause albu-
minuria, hypertension, and glomerular disease.68,69

 A  Bioph ysic a l Model of 
Gl omerul a r Ultr a filtr ation

Despite decades of research on the glomerular 
filtration barrier, a biophysical model to explain 
how the kidney filter allows extensive fluid fil-
tration while restricting the sieving of macro-
molecules was lacking until relatively recently.12,70

Several decades ago, studies with electron mi-
croscopy that localized different tracers of the 
size of albumin or larger indicated an important 
role of the GBM in retaining proteins in plasma 
while allowing free filtration of water and sol-
utes, since the tracers did not enter the GBM but 
instead were restricted to its subendothelial sur-
face.71,72 Damage to podocytes mediated by puro-
mycin, an antibiotic that inhibits protein synthe-
sis and is used to study models of proteinuria, 
resulted in consecutive penetration of the tracers 
into the GBM and uptake by podocytes.73,74 In 
contrast, other injected tracers appeared to pass 
through the GBM but were impeded at the level 
of the podocyte slit diaphragm, an observation 
that led to the conclusion that slit diaphragms 
are the primary barrier of the selective filter.75,76

For decades, the controversy over control of fil-
tration could not be resolved, and the interpreta-
tions based on a coarse filter at the GBM fol-
lowed by a fine filter at the slit diaphragm did 
not explain why the glomerulus does not clog 
with partially filtered proteins.77

Given the abundance of evidence that podo-

cyte injury underlies most, if not all, proteinuric 
kidney diseases, new technologies, including ultra-
high-resolution imaging and genetically engi-
neered mouse models of human disease, were 
used to examine the glomerular filtration bar-
rier under conditions not previously possible 
with ultrastructural tracers and conventional 
light and fluorescence microscopy. These ad-
vances led to the development of an experimen-
tally validated biophysical model of glomerular 
ultrafiltration.78 Filtration across the glomerular 
capillary is driven by a net filtration pressure of 
roughly 20 mm Hg, derived from a hydrostatic 
pressure gradient of about 40 mm Hg minus the 
oncotic pressure of the plasma (about 24 mm Hg 
as blood enters the glomerular capillary), which 
acts to restrain filtration (Fig. 2).80 The remark-
able luminal pressure exerts physical forces on 

Figure 2. Pressure Gradients Driving and Inhibiting Kidney Filtration.

Filtration across the glomerular capillary is driven by a hydrostatic pressure 
gradient of about 40 mm Hg (the difference between glomerular capillary 
pressure [PGC] of about 50 mm Hg and the Bowman’s space hydrostatic 
pressure [PBS] of 10 mm Hg), minus the oncotic pressure of the capillary 
plasma (piGC) (about 24 mm Hg as blood enters the glomerular capillary), 
which acts to restrain filtration. The luminal pressure exerts physical forces 
on the capillary wall that are counteracted by the glomerular basement 
membrane (GBM) and by podocytes. The piGC starts off at the value of 
normal arterial blood and rises as ultrafiltration removes fluid from the 
capillary. The oncotic pressure in Bowman’s space (piBS) is constantly close 
to 0 mm Hg. Adapted from Giebisch and Windhager.79
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the capillary wall that are counteracted by the 
GBM and by podocytes. Specifically, interdigitat-
ing podocyte foot processes serve as buttresses81

against the physical forces of hydrostatic pres-
sure in the glomerular capillaries, compressing 
the gel-like structure of the GBM (Fig. 3).82,83

With these altered biophysical properties, the 
GBM acts as a permselective filter78 and restricts 
the permeability to macromolecules transported 
by diffusion and bulk flow. Thus, the sophisti-
cated foot-process architecture of podocytes not 
only maximizes the area available for the filtra-
tion of water and small solutes but also provides 
the mechanical resistance against blood pressure 
that compresses the GBM, preserving permselec-
tivity and preventing loss of albumin and other 
macromolecules (Fig. 4).78

When podocytes are injured, they take on a 
more simplified architecture and the slit-dia-
phragm length is much reduced, resulting in a 
reduction in the filtration slit area and a decline 
in the glomerular filtration rate of water and 
small solutes (Fig. 4). Concomitantly, the but-
tressing force of podocytes is lost and the com-
pressive force of the GBM is reduced, which in-
creases the permeability to albumin (Fig. 3). 
This construct explains the conundrum of how 
the GFR may decline while permeability to albu-

min is increased, a phenomenon elegantly stud-
ied and documented in humans with proteinuric 
kidney disease.84 Although the contribution of 
additional factors, such as electrokinetic forces 
at the GBM85 and a repelling function of the 
charged glycocalyx of endothelial cells,86 may 
also play a role, the biophysical model explains 
how the glomerular filter optimizes hydraulic 
conductivity for the filtration of enormous 
amounts of fluid by maximizing the filtration 
area (defined by the length of the filtration slit) 
while retarding passage of proteins through 
compression of the GBM.

These new data concerning glomerular filtra-
tion underscore the importance of regulated 
glomerular hemodynamics and have fundamental 
clinical implications beyond a better under-
standing of the beneficial effects of angiotensin-
converting–enzyme inhibitors or angiotensin-
receptor blockers. The length of the slit 
diaphragm is markedly reduced in early albumin-
uric disease.78 Since the width of the filtration 
slit is thought to be fixed and determined by the 
interacting molecules that bridge the distance 
between adjacent foot processes, shortening the 
filtration slit appears to result in a reduction of 
the filtration area. In this scenario, the filtration 
rate is at least partially maintained by angioten-

Figure 3. Gel Compression Model of Glomerular Ultrafiltration.

Interdigitating podocyte foot processes counteract the physical forces of hydrostatic pressure in the glomerular capil-
laries, compressing the gel-like structure of the GBM. The altered biophysical properties of the GBM act as a selec-
tively permeable filter. When podocytes are injured, they take on a more simplified architecture and the slit-diaphragm 
length is greatly reduced. Concomitantly, the buttressing force of podocytes is lost and the compression force of the 
GBM is reduced, which increases the permeability to albumin. Adapted from Butt et al.78
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sin II–mediated contraction of the efferent arte-
riole, which has detrimental effects that offset 
the benefits of maintaining the GFR. First, the 
increased capillary pressure cannot be fully 
counteracted by the defective podocytes, which 
leads to an increase in proteinuria and, poten-
tially, further injury. Second, maintaining the 
GFR while the filtration area is decreased drasti-
cally increases local fluid flow at the barrier, 
which exposes podocytes to considerable trans-
verse shear stress and leads to loss of podocytes 
through detachment, as well as potential scar-
ring of the glomeruli.43,87 Preventing angiotensin 
II–mediated constriction of the efferent arteriole 
by blockade of the renin–angiotensin system is the 
cornerstone of antiproteinuric therapy to limit 
progressive podocyte injury and loss in diabetic 
and nondiabetic kidney disease.

However, hyperfiltration also occurs through 
loss of regulation of the afferent arteriole. Sev-

eral studies have shown the mitigating effect of 
SGLT2 inhibitors on renal outcomes such as 
progression to end-stage kidney disease, doubling 
of the serum creatinine level, or death from re-
nal causes in patients with diabetic (and poten-
tially those with nondiabetic) kidney disease,4,5,88

an effect that is thought to be primarily medi-
ated through constriction of the afferent arte-
riole and prevention of hyperfiltration.7 SGLT2 
inhibition reduces reabsorption of glucose and 
sodium within the proximal tubule, which re-
establishes sodium delivery to the macula densa 
and leads to a correction of hyperfiltration 
through tubuloglomerular feedback and afferent 
vasoconstriction.89 Dysfunctional podocytes can-
not sufficiently counteract elevated glomerular 
capillary pressure, suggesting that SGLT2-medi-
ated afferent arteriole vasoconstriction may be 
beneficial (Fig. 2). The effect of SGLT2 inhibitors 
appears to be consistent across all levels of kid-

Figure 4. Damaged Podocytes Characterized by Rounded Processes and a Shortened Slit Diaphragm.

The sophisticated foot-process architecture of podocytes not only maximizes the area available for the filtration of 
water and small solutes but also provides the mechanical resistance against blood pressure that allows the com-
pressed GBM to maintain selective permeability. The structure is lost in glomerular disease, resulting in a short-
ened slit diaphragm. Panels A, B, and C show the morphologic features of the slit diaphragm in a healthy state (in 
wild-type mice), and Panels D, E, and F show the altered morphologic features early in the course of the disease (with 
the Nphs2R231Q/A286V mutation). Magenta in Panels A and D indicates nephrin, and green in Panels B and E indicates 
podocin, with the overlaid colors shown in Panels C and F.
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ney function, down to an estimated GFR of 30 ml 
per minute per 1.73 m2 of body-surface area, 
whereas glucose-lowering effects are directly 
proportional to glomerular filtration and are 
substantially decreased when kidney function 
declines,90 underscoring the importance of regu-
lating glomerular hemodynamics in progressive 
renal disease.

Conclusions

Our understanding of the function of the glo-
merular capillary filter and the mechanisms 

underlying albuminuria has evolved during the 
past 20 years. After decades of research, there is 
now an opportunity to develop mechanism-
based therapies that regulate glomerular hemo-
dynamics, on the one hand, and protect me-
chanically sensitive podocytes, on the other hand, 
to prevent the progression of chronic kidney 
disease.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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