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A B S T R A C T

Smoking causes death of millions of people every year. However, available therapies for nicotine addiction are 
partially effective and exhibit frequent side effects. Thus vaccines targeted at drug nicotine not brain offer a 
promising strategy to treat nicotine addiction. They cannot pass blood-brain barrier, avoiding serious side effects 
relevant with central nervous system. The specific nicotine antibody produced by vaccines would convert to 
complex after combined with nicotine in serum, decreasing or even blocking the distribution of nicotine in brain. 
This review summarizes the pre-clinical and clinical advances of nicotine vaccines and then addresses future 
directions of nicotine vaccine and the practical aspects of deployments.

1. Introduction

Smoking is responsible for death of millions of people [1,2]. Over 8 
million people die from illness directly related to smoking every year 
[3]. Smoking promotes the occurrence of various diseases, particularly 
in chronic respiratory and cardiovascular system [4,5]. The use of to-
bacco products increased the growth of the global mortality and brought 
a great burden for domestic economy. It is known that nicotine is one of 
the main components in tobacco, which is highly addictive [6]. It 
combines with acetylcholine receptor to change the normal value of 
dopamine in brain and even structural and functional change in brain 
[7,8].

Nicotine dependence has been estimated as a chronic addictive dis-
ease [9]. Nicotine addiction usually depend on the self-report of smokers 
by some questions, such as when, where, how often, methods or others. 
Various assessment scales have been reported to measure nicotine 
addiction [10–12] . Currently, available pharmacotherapy for clinical 
smoking cessation mainly contains two types: nicotine replacement 
therapy (NTR) and non-nicotine drugs [13,14]. In various forms of NTR, 
e-cigarette is the most popular and potential to achieve smoking cessa-
tion. However, the study by Hajek et al. [15,16] showed the 1-year 
abstinence rate was only 18.0 % in the e-cigarette group and 9.9 % in 
the nicotine-replacement group. Whether NTR is truly effective for 
smoking cessation still remains unclear [17]. And the first line drugs 
varenicline displayed an increase of depression, as well as the risk of 
instability and possible suicidal behavior [18–20]. These side effects 

limited the scope of application on smoking cessation.
Thus nicotine vaccine targeting at drug nicotine rather than brain 

was explored as a promising strategy [21]. Considering nicotine mole-
cule is too small to be recognized by the immune system, nicotine hapten 
has been designed and prepared by conjugate with a foreign carrier 
protein to render immunogenic, which can activate immune reaction of 
immune cells and finally induce specific antibody (Fig. 1). The antibody 
combines with nicotine with a high affinity and blood-brain barrier 
would sequester the oversize antigen-antibody complex in serum or 
extracellular fluid, which eventually reduces the distribution of nicotine 
in brain. This unique mechanism can avoid serious side effects on central 
nervous system, such as depression, anxiety, and even suicidal ten-
dencies. To this day, no serious adverse reactions related to nicotine 
vaccines has been found in existing animal and clinical studies [22–25], 
encouraging researchers to be involved in exploration of nicotine 
vaccine.

The present review addresses the pre-clinical and clinical studies on 
nicotine vaccines. Starts from a summary of pre-clinical advances in 
nicotine vaccines, ranging from the design of hapten optimization, 
linker modifications, formulations of carrier and adjuvant to the stra-
tegies of multivalent vaccine and nanoparticle packaging, their in-
fluences on immune effectiveness are analyzed. Then a detailed 
description of clinical aspects relevant to seven nicotine vaccines is 
given. Future directions of nicotine vaccine and the practical aspects of 
deployments are illustrated in the end.
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2. Advances in pre-clinical nicotine vaccines

In order to better play the full potential of active immunization in 
treatment of smoking cessation, improvements and modulations on 
drug-immune response strategies are very important to improve the 
immune effectiveness. This section focuses on the new pre-clinical 
progress of nicotine vaccines.

2.1. Advances in design of pre-clinical nicotine vaccines

In order to provoke immune system response, nicotine scaffold must 
be covalently attached to carrier protein through a linker or direct 
combination. A great number of nicotine haptens, linkers, carriers and 
adjuvants were designed and applied to improve the consistency and 
effectiveness of immunogenicity.

Hapten Chemical modifications on nicotine molecule are significant 
to progress of screening antigen series. The flexibility of nicotine is 
mostly formed by rotatable bond between pyridine and pyrrolidine rings 
[26]. The impacts of hapten stability on vaccine efficacy were studied 
and constrained haptens with stable conformation were found to be 
related with more moderate affinity antibodies under the same adjuvant 
[27]. Similar result was also observed in the report on cocaine vaccine 
[28]. These reductions in degrees of freedom in molecular structure 
might be able to contribute to enhancing consistency of nicotine anti-
body, thereby maximizing immunogenicity of vaccines. Furthermore, 
enantiomers of nicotine haptens should not be ignored in design of 
nicotine hapten, owing to only the (S)-nicotine serving as active ingre-
dient in nicotine addiction. The enantiomers of a leading nicotine 
hapten 3′-aminomethylnicotine have been proved to be more conducive 
to production of specific antibodies compared to the racemic mixture 
[29].

Hapten clustering has been an alternative strategy to potentiate 

immune response with the increase of hapten density. This approach 
aims at improving immune reaction by adjusting antigenic spatial 
arrangement and promoting activation signaling transmission mediated 
by B-cell receptor. It suggested the introduction of nicotine trivalent 
hapten (triAM1) could contribute to limiting variability of immune 
response [30]. The hapten clustering has become a potential strategy to 
chemically define antigenic structure and enhance the efficacy of 
vaccine.

Linker Linker is indispensable to connect active nicotine hapten to 
macromolecular carrier. Besides structural connection function, linkers 
help to maintain a necessary distance for presentation of target structure 
to immune cells [31]. Most linkers usually are deemed to be a simple and 
unsubstituted chain with 5–15 carbon atoms. The optimization of linker 
length, lipophilicity and flexibility are incorporated in design consid-
eration to provide better immunogenicity and efficacy. Haptens with too 
short linker would hamper exposure of epitopes owing to increase of 
steric effect and conversely haptens with too long linker are likely to 
form into some fold with the increasing of linker flexibility. Linker 
length, rigidity and polarity have been reported to be influential on 
recognition and binding of nicotine haptens by immune cells [32–34]. 
Hence, optimization of the linker composition should be considered for 
developing nicotine vaccines.

Carrier Carrier facilitates presentation of antigen and induce im-
mune cells to regulate antibody production and immunological memory 
[35]. A set of carriers have been utilized for the nicotine vaccine. The 
traditional carriers such as keyhole limpet hemocyanin (KLH) have been 
proved widely effective [36]. However, these carriers derived from 
bacteria or virus, including Pseudomonas aeruginosa exoprotein A [37], 
recombinant cholera toxin-B subunit, tetanus toxoid (TT) and virus-like 
particles (VLP) from Bacteriophage Qb, exhibited poor response to 
treatment of nicotine addiction and relapse in clinical trials. Nicotine 
vaccine formulated with purified hexon of recombinant serotype 5 

Fig. 1. Schematic illustration of immune responses induced by nicotine vaccines. Nicotine vaccines were composed of haptens, linkers, carriers and adjuvants. After 
immunization, antigen-presenting cells (APCs) within lymph nodes became mature, the interaction between APCs and T and B cells increased, naive B cells were 
activated to memory B cells, a large number of antibodies were generated and released into blood. Antibodies became into antigen-antibody complex, which were too 
big to cross blood-brain barrier.
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adenovirus (E1-E3-Ad5) was demonstrated to evoke sufficient high level 
of antibodies to inhibit nicotine-induced pathophysiology in rodents 
[38]. Moreover, carriers with adjuvant-like property have been adopted 
into nicotine vaccine [39,40]. Diphtheria toxin crossreactive material 
(CRM197) has been successfully used as carrier in nicotine vaccine, 
which has advanced toward clinical evaluation (NIC7–001 in Table 1). 
The carrier protein flagellin conjugated with a nicotine hapten with 4- 
position attached by an aminopropyl linker (N4N2) was explored in 
the vaccine formulation and the result showed an enhanced antibody 
affinity [40].

With the development of vaccine technology, peptides are gradually 
favored by researchers as carrier of vaccine because of the advantages of 
high safety, low immunogenicity and exact structure [41–43]. An 
additional benefit of peptides is quite convenient to be synthetized ac-
cording any amino acid sequence combination and consequently car-
riers are composed more readily and predictably directed against 
multiple pathogen epitopes or different subtype epitopes of same path-
ogen. The application of peptides as carrier in nicotine vaccine showed 
great advantages [44,45]. For example, in order to circumvent inter-
ference of carrier epitopes, a novel peptide-based carrier trimetri coiled- 
coil (TCC) was designed to increase hapten density for improvement of 
antigen presentation [45]. Peptides were also used in the field of 
multivalent nicotine vaccine. On the foundation of coiled-coil peptide 
carrier, together with enantiopure nicotine haptens and multivalent 
formulations, a nicotine vaccine with two-fold higher antibody response 
and substantially increased antibody affinity was developed [46].

The studies of carriers demonstrate that the carriers with adjuvant- 
like property are in favor to maximize the efficient immune response 
for nicotine vaccines. Better clarity of carriers in structure is helpful to 
engineer more promising and applicable vaccine candidates for nicotine 

relapse and addiction cessation.
Adjuvant Purpose of adjuvants used in vaccines is to strengthen the 

immune response to antigens [47]. They can create a local immune 
environment by continuously released antigens at injection site, thus 
extending action time and simultaneously reducing the dosage of im-
mune substance to save production cost [48]. The quality and quantity 
of immune response bolster by adjuvants suggest their performance. The 
Freund’s adjuvant was frequently-used and effective in the animal im-
munity of nicotine vaccines [33,34,37,49]. However, it is not ratified in 
human body. Aluminum hydroxide has been approved to use in human 
vaccine by FDA due to its acceptable safety and strong ability to generate 
immune response, which is the most commonly used adjuvant in the 
development of nicotine vaccine [50–52]. Currently four nicotine vac-
cines have entered clinical experiment under the formulation of 
aluminum hydroxide (Table 1). Its mechanism was poorly defined 
except the facilitation on the presentation of antigen to immune cells by 
strong adsorption capacity, differentiation of related immune cells, as 
well as secretion of proinflammatory factor [53,54]. However, strong 
adsorption of microparticle aluminum hydroxide also brought some 
limitation for biological function of antigen presenting cells (APCs) and 
application in nanoparticle vaccine [55,56]. The application of tradi-
tional aluminum hydroxide in nicotine nanovaccine has been reported 
not effective for treatment of nicotine addiction [57]. There is increasing 
evidence that aluminum hydroxide at nanometer scale is more likely to 
show superior adjuvant activity [55,56,58].

Liposomes which are formed by closed vesicles and aggregated 
phospholipid bilayers have developed into delivery systems for many 
years [59]. Compared with other vaccine adjuvants, liposome have its 
own unique advantages in active adaptation on molecular weight and 
charge of antigen, composition of cell membrane analogue with good 
biocompatibility, protecting antigens from destruction and mediating 
antigens uptake by macrophages through the structure of encapsulation 
and particle [60,61]. A series of liposomes and their combination with 
other materials such as Adjuvant Finlay Proteoliposome 1 (AFPL1) from 
the Neisseria meningitidis serogroup B, Sigma Adjuvant System® (SAS), 
as well as squalene emulsion (GLA-SE) have been initiated for address-
ing the immunogenicity challenge in nicotine vaccine [30,46,62–64]. In 
the comparison of aluminum hydroxide and GLA-SE adjuvants, nicotine 
vaccine formulating a TCC-based GLA-SE adjuvant was proved to be far 
superior in generating immune response and affinity [45].

Various adjuvant molecules specifically binding to Toll-like re-
ceptors (TLRs) or other innate immune receptors have been studied for 
nicotine vaccines, including CpG oligodeoxynucleotides (CpG ODNs), 
monophosphoryl lipid A, Resiquimod (R848) and α-galactosylceramide 
(αGalCer) [65–67]. CpG ODNs is a TLR9 agonist with several GpG 
dinucleotide motifs, which is considered to be the adjuvant with the 
clearest mechanism of action at present. Benefited from its highly 
effective immunostimulatory activity in nicotine vaccine, CpG ODNs is 
usually indispensable in the formulations of combined adjuvants 
[32,39,65,68]. The combination of CpG and aluminum hydroxide as 
adjuvant showed significantly higher antibody level and antibody af-
finity for nicotine than alone aluminum hydroxide as adjuvant, which is 
in agreement with the reports on other vaccines against drug addiction 
[69,70]. This approach in nicotine vaccine NIC7–001 has been evalu-
ated by Pfizer in a phase I trial (NCT01672645) with no available result 
[71]. The combination adjuvants of monophosphoryl lipid A with 
Resiquimod (R848) and ODN 1826 better enhanced the immunological 
efficacy of nicotine vaccines than single TLR adjuvant in the study of a 
hybrid nanoparticle nicotine vaccine [66]. The nicotine vaccine after 
adjuvanted with αGalCer (a kind of iNKT cell agonist) induced higher 
nicotine specific antibody in mice, compared with the frequently used 
lipopeptide adjuvant Pam3CSK4 (a kind of TLR agonist) [68].

In addition, four stabilizing non-natural peptides were designed and 
formulated into nicotine vaccine as adjuvant delivery system together 
with a microbial derived adjuvant to test the response of 1 L-1β in a 
dendritic cell line and the induced nicotine-specific antibody levels in 

Table 1 
Composition of nicotine vaccines in clinical trial stage.

Vaccine Manufacturer Composition Reference

NicVAX Nabi 
Biopharmaceuticals

3′-amino-methyl-nicotine 
hapten conjugated to carrier 
Pseudomonas aeruginosa 
exoprotein A with a succinic 
acid linker, adjuvanted with 
aluminum hydroxide

[85]

NicQb/ 
NIC002

Cytos Biotechnology/ 
Novartis

3′-hydroxy-methyl-nicotine 
hapten conjugated to carrier 
virus-like particle from 
Bacteriophage Qb with a 
succinic acid linker, 
adjuvanted with complete 
Freund’s adjuvant

[86,87]

TA-NIC Celtic Pharma 1-butryic acid - nicotine 
hapten conjugated to carrier 
cholera toxin-B subunit, 
adjuvanted with aluminum 
hydroxide

[88]

SEL-068 Selecta Biosciences A polymer matrix, a toll-like 
receptor agonist adjuvant, a 
T-cell helper peptide, and 
nicotine hapten covalently 
conjugated to the 
nanoparticle surface

[89]

Niccine Independent 
Pharmaceutica AB

Nicotine hapten conjugated to 
carrier tetanus toxoid, 
adjuvanted with aluminum 
hydroxide

[90]

NIC7–001 Pfizer 5-aminoethoxy-nicotine 
hapten conjugated to carrier 
CRM197, a single amino acid 
mutant of diphtheria toxoid, 
adjuvanted with aluminum 
hydroxide and toll-like 
receptor 9 agonist CpG

[32]

SELA-070 Selecta Biosciences – –

— No available information at this time.
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mice, and the result indicated that peptides could enhance immune 
response significantly [72].

Collectively, all these data suggest that every hapten requires 
tailored adjuvant to maximize the efficient immune response. Some new 
approaches including the addition of TLR-based adjuvant, liposome 
adjuvant and peptide into vaccine formulation and rational incorpora-
tion of different adjuvants might break the limitation of immune 
effectiveness.

2.2. Other new progress on pre-clinical nicotine vaccine

Nanovaccine The design of nanovaccine has been approved feasible 
and make great progress in nicotine vaccine [25,73]. Nanomaterials 
have been developed extensively as delivery system or immune synergist 
for vaccines which could protect antigen from being destroyed and 
present them to APCs after arriving target site [74,75]. Compared with 
traditional conjugate vaccine, nanovaccines more efficiently stimulate 
dendritic cells to ingest, process and present antigens, as well as activate 
initial T cells to maintain the immune response [76,77]. Based on this 
design, it is expected to break the restrictions of conjugate vaccines and 
improve immune effects by approach of nanoparticle-based vaccines. A 
nicotine nanovaccine has been reported to be composed of spherical 
nanoparticles structured by a poly(lactic-co-glycolic acid) core wrapped 
with lipid shell and some nicotine antigens located on the surface of 
nanoparticles [50]. The immunogenicity of nicotine vaccine was 

effective enhanced by the nanoparticle-based design in hapten density, 
modulating hapten localization and adjuvants [50,65,78]. Besides 
spherical core-shell structure, the nicotine nanovaccine assembled with 
negatively charged carbon nanohorn and cationic liposomes was 
developed and showed no apparent toxicity as well as much better 
stability [79]. Nicotine vaccine based on assembly of lipid-PLA hybrid 
nanoparticle produced higher stability and longer half-life period 
compared with lipid-PLGA [25]. Most of these nicotine nanovaccines are 
still at the stage of laboratory research. SEL-068 is the only one reaching 
the stage of phase I trial, which is developed by Selecta Biosciences. 
There was no available information for the results [80].

Multivalent vaccine Among preclinical studies, strategy of multi-
valent vaccine has emerged in treatment of nicotine addiction as the 
means of enhancing the antibody response [62]. The design of multi-
valent vaccine is based on the concurrent administration of several 
structurally distinct nicotine antigens which can elicit independent im-
mune responses. The aim of this strategy is to maximize vaccine 
response by activating several B cell populations and generating addi-
tive antibody response [81]. Generally, structural differences of the 
nicotine antigens reflect in the sites for attachment, chemical modifi-
cations, linker composition and selection of carrier [34,82]. These dif-
ferences conduce to production of non-overlapping antibodies and 
further increase of total immune response, remedying intrinsic short-
comings of traditional monovalent conjugate vaccines. For instance, 
antigens generating non cross-reacting nicotine-specific antibodies were 

Table 2 
Review of clinical trials of nicotine vaccines.*

Vaccine NTC Number Duration Phase Enrollment Age / Sex Reference Results

NicVAX NCT00598325 Jan 2008-Oct 
2010

I-II 74 18–65/ 
All

– –

 NCT00318383 May 2006- 
Dec 2007

II 313 18- 
older/All

[85] Succeeded to elicit antibodies associated with higher continuous abstinence 
rates

 NCT00995033 Oct 2009-Sep 
2012

II 558 18–65/ 
All

[23,91] Only a subgroup of the top 30 % antibody responders achieved higher 
abstinence rates than placebo

 NCT00218413 Oct 2004-Aug 
2006

II 51 18- 
older/All

– –

 NCT00996034 Sep 2009-Feb 
2011

II 14 18–50/ 
All

[92] The β2-nAChR occupancy by nicotine was significantly reduce which 
provided evidence for the mechanisms of vaccination against nicotine 
dependence

 NCT01318668 Feb 2011-Jue 
2012

I-II 38 25–40/ 
Male

[93] No significant effects of immunization on brain activity in response

 NCT01375933 May 2011- 
Oct 2011

III 260 18–55/ 
All

– –

 NCT01304810 Jan 2011-Aug 
2011

III 300 18–65/ 
All

– –

 NCT01102114 Mar 2010- 
Nov 2011

III 1000 18–65/ 
All

– –

 NCT00836199 Oct 2009-Jul 
2011

III 1000 18–65 
/All

– –

 NCT01178346 Jul 2010-Nov 
2011

III 500 18–65/ 
All

– –

NicQb 
(NIC002)

–  I 40 18–45/ 
All

[86] The vaccine was safe and well tolerated; Succeeded to elicit nicotine- 
specific IgM and IgG antibodies at day 7 and 14

 NCT00369616 Dec 2003- Oct 
2005

II 341 18–70/ 
All

[87] Significant increased continuous abstinence rates were only observed when 
sufficiently high antibody levels are achieved

 NCT00736047 Aug 2008-Oct 
2009/

II 200 18–65/ 
All

– –

 NCT01280968 Dec 2010-Apr 
2013

II 52 18–55/ 
All

– –

TA-NIC NCT00633321 May 2007- 
Feb 2009

II 522 18- 
older/All

– –

SEL-068 NCT01478893 Nov 2011- 
Mar 2013

I 82 18–60/ 
All

– –

Niccine –  II 335 25–50/ 
All

[90] The vaccine was well tolerated but ineffective among cigarette smokers

NIC7–001 NCT01672645 Jun 2012-Dec 
2015

I 277 18–60/ 
All

– –

SELA-070 NCT03148925 May 2017- 
Oct 2018

I 72 18–60/ 
All

– –

* Available clinical trial registration (clinicaltrials.gov or PubMed) or other publications. β2-containing nicotinic acetylcholine receptors (β2-nAChR), Immuno-
globulin M (IgM), Immunoglobulin G (IgG). — No information available at this time.
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engineered to enhance additive vaccine efficacy [83], which indicated 
the potential of multivalent vaccine in reducing variability in human 
immune response [49]. Studies on multivalent nicotine vaccine mainly 
focus on bivalent [49,84] and multivalent concurrent administration 
[62,66,82]. These results demonstrate that design of multivalent nico-
tine vaccine is feasible to enhance the immune response and circumvent 
limitation of traditional conjugate vaccine.

3. Clinical trials on nicotine vaccines

So far, seven candidate vaccines for nicotine have entered human 
clinical testing: NicVAX, NicQb/ NIC002, TA-NIC, SEL-068, Niccine, 
NIC7–001 and SELA-070. Most of the vaccines have reached phase I / II, 
and only NicVAX has reached phase III (see Tables 1 and 2). The vac-
cines were aimed to prevent first-time drug use, drug dependence or 
smoking relapse. Muscle injection is the most commonly used form of 
administration. Inclusion criteria usually include healthy smoker and a 
certain number of cigarettes per day. Subjects were vaccinated repeat-
edly over a period of time. Except the phase II clinical trial 
NCT00995033, other nicotine vaccines were conducted as stand-alone 
medication. The hapten structures of these nicotine vaccines were 
shown in Fig. 2.

The vaccine NicVAX, developed by Nabi Biopharmaceuticals, has a 
3-amino-methyl-nicotine hapten conjugated to the carrier Pseudomonas 
aeruginosa exoprotein A with a succinic acid linker, and was adjuvanted 
with aluminum hydroxide to enhance immunogenicity [85]. A phase II 
clinical trial (NCT00318383) was conducted for NicVAX on 301 smokers 
to evaluate the efficacy of nicotine vaccine at the doses of 200 μg and 
400 μg [85]. Obvious higher abstinence rates compared with placebo 
were observed in the high-dose group. However, in the subsequent 
phase II clinical trial (NCT00995033), these optimistic abstinence rates 
were only replicated in the top 30 % antibody responders of a subgroup 
[23]. Though the proof of concept study (NCT00996034) proved that 
NicVAX could reduce the nicotine binding to beta2-containing nicotinic 
acetylcholine receptors in brain [92], the clinical fmri study 
(NCT01318668) of NicVAX on the brain activity of 38 smokers 
concluded that the vaccine was unlikely to cease smoking than placebo 
[93]. To date, five phase III clinical trials for NicVAX have all completed 
and the results were not posted and reported. NicQb (NIC002) vaccine 

consists of a hapten 3-hydroxy-methyl-nicotine, which is connected to 
the carrier virus-like particle Bacteriophage Qb by a succinic acid linker 
[86,87]. It was initially developed by Cytos Biotechnology and subse-
quently acquired by Novartis. Its phase I and II clinical trials have been 
completed (Table 2). In the phase I clinical trials (NTC Number was not 
available), 40 non-smokers were enrolled to investigate the safety and 
immunogenicity of the vaccine for treating nicotine dependence [86]. 
Besides good safety and tolerability, high affinity for nicotine was also 
observed, indicating NicQb might provide a promising effective in 
promoting smoking cessation. Results of phase II trial (NCT00369616) 
for the vaccine NicQb showed that though 100 % antibody response 
rates were induced, significant continuous abstinence rates were only 
observed in the participants with high antibody response in subgroup 
analysis [87]. This meant higher levels of antibodies generated by 
nicotine vaccine were positive relevant with higher success rates of 
smoking cessation. Nevertheless, the high variable in individual immune 
response finally resulted in the undesirable effect on smoking cessation.

Besides, three other nicotine vaccines (TA-NIC, SEL-068, Niccine) 
have finished their phase II clinical trials (Table 2). The vaccine TA-NIC 
belonging to Celtic Pharma utilized 1-butryic acid-nicotine as hapten 
and cholera toxin-B subunit as carrier [88]. Differently, the SEL-068 
vaccine was developed by Selecta Biosciences on the basics of nano-
technology [89]. The clinical trials of TA-NIC and SEL-068 both had no 
reported outcomes. The vaccine Niccine (Independent Pharmaceutica 
AB) utilized tetanus-toxoid as a carrier. Its phase II clinical trial (no 
available NTC Number) on 355 smokers appeared well tolerated but 
ineffective in quitting smoking and relapse prevention [90]. This phe-
nomenon was together with the later results of NicVAX and NicQb. A 
phase I clinical trial (NCT01672645) of NIC7–001 which containing a 5- 
aminoethoxy-nicotine as hapten and a single amino acid mutant of 
diphtheria toxoid (CRM197) as carrier was evaluated in Canada after 
being adjuvanted with combination of aluminum hydroxide and toll-like 
receptor (TLR) 9 agonist CpG [39], the results of which have not been 
disclosed. In addition, Selecta Biosciences has recently conducted a 
phase I clinical study to evaluate safety and pharmacodynamics of the 
second nicotine vaccine SELA-070 in Belgium (NCT03148925). The 
relevant study has actually finished in 2018 with no results posted [94].

Taken together, good safety and immunogenicity were often 
observed, but subsequent clinical studies on effectiveness found that 

Fig. 2. The hapten structures of nicotine vaccines in clinical stage.
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none of these nicotine vaccines maintained the expected effects in pre- 
clinical studies [85,87,91,93].

There are several collective explanations to the limited efficacy in 
clinical results. Firstly, physiological differences between human sub-
jects cause different immune responses. The individual differences of 
antibody levels were large, so it is difficult to prove the therapeutic ef-
fect of vaccines on elimination of addiction [73]. This similar wide range 
of variability in human immune response was also noticed in clinical 
studies of other addiction vaccines [95,96]. In the second place, most 
researchers attributed these unsatisfactory results to the not high 
enough antibody responses elicited by vaccines to eliminate the effects 
of the inhaled nicotine in human body [87,97,98]. Besides, shortcom-
ings and limitations of the animal models on nicotine addiction might be 
partially responsible for the failure in clinical studies [98]. The differ-
ence between species might induce discrepancies on the immune 
response after nicotine vaccine injection.

4. Future directions

These pre-clinical and clinical data provide better insight for rational 
development of nicotine vaccines with higher therapeutic efficacy. 
Although none of vaccines against nicotine has achieved ultimate suc-
cess, these studies provided vital information to point out the directions 
of future research.

The success or failure of nicotine vaccine mainly relies on combi-
nation of hapten, linker, carrier and adjuvant. Apart from traditional 
mindset in hapten design, hapten deuteration might be useful to revive 
the success in clinical trials, which has been proved in a study of heroin 
vaccine [99]. In the past, various proteins have been extensively used as 
immunogenic carrier for nicotine vaccine. However, some other car-
riers, such as polysaccharides [100], have not been explored. Emphasis 
should be placed to exploration of new design strategies for high level 
antibody to enhance the chance of success.

The adequacy of animal models is very important in design of clinical 
studies. Many candidate vaccines targeting addictive drugs have shown 
strong antibody responses in pre-clinical tests on animals, but failed to 
repeat the same effect in human clinical trials. The administration of 
simple nicotine injection in animal models ignores the possible behav-
ioral effects from thousands of compounds in tobacco smoke. Thus it is 
possible that efficacy of vaccines in smoking abstinence is overrated in 
these studies on animal models.

Another key question in nicotine vaccine development is how to 
accurately assess vaccine immunogenicity and efficacy. And whether the 
varying levels of antibodies in different studies are conformable is still 
doubtful due to the poor consistency of ELISA results between different 
times, animal models and investigators. No specific guideline for eval-
uating antibody titers has been set as a reference. Analysis of biomarkers 
such as B cells and IL-4, as an indicator of vaccine efficacy, is the most 
promising approach to overcome the difference in antibody production 
between different models [101,102].

Besides, personal motivation of abandoning treatment causing by the 
complexities related to addiction should be noted. The vaccination 
strategy should be combined with a program of science education to 
minimize treatment misunderstanding and maximize the conversion of 
patients into subjects.

Of course, the search for novel treatment strategies such as nicotine 
catalytic enzyme [103–105] should also be considered when the current 
treatments are ineffective.

It is worth noting that recently the company Cessation Therapeutics, 
Inc. conducted a preliminary clinical trial on the amonoclonal antibody 
CSX-1004 for fentanyl overdose, and the result showed significant safety 
(NCT06005402). It is expected to begin the second phase of efficacy 
trials later. If the results are valid, the company will seek accelerated 
FDA approval within a few years. This indicates that it still exists the 
company that maintains optimistic views and continues to invest in 
development of vaccines for substance use disorders.

5. Conclusions

Although many nicotine vaccines have showed promising effect in 
pre-clinical stages, the efforts in clinical trials have only obtained 
qualified success. These failures help us to understand the complexity of 
clinical trials for vaccines against drug abuse, encouraging researchers 
to draw a lesson and continue to persist in improving vaccines and 
experimental designs. The comprehensive application of different stra-
tegies might help to get a higher success rate of nicotine vaccines. Once 
approved, the strategy of nicotine vaccine would be expected to 
circumvent the side effects associated with central nerve system and 
provide a safe and effective solution for nicotine addiction.
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