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A B S T R A C T   

To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the 
Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of 
subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy 
“protein mixture” (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase 
of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti- 
rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures 
from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen 
cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, 
vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those 
adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective 
immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater 
neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD- 
rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These 
results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine 
adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adju-
vanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate 
the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future 
rational vaccine and adjuvant design.   

1. Introduction 

During the pandemic of COVID-19, scientists showed that vaccina-
tion is one of the most promising actions to prevent infectious diseases 
that affect human health [1]. At record-breaking speed, the scientific 
community has worked jointly to develop different vaccine formulations 

that contribute to the protection of humanity [2]. However, some needs 
persist to improve existing vaccines or produce new ones that guarantee 
the vaccination of the entire world population with democratic and 
broad access, especially in emerging countries. Likewise, the appearance 
of new variants continues today, and the rational design of vaccines that 
adapt to these new COVID-19 variants or those that may arise in the 
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future will continue to be essential to achieve greater efficacy and a 
long-lasting period of protection [3]. Therefore, it is clear that the future 
challenge is to design a wide variety of alternatives to anti-COVID-19 
vaccines or vaccination strategies that guarantee high tolerability and 
low side effects while avoiding reactogenicity. In this regard, subunit 
vaccines based on recombinant proteins or peptides are much safer due 
to they do not contain any pathogenic components and do not cause 
undesirable side effects [4]. However, they tend to be less immunogenic. 
For this reason, the immunogenic capacity of the subunit vaccines 
should be improved by using appropriate adjuvants in the vaccine [1]. 

Adjuvants not only enhance the immunogenic capacity of the vac-
cine formulation but also contribute to decreasing the amount of antigen 
needed for each vaccine dose or reducing the number of vaccine doses 
[5]. In addition, adjuvants stimulate a Th2-biased immune response, 
enhancing antibody production [6]. In this sense, the Hsp90s have been 
extensively studied, and their immunomodulatory properties have 
contributed significantly to improving vaccine design against infectious 
diseases caused by intracellular pathogens [7]. The HSP90s from bac-
teria, parasites, and mammals even from plants have been used as ad-
juvants in vaccine formulations, such as fusion proteins, complexes 
peptides/HSP90, or as mixtures of peptides + HSP90 [8]. Although the 
most used strategies in the design of vaccines based on HSP90 as adju-
vants consist of the covalent union or formation of a union complex 
between the antigenic peptides and these chaperones, the mix of the 
HSP90 with the antigens of interest is a valuable strategy [9–14]. Several 
works showed that antigenic peptides + HSP90 administration as a 
mixture can modulate the humoral and cellular immune responses 
produced against the antigens, improving protection against intracel-
lular pathogens such as parasites and viruses [8,13,15–17]. Recently, 
results obtained by our group showed that different Hsp90 isoforms 
derived from plants differentially modulate immune response profiles. 
We observed that the Hsp90 fused to the peptide would elicit a Th1 
immune response, while the mixture of Hsp90 + peptide induces a Th1/ 
Th2 immune response against the antigens [7,14,17]. Hsp90 from plants 
has the advantage of being a safe source with which humans have per-
manent contact. However, this advantage over other adjuvant systems 
still requires a greater understanding of the role and capabilities of plant 
Hsp90 (pHsp90) in immune response modulation. This result implies an 
increase in the number of vaccine models. Taking advantage of the fact 
that SARS-CoV2 is still a permanent infection in the world and a model 
of how the generation of alternative vaccines allowed us to control the 
effects of this pandemic, here, we propose the use of a short version of 
the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, 
the main candidate in the development of subunit vaccines. We evalu-
ated humoral and cellular immune responses against RBD through the 
strategy “protein mixture” (adjuvants + antigens). Furthermore, in this 
work, we analyzed the potential of the different formulations studied to 
neutralize viral infections. 

2. Materials and methods 

2.1. Plasmid construction Receptor Binding Domain 

The Receptor Binding Domain (RBD), residues 401 to 541, from 
Spike protein was reported of SARS-CoV2 Wuham to isolate Wuhan-Hu- 
1, complete genome, NCBI, No. Accession 6XR8_A [18]. The RBD gene 
was synthesized and codon-optimized by GenScript Company (USA) and 
cloned into a 6xHis-pRSET-A expression plasmid to obtain the construct 
pRSET-A-RBD. 

2.2. Expression and purification of recombinant RBD 

The expression of recombinant RBD was induced with 1 mM iso-
propyl-β-d-thiogalactoside (IPTG) for 6 h and soluble RBD was purified 
using a nitrilotriacetic acid-Ni2 + column (Qiagen) [19]. In previous 
works, we observed that the treatment of recombinant antigens with 

endotoxin removal polymyxin B resin does not modify the humoral and 
cellular immune response profiles in comparison with untreated re-
combinant antigens [14,17,19]. The concentration of LPS detected in 
the recombinant proteins was lower than 5 ng/ml [14,17,19]. Therefore, 
the purification of the recombinant AtHsp81.2 and NbHsp90.3 was 
performed under native conditions as mentioned in Bengoa-Luoni et al. 
[17]. 

2.3. Mice and vaccination 

Male and female C57BL/6 (H-2b) 8-week-old mice were purchased 
from the FCEyN-UBA bioterium (Facultad de Exactas y Naturales of 
Universidad Nacional de Buenos Aires). For immunization, mice were 
randomly grouped into seven groups: Group rNbHsp90.3: 6 µg of 
rNbHsp90.3; Group rRBD + rNbHsp81.2: 4 µg of rRBD mixed with 6 µg 
of rAtHsp81.2, Group rRBD + rNbHsp90.3: 4 µg of rRBD mixed with 6 µg 
of rNbHsp90.3, Group PBS (negative control) and Group rRBD + Alum 
(positive control): 4 µg of rRBD mixed with 0.5 mg of Aluminum hy-
droxide. We followed the guide for the care and use of laboratory ani-
mals of Universidad Nacional de General San Martín (CICUAE, IIBIO- 
UNSAM). The mice had access to food and water ad libitum and were 
kept in breeding rooms at 22 ◦C, with a photoperiod of 12 light hours. 

2.4. Antibody response and isotype determination 

rRBD-specific antibodies were analyzed by indirect ELISA as previ-
ously described [13,19]. Sera were obtained from the immunized mice 
at 0-, 21-, 42-, 63-, 84-, and 105- days post-first immunization. Briefly, 
96-well ELISA plates (ExtraGENE) were coated with 5 µg/ml rRBD at 
4 ◦C overnight. For the IgGt determination, rat anti-IgGt-horseradish 
peroxidase conjugate (Cell Signaling Technology Inc) was used as a 
secondary antibody. For the isotype determination, rat anti-mouse IgG1- 
, IgG2b, or IgG2a-horseradish peroxidase conjugates (Sigma-Aldrich) 
were used. Immune complexes were revealed using tetramethyl- 
benzidine substrate (TMB; Invitrogen). Plates were read at 655 nm 
with an ELISA reader (Synergy H1; Bio-Tek). All samples were measured 
by duplicate. 

2.5. Cytokine analysis 

Supernatants from splenocyte cultures obtained from immunized 
mice (2–4 mice per group) at 126 days post-first immunization were 
analyzed to determine the cytokine production as described in Cor-
igliano et al. [20]. Briefly, 2 x 106 cells/well were stimulated with 10 µg/ 
ml of rRBD. As a non-stimulation control, cells were cultured in only a 
medium. The production of IL-4 and IL-10 was measured in the super-
natants at 48 h post-stimulation, while the production of IFN-γ was 
measured at 72 h post-stimulation by capture ELISA kits (Becton 
Dickinson). 

2.6. Co-Immunoprecipitation (Co-IP) 

Co-IP assays were performed as described in Vanagas et al. [21]. 
Briefly, an equimolar mixture of rRBD + rAtHsp81.2, rRBD +

rNbHsp90.3, or rRBD alone was incubated with protein A/G Plusagarose 
(sc-2003, Santa Cruz). Immunocomplexes were first washed with 
washing buffer I (50 mM Tris, pH 8, 200 mM NaCl and 0.05 % Ige-
pal100), then were washed with buffer II (50 mM Tris, pH 8, 300 
mMNaCl and 0.05 % Igepal100), and finally were washed with buffer TE 
(10 mM Tris, pH 8, 1 mM EDTA. The pellet was resuspended in the SDS- 
PAGE loading buffer. Samples were loaded in a 12 % SDS-PAGE gel for 
immunoblotting. A protease inhibitor cocktail (Sigma) was included in 
every step. 
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2.7. Pseudovirus neutralization assay 

Neutralization assays were performed using pseudotyped lentivi-
ruses carrying the Spike protein of SARS-CoV-2 [22,23]. These viruses 
were generated by co-transfection of HEK293T cells with the plasmids 
pCMV14-3X-Flag-SARS-CoV-2 S (gifted by Zhaohui Qian, Addgene 
plasmid #145780), psPAX2 (gifted by Didier Trono, Addgene plasmid 
#12260), and pLentipuro3/TO/V5-GW/EGFP-Firefly Luciferase (gifted 
by Ethan Abel, Addgene plasmid #119816). Transfected cells were 
cultured for 48 h in DMEM supplemented with 10 % FBS and 1 % 
PenStrep at 37 ◦C and 5 % CO2. The supernatant containing viral par-
ticles was collected at 24 and 48 h and subsequently filtered through a 
0.45-µm filter (Millipore). The viral particles were concentrated by 
centrifugation at 3000 x g overnight at 4 ◦C and the pellet was resus-
pended in DMEM. HEK293T cells constitutively ex-pressing human 
angiotensin-converting enzyme 2 (HEK293-hACE2) were used for the 
neutralization assay. One day before the assay, HEK293-hACE2 cells 
were seeded in 50 µl of medium in 96-well plates. Serial dilutions of sera 
(from 1/80 to 1/1280) were prepared in separate 96-well plates and 
incubated with the SARS-CoV-2 pseudotype virus for 1 h at 37 ◦C. Serum 
dilutions of the virus were added to each well of a 96-well plate and 
inoculated for 30 min at 400 × g. After 48 h, transduction efficiency was 
determined via luciferase activity. Transduced cells were lysed by add-
ing 50 µl of 2× lysis buffer (25 mM Tris hydrochloride pH 8, 2 mM 
EDTA, 2 mM DTT, 1 % Triton X-100, and 10 % glycerol) and incubated 
for 10 min with agitation. Twenty µl of the cell lysate was transferred to 
a black 96-well FluoroNunc plate. One hundred µl of the reaction buffer 
containing luciferase substrate (25 mM Tricine hydrochloride pH 7.8, 
0.05 mM coenzyme A, 3.3 mM DTT, 1 mg/mL BSA, 5 mM magnesium 

sulfate, 0.5 mM ATP pH ~7–8 (Sigma-Aldrich), 0.5 mM EDTA pH 8.0, 
0.05 mg/mL D-luciferin (Gold Biotechnology)) was added to initiate the 
reaction. Luminescence was quantified using a microplate reader (DTX 
880; Beckman Coulter). The luciferase units were graphed and stan-
dardized within Prism (GraphPad) by setting a baseline value using cells 
alone as zero and a maximum value of 100 % using a 1:2 virus-alone 
ratio. IC50 values were determined from curve fitting through 
nonlinear regression of log(inhibitor) against the normalized response. 

2.8. Statistical analysis 

Statistical analysis was generated using the Prism 5.0 Software 
(GraphPad). Two-way analysis of variance (ANOVA) was used to 
compare experimental groups with control groups. The values of sig-
nificance were p < 0.5. 

3. Results 

3.1. The novel immune potent recombinant plant Hsp90 adjuvanted anti- 
COVID-19 vaccine, inducing RBD-specific antibodies in mice 

Previously, Jangra et al. [24] showed that the monomeric SARS- 
CoV2 spike protein receptor binding domain (RBD) has lower immu-
nogenicity than the full-length spike (S) protein. Therefore, we selected 
RBD as an antigen for a better understanding of differentiated immune 
responses triggered by novel plant HSP90 (pHSP90) adjuvants. The RBD 
contains the region of the S protein, which binds to the human ACE2 
receptor (hACE2) and allows viral entry. Furthermore, RBD has most 
epitopes targeted by neutralizing antibodies (nAbs) and multiple T-cell 

Fig. 1. The solubilized and purified Arabidopsis thaliana Hsp81.2 (AtHsp81.2), Nicotiana benthamiana Hsp90.3 (NbHsp90.3), and RBD recombinant proteins. A. The 
complete amino acid sequence of the Spike glycoprotein according to ACCESSION 6XR8_A (National Institutes of Health, National Center for Biotechnology In-
formation database)46. The red letter indicates the region cloned to generate rRBD. Highlighted in gray is the ACE2 receptor binding RBD region52. Highlighted in 
yellow is the signal peptide. Highlighted in blue is the cleavage recognition sequence. B. SDS-PAGE analysis under reducing conditions of rAtHsp81.2 and 
rNbHsp90.3 expressed and purified from E. coli Rosetta (DE3) pLys S. C. SDS-PAGE analysis under reducing conditions of rRBD motif expressed and purified from 
E. coli BL21 pLys S. D. C57BL/6 females and males mice were injected intramuscularly with four µg of rRBD alone (rRBD group) or formulated with six µg of 
rAtHsp81.2 (rRBD + rAtHsp81.2 group) or rNbHsp90.3 (rRBD + rNbHsp90.3 group) or with 0.5 mg of alum (rRBD + alum group) or PBS 1X (PBS group). MW: 
prestained molecular weight protein marker. Fig. 1A was created with BioRender.com. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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response epitopes [25–27]. 
The advantage of the recombinant protein strategy is that the region 

expressed can be chosen, minimizing undesirable regions. At the 
beginning of the project, it was still unknown whether undesirable 
epitopes of the spike protein could induce adverse immune responses. 
Therefore, we selected a minimal region containing the Receptor Bind-
ing Motif (RBM) that can efficiently generate neutralizing antibodies. In 
this way, we could reduce undesirable effects if they exist. Fig. 1a shows 
the expressed RBD region (V401 to F541), which includes the ACE2 
binding site (RBM) flanked by 32 and 30 residues at N- and C-terminal 
regions, respectively (Fig. 1A). The solubilized and purified Arabidopsis 
thaliana Hsp81.2 (AtHsp81.2), Nicotiana benthamiana Hsp90.3 
(NbHsp90.3), and RBD recombinant proteins were observed in the pu-
rified fraction of SDS-PAGE (Fig. 1B and 1C). To evaluate whether 
rAtHsp81.2 and rNbHsp90.3 increase rRBD immunogenicity and 
modulate humoral response profile, we immunized C57BL/6J mice 
intramuscularly (i.m.) with 4 µg per mouse of rRBD formulated with 6 µg 
per mouse of rAtHsp81.2 or rNbHsp90.3 at Days 0 and 21 (Fig. 1D). Mice 
in the control groups received only rRBD (4 µg), only adjuvant (6 µg) or 
PBS. We immunized a seventh group with rRBD (6 µg) + alum (0.5 mg) 
as a positive control group. The doses used are in the range of those used 
by us in previous studies to evaluate the adjuvant capacity of pHsp90 
[14,20] as well as those used for immunizations with Spike antigen as 
described [22,28,29]. 

After each injection and during 105 days at 21 interval-days, blood 

was collected and analyzed by an enzyme-linked immunosorbent assay 
(ELISA) using rRBD (Fig. 2A). Mice immunized with rRBD formulated 
with rAtHsp81.2 or rNbHsp90.3 adjuvants induced serum rRBD-specific 
IgG 42 days after the second immunization (Fig. 2B), with significantly 
higher IgG in groups that received adjuvanted versus unadjuvanted 
antigen. Notably, adjuvanted rRBD with alum induced lower antigen- 
specific IgG than adjuvanted antigen with pHsp90 (Fig. 2B). Interest-
ingly, female and male mice immunized with rRBD + rpHsp90s did not 
show differences in the levels of anti-rRBD IgG. However, rRBD + alum- 
immunized female mice showed lower anti-rRBD IgG levels than male 
mice immunized with this formulation (Fig. 2C and 2D). In addition, 
control groups showed minimal antigen-specific IgG. 

To analyze the type of profile of the induced humoral response, we 
measured the subtypes IgG2b, IgG2a, and IgG1 at day 84 post-first im-
munization as a representation of Th1 and Th2-type responses, respec-
tively (Fig. 3A). Similar to other experiences, alum promotes a higher 
IgG1 response compared to IgG2 [30]. On the other hand, although we 
did not observe differences in IgGt levels between both rpHsp90s, we 
noted a different profile regarding the levels of IgG2a/IgG2b and IgG1 
induced by these adjuvants (Fig. 3B–D). Interestingly, whereas 
rAtHsp81.2 induced high levels of IgG1 compared to rNbHsp90.3 and 
non-adjuvanted RBD (Fig. 3B), rNbHsp90.3 induced high levels of 
IgG2a/b, suggesting a Th1-biased immune response (Fig. 3C and D). 
Likewise, analyzing the ratio of IgG1 vs IgG2 levels, alum induces a Th2- 
type response, while AtHsp81.2 induces a mixed Th1/Th2-type 

0 21 42 63 84 105
0.0

0.5

1.0

1.5
Time course IgGt anti-rRBD

dpi

65
5

nm

PBS
rAtHsp81.2
rRBD
rRBD + rAtHsp81.2
rRBD + Alum

****
****
****

****
****
***

****
***
***

****
***
******

* ** *

0 21 42 63 84 105
0.0

0.5

1.0

1.5

Time course IgGt anti-rRBD females

dpi

65
5

nm

PBS
rAtHsp81.2
rRBD
rRBD + rAtHsp81.2
rRBD + Alum

**
***

****
****
****
**

****
****
****
**

****
**

****

****
***
***
*

*
*

*** **
**

0 21 42 63 84 105
0.0

0.5

1.0

1.5

Time course IgGt anti-rRBD males

dpi

65
5

nm

PBS
rAtHsp81.2
rRBD
rRBD + rAtHsp81.2
rRBD + Alum

****
*****
*****

***
******
**

**********
***
**

****
**
***

****
**** ****

**** ****
***

****
***

0 21 42 63 84 105
0.0

0.5

1.0

1.5

Time course IgGt anti-rRBD

dpi

65
5

nm

PBS
rNbHsp90.3
rRBD
rRBD + rNbHsp90.3
rRBD + Alum

*

****
****

****
**
**

****
****
****

****
****
****

*
**

0 21 42 63 84 105
0.0

0.5

1.0

1.5

Time course IgGt anti-rRBD females

dpi

65
5

nm

PBS
rNbHsp90.3
rRBD
rRBD + rNbHsp90.3
rRBD + Alum

**
**

*** **
**

*
*

****
***
****
**

****
**

****
**

****
*

****

****
*

****
***

0 21 42 63 84 105
0.0

0.5

1.0

1.5

Time course IgGt anti-rRBD males

dpi

65
5

nm

PBS
rNbHsp90.3
rRBD
rRBD + rNbHsp90.3
rRBD + Alum

****
**** ****

**** **
*

****
****
****

****
****
****

****
**
**

****

A

B

Days

0 21 42 63 84 105

Elisa
IgGt

serum

PBS: n: 4, = 2, = 2

rAtHsp81.2: n: 4, = 2, = 2

rNbHsp90.3: n: 4, = 2, = 2

rRBD: n: 4, = 2, = 2

rRBD + rAtHsp81.2: n: 6, = 3, = 3

rRBD + rNbHsp90.3: n: 6, = 3, = 3

rRBD + Alum: n: 4, = 2, = 2

C D

Fig. 2. Two immunizations with rRBD adjuvanted with rAtHsp81.2 or rNbHsp90.3 are sufficient to induce a robust IgG total response in both female and male mice. 
A. Study design including vaccination, sampling time points, and ELISA. The vaccination was performed twice at 21-day intervals via intramuscular route. Blood 
samples were collected at 0-, 21-, 42-, 63-, 84-, and 105-days post-vaccination in mice for serological assays. B-D. rRBD-specific IgG levels in both female and male 
mice (B), in female mice (C) and male mice (D). Data are presented as mean ± SEM. Statistical analyses were performed using two-way ANOVA with Tukey’s 
multiple comparisons test. *p < 0.05; **p < 0.01; ***p < 0.001, and ****p < 0.0001 shown only for rAtHsp81.2/rNbHsp90.3/Alum + rRBD compared to other 
goups. Fig. 2A was created with BioRender.com. A representative experiment of 3 independent replicates with similar results is shown. 
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response, and NbHsp90.3 induces a Th1-type immune response 
(Fig. 3B–D). 

3.2. RBD immunization with different recombinant plant Hsp90 
adjuvants induces a distinctive profile of cytokines 

To evaluate the cellular immune response induced by vaccination, 
we immunized five groups as follows: two groups of four mice each 
received rRBD adjuvanted with AtHsp81.2 or rRBD adjuvanted with 
NbHsp90.3, and the remaining three groups of two mice each received 
non-adjuvanted rRBD, rRBD adjuvanted with alum or PBS (Fig. 4A). At 
126 days post-first immunizations, splenocytes were isolated, which 
were stimulated with rRBD to measure the levels of IFN-γ, IL-10, and IL- 
4 in the supernatants by indirect ELISA (Fig. 4B–D). 

We observed that splenocytes from mice vaccinated with rRBD 
adjuvanted with AtHsp81.2 secreted increased levels of IL-4 upon 
stimulation, a Th2 cytokine, compared to non-adjuvanted rRBD group 
(Fig. 4B). Interestingly, cells collected from the spleens of animals 
immunized with rRBD adjuvanted with NbHsp90.3 produced signifi-
cantly higher, IFN-γ levels, a Th1 cytokine, compared to PBS, non- 
adjuvanted rRBD and rRBD adjuvanted with AtHsp81.2 groups 
(Fig. 4D). At the same time, NbHsp90.3 and alum adjuvanted groups 
showed a significant increase in IL-10 secretion compared to non- 
adjuvanted rRBD and rRBD adjuvanted with AtHsp81.2 groups 
(Fig. 4D). In addition, stimulated splenocyte from mice from all the 
included groups induced significant IL-10 secretion compared to non- 
stimulated splenocytes (Fig. 4D). In summary, in vivo studies in the 
mouse model demonstrated that adjuvating rRBD (in low dose) with 
rNbHsp90.3 or rAtHsp81.2 induced potent humoral and cellular im-
mune responses, but with differences in the cytokine profile elicited, 
that were higher than those elicited by the formulation adjuvanted with 

alum. 

3.3. Vaccination with rRBD adjuvanted with NbHsp90.3 but not rRBD 
adjuvanted with AtHsp81.2 elicits SARS-CoV2 neutralizing antibody 
responses 

To investigate the adjuvant capacity of each pHsp90 to enhance 
protection against infection with a SARS-CoV2 variant, we analyzed the 
virus neutralization capability of sera from mice immunized with rRBD 
adjuvanted with AtHsp81.2 or with NbHsp90.3 at 42 days post-first 
immunization. For the neutralization assay, we use a lentivirus-based 
pseudovirus (PSV) (Fig. 5A). Sera were incubated with entry into 
hACE2 expressing HEK293T cells and quantified as a function of the 
luciferase reporter gene transduction. We found that while both adju-
vants enhanced the immunogenicity of rRBD, each adjuvant formulation 
showed differences in neutralizing antibody capacity. and less so in the 
rRBD + rAtHsp81.2 group (Fig. 5B and C). In the alum group, we did not 
detect neutralizing-antibody responses. Although a positive correlation 
is expected between the presence of antibodies and their neutralizing 
power, some works showed that the mere presence of antibodies does 
not guarantee neutralization [31], partly because of the quality of the 
antibodies due to conformational changes of the neutralizing epitopes 
[32–34]. In this sense, it cannot be ruled out that immunization sched-
ules and/or the dose used in the vaccine formulations may have affected 
the neutralizing efficiency of the antibodies. Therefore, it is possible that 
the quantity or quality of the antibodies from the RBD + alum group was 
not optimal for demonstrating neutralization. The rRBD adjuvanted 
with rNbHsp90.3 group had high nAb titers (1:365) and also signifi-
cantly higher titers than the alum, non-adjuvanted antigen, and PBS 
groups (Fig. 5B). In addition, nAbs (<1:160) against the PSV were 
detected in at least some animals in rRBD adjuvanted with AtHsp81.2 
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Fig. 3. Different profile of humoral responses induced by rRBD adjuvanted with rAtHsp81.2 versus rNbHsp90.3. A. Study design including vaccination, sampling 
time points, and ELISA. The vaccination was performed twice at 21-day intervals via intramuscular route. B-D. rRBD-specific IgG subclass antibodies for IgG1 (B), 
IgG2b (C), and IgG2a (D), were measured at 84 days post-vaccination. Data are presented as mean ± SEM. Statistical analyses were performed using two-way ANOVA 
with Tukey’s multiple comparisons test. *p < 0.05; **p < 0.01; ***p < 0.001, and ****p < 0.0001 shown only for rAtHsp81.2/rNbHsp90.3/Alum + rRBD compared 
to other groups. Fig. 3A was created with BioRender.com. A representative experiment of 3 independent replicates with similar results is shown. 
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group (Fig. 5C). While rRBD + rNbHsp90.3 and rRBD + rAtHsp81.2 
formulations elicited similar rRBD-specific IgG levels, the higher nAb 
titers observed with rNbHsp90.3 suggest improved antibody quality. 

3.4. Complex assembly of rRBD with rNbHsp90.3, but not with r 
AtHsp81.2 

An intriguing question of our model is whether both chaperones 
must form complexes to generate an effective immune response that 
affects the accompanying antigens [8]. With this idea in mind, we per-
formed co-immunoprecipitation (co-IP) assays. rNbHsp90.3 or 
rAtHsp81.2 were mixed separately with the rRBD antigen and, after 
incubation, were co-IP with their respective antibodies (Fig. 6A). Fig. 6B 
shows that rRBD interacted with rNbHsp90.3, but not with rAtHsp81.2 
confirming the assembly of the rRBD/rNbHsp90.3 complex. Co-IP per-
formed by using rRBD alone as a control shows no reactivity with any of 
the antibodies assayed (Fig. 6C and Supplementary Fig. 1S). These data 
indicate that the greater neutralizing capacity observed in the rRBD 
adjuvanted with rNbHsp90.3 group would be given by the rRBD- 
rNbHsp90.3 interaction rather than by the quality of the immune 
response triggered by the adjuvants. 

4. Discussion 

The pandemic produced by SARS-CoV2 showed the importance of 
having a massive battery of safe immunization systems to respond 
quickly and stop its spread, saving a large proportion of the population 

from death, alleviating the health-system collapse, and breaking off the 
economic debacle. It is worth mentioning that in a record time, a large 
set of vaccines were approved (less than a year) throughout 2020, and 
around the world, nearly 11 billion vaccines were administered. 

Although previous studies carried out on vaccines against Ebola or 
Mers-CoV have contributed to laying the foundations for vaccine 
development in pandemic situations [35], the pandemic experience with 
SARS-CoV2 consolidated the concept of rapid approval of vaccines 
through the intervention of international organizations such as the Food 
and Drug Administration (FDA) and the European Medicines Agency 
(EMA) for health emergencies [36]. A vaccine against SARS-CoV2 
named ArVac-CG, based on a recombinant RBD antigen, was recently 
approved in Argentina [37]. Although this establishes solid foundations 
for future pandemic experiences that could take place in Argentina, 
emerging and socially and economically vulnerable countries remain at 
a disadvantage if new pandemic situations happen again. For this 
reason, the production of vaccines and their equitable distribution 
worldwide will require more significant deployment than those 
observed during this pandemic. In this sense, we consider it essential to 
continue incorporating safe vaccine models that can be quickly 
approved and that can also be produced in large quantities at acceptable 
costs. 

Hsp90s have mainly contributed to improving vaccine development 
against infectious diseases, especially against intracellular pathogens. 
Several reports have demonstrated that Hsp90s from different sources 
are potent adjuvants, generating an appropriate immune response 
against infectious diseases [8]. Here, we showed that plant Hsp90 can be 

Fig. 4. rRBD adjuvanted with rNbHsp90.3 or rAtHsp81.2 shows differences in cytokine profile. A. Study design including vaccination, sampling time points, and 
cytokine measurement. At 126 days post-vaccination, levels of secreted cytokines were measured in the cell supernatant by sandwich ELISA for IL-4 (B), IFN-γ (C), 
and IL-10 (D). Data are presented as mean ± SEM. Statistical analyses were performed using two-way ANOVA with Tukey’s multiple comparisons test. *p < 0.05; 
**p < 0.01; ***p < 0.001, and ****p < 0.0001 shown only for rAtHsp81.2/rNbHsp90.3/Alum + rRBD compared to other groups. Fig. 4A was created with BioR 
ender.com. A representative experiment of 2 independent replicates with similar results is shown. 
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used as an efficient adjuvant to stimulate an effective immune response 
against a recombinant form of the SARS-COV2 RBD antigen. We 
observed that NbHsp90.3 generated the production of neutralizing an-
tibodies and a Th1-type cellular immune response with the production 
of IFN-γ. On the contrary, AtHp81.2 induced a mixed Th2 humoral 
immune response with IL-4 production. In general, Hsp90s derived from 
different organisms, including those from plants, had already been 
shown to have immunogenic capacities and immunomodulatory prop-
erties7 but had not yet been studied as adjuvants for SARS-COV2. The 
fact that both pHsp90s generated different types of immune responses 
could be an advantage when choosing one or the other adjuvant. One of 
the most commonly used adjuvants for vaccine development in emer-
gencies, which is allowed for use in humans, is aluminum salts, which 
are also widely used in vaccination for COVID-19 [3]. Aluminum salts 
act to stimulate immune responses, especially of the Th2 type [38,39], 
related to the B lymphocyte stimulation for antibody production inde-
pendent of TLR and CD4+ T helper cell responses [40]. In general, this 
kind of activation is poor [41]. Therefore, alum adjuvants are used with 
other salts or adjuvants to enhance the response. For emergencies, a 
combination of imidazoquinoline class molecules (TLR7 and TLR8 
agonist) adsorbed onto alum has also been approved for use in humans 
[42]. This combination facilitates the generation of cell-mediated im-
munity [43,44]. In addition, other adjuvants used with recombinant 
proteins for anti-COVID-19 vaccines are CpG, SQBA, AS03, and MF59, 
among others [3,22]. The advantage of using a plant version of Hsp90 as 
an adjuvant is that this protein is a natural plant compound with which 
humans can maintain permanent contact without showing toxicity. 
pHsp90s have been shown to stimulate the humoral and cellular im-
mune response through cross-presentation by the internalization of 

exogenous Hsp90s complexed to or fused to a peptide in early endo-
somes and the induction of inflammatory cytokines via TLR4 and TLR2 
[8]. Similarly, pHsp90 has been shown to stimulate humoral and cellular 
responses in other models [14,17] in addition to interacting with TLR4 
to mediate MHC I activation [8,20]. This would provide a new type of 
adjuvant to expand the vaccine production possibilities in general and in 
future pandemics. 

As far as we know, the RBD protein (V401; F541) analyzed in this 
work is a shorter version than others previously studied. Mainly, it is 
smaller in the N-terminal region than several of those already used, such 
as NARUVAX-C19 (Q321, S521) [45], ArVac-CG (319R, 537 K)[37] or 
(R328, T531) [22]. All of these were effective in eliciting a protective 
immune response. Once again, it shows the versatility of recombinant 
techniques to design responsive antigens limited to the region of inter-
est. Our strategy was to present the RBD to the immune system to obtain 
neutralizing antibodies. However, we also detected a cellular response 
in mice immunized with rRBD adjuvanted with NbHsp90.3, even though 
no T epitopes have been identified in this fragment during natural 
infection [46]. This fact may suggest that Hsp90 could help antigen 
presentation exogenously [47,48] or through the internalization of the 
peptides from the endosome to the cytosol by the proteasome to the re- 
presentation of Hsp90-associated peptides [8,49], at the same time that 
Hsp90s per se could trigger the secretion of cytokines. 

Hsp90s are specialized chaperones that can bind to a group of client 
proteins that are not necessarily unfolded [50]. Therefore, it is unknown 
whether its role as an adjuvant is due to its intrinsic capacity to stimulate 
the immune response in the formulation or is due to its ability to bind the 
immunogen as occurs in cancer models [51–55]. Here, we observed that 
of the two chaperones, only rNbHsp90.3 would form a complex with 

Fig. 5. rRBD adjuvanted with recombinant plant Hsp90 elicits a neutralizing antibody response. A. Schematic diagram of the vaccination and neutralization study. B- 
C. Anti-RBD neutralizing activity by virus neutralization tests in rRBD + rNbHsp90.3 group (B), and rRBD + rAtHsp81.2 group (C) 42 days post-immunization. Data 
are presented as the mean ± SEM. Statistical analyses were performed using a two-way ANOVA with Tukey’s multiple comparison test. *p < 0.05; **p < 0.01; and 
***p < 0.001 shown only for rAtHsp81.2/rNbHsp90.3 + rRBD compared to other groups. Fig. 5A was created using BioRender.com. A representative experiment 
with independent replicates and similar results is shown. 
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rRBD, while the rAtHsp81.2 + rRBD formulation would only be a 
mixture. Interestingly, the rRBD/rNbHsp90.3 complex induced an im-
mune response towards a Th1 profile, which correlates with the 
immunomodulatory properties commonly described for Hsp90s [8], 
while the formulation with AtHsp81.2 would elicit an immune response 
towards a Th2 profile, which is likely for a recombinant antigen alone. 
This implies that although this mixing strategy has the advantage of 
being quickly developed, it will be necessary to guarantee that the an-
tigen and the adjuvant form complex in future vaccine formulations if a 
Th1 profile is required. In this sense, we hypothesize that differences in 
the immune activation mechanisms of both chaperones may explain the 
profile of the triggered response. While rNbHsp903 would be presenting 
the complexed antigen to the immune system through MHC I on DCs for 
T cell activation, rAtHsp81.2 could help to stimulate the immune 
response generated by rRBD as a conventional adjuvant. However, we 
cannot rule out that these differences in the profile of the immune 
response observed are related to differences in the intrinsic properties of 
each chaperone or to the structure and characteristics of each antigen. 
Likewise, in cases where the antigen and the adjuvant do not generate a 
complex or the antigen/adjuvant mixture does not trigger a potent 
protective response, another alternative is the “fusion protein” strategy. 
However, it is more laborious, and the expression levels of the recom-
binant proteins vary from case to case. In this case, it was also shown to 
be highly efficient in generating an adequate immune response [7,8,14]. 

5. Conclusion 

The emergence of the SARS-CoV-2 pandemic was a major global 
challenge for the entire health, research, and vaccine production sys-
tems in record time. Initially, numerous studies briefly addressed the 
lack of knowledge about the characteristics of the infection. Soon, it was 
clear that the vaccine would be a fundamental tool to control the 

infection. Fast-track approval has promoted the use of different vac-
cines. In that sense, there is some uncertainty about the efficiency and 
feasibility of a safe vaccine. Fortunately, all the vaccines generated and 
approved have shown to be protective and with few adverse effects. 
However, having several vaccine systems is advantageous to enable a 
better response for this type of situation. In addition to the immunogenic 
properties of pHsp90s being similar to those observed in other Hsp90s, 
they would be a safe system for humans since it is a chaperone with 
which, as already mentioned, there is permanent contact through food. 
We were able to show that pHsp90 can indeed be an adjuvant to take 
into account for the development of anti-COVID-19 vaccines. Interest-
ingly, we also show that these properties may be related to their ability 
or not to form complexes with the antigen of interest, which should be 
analyzed on a case-by-case basis. 
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