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A B S T R A C T   

Purpose: Clinical risk scores are essential for predicting outcomes in stroke patients. The advancements in deep 
learning (DL) techniques provide opportunities to develop prediction applications using magnetic resonance 
(MR) images. We aimed to develop an MR-based DL imaging biomarker for predicting outcomes in acute 
ischemic stroke (AIS) and evaluate its additional benefit to current risk scores. 
Method: This study included 3338 AIS patients. We trained a DL model using deep neural network architectures 
on MR images and radiomics to predict poor functional outcomes at three months post-stroke. The DL model 
generated a DL score, which served as the DL imaging biomarker. We compared the predictive performance of 
this biomarker to five risk scores on a holdout test set. Additionally, we assessed whether incorporating the 
imaging biomarker into the risk scores improved the predictive performance. 
Results: The DL imaging biomarker achieved an area under the receiver operating characteristic curve (AUC) of 
0.788. The AUCs of the five studied risk scores were 0.789, 0.793, 0.804, 0.810, and 0.826, respectively. The 
imaging biomarker’s predictive performance was comparable to four of the risk scores but inferior to one (p =
0.038). Adding the imaging biomarker to the risk scores improved the AUCs (p-values) to 0.831 (0.003), 0.825 
(0.001), 0.834 (0.003), 0.836 (0.003), and 0.839 (0.177), respectively. The net reclassification improvement and 
integrated discrimination improvement indices also showed significant improvements (all p < 0.001). 
Conclusions: Using DL techniques to create an MR-based imaging biomarker is feasible and enhances the pre
dictive ability of current risk scores.   

1. Introduction 

Stroke is one of the leading causes of death and adult disability 
worldwide, and its incidence and prevalence have increased over the 
past 30 years [1]. About 25 percent of adults aged 25 or older will 
experience a stroke during their lifetime [2]. Predicting functional 
outcomes after a stroke is essential for clinicians to make informed 
treatment decisions. It also provides patients and their families with 
valuable information regarding the expected recovery process. 

Numerous clinical risk scores have been developed using regression 
analysis based on a combination of patient characteristics and clinical 
data to predict functional outcomes following acute ischemic stroke 
(AIS) [3–5]. In addition to conventional regression-based methods, 
machine learning algorithms have become popular in constructing 
prognostic models for AIS [6,7]. Moreover, infarct volume and location 
significantly predict functional outcomes in AIS [8,9]. Therefore, im
aging features derived from non-contrast computed tomography (CT) 
[10,11], CT perfusion [12], CT angiography [11], and magnetic 
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resonance (MR) imaging [13–17] are increasingly used alongside clin
ical data in the prognostication of AIS. 

Although clinical risk scores can be easily calculated or derived, re
searchers constantly search for new biomarkers to enhance or refine risk 
prediction [18,19]. With the advancements in artificial intelligence, 
deep learning (DL) techniques have shown impressive capabilities in 
medical diagnoses and prognostication. Image biomarkers directly 
extracted from histology or radiographic images using DL have shown 
potential for predicting survival and therapy response in cancer patients 
[20,21]. 

Motivated by the studies mentioned above, this study aimed to 
investigate whether a DL-based imaging biomarker could help predict 
functional outcomes of AIS. Specifically, we constructed a DL model that 
generates a DL score, representing the probability of poor recovery, and 
assessed its added value to clinical risk scores. 

2. Material and methods 

2.1. Study settings and data sources 

The single-center retrospective study took place in a tertiary teaching 
hospital with a certified comprehensive stroke center. The study hospital 
employed non-contrast CT and multi-phase CT angiography for 
screening AIS patients for reperfusion therapies, including intravenous 
thrombolysis and mechanical thrombectomy. MR imaging was per
formed for follow-up. 

The study data was obtained from the hospital stroke registry, which 
collected data on demographic characteristics, risk factors, comorbid
ities, interventions, complications, and outcomes of stroke patients. 
Stroke severity was assessed using the National Institutes of Health 
Stroke Scale (NIHSS), while functional outcomes were evaluated using 
the modified Rankin Scale (mRS). Brain MR images were obtained from 
the hospital’s picture archiving and communication system (PACS). The 
study protocol was approved by the Institutional Review Board of the 

Fig. 1. Flowchart showing the derivation of the study population. AIS: acute ischemic stroke; MR: magnetic resonance; PACS: picture archiving and communica
tion system. 
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study hospital. 

2.2. Study population 

This study focused on adult patients hospitalized for AIS within 10 
days of stroke onset between October 2007 and September 2021 (Fig. 1). 
Only the earliest hospitalization for each patient was considered. 

Inclusion criteria required patients to have undergone MR imaging be
tween 1 and 7 days post-stroke. Exclusion criteria were in-hospital 
strokes, patients with missing clinical data, and those with unavailable 
MR images. Additionally, patients who were lost to follow-up at three 
months post-stroke were eliminated from the study. 

Fig. 2. The end-to-end network architectures for training (A) and prediction (B). ADC: apparent diffusion coefficient; DWI: diffusion-weighted imaging; iAFF: 
iterative attentional feature fusion; MLP: multilayer perceptron; ResNet50: 50-layer residual network; SCL: supervised contrastive learning. 
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2.3. Clinical risk scores 

We utilized five clinical risk scores (Supplementary Table 1) that rely 
on clinical variables available at admission as the original prognostic 
models for comparison. The first model was the NIHSS score. The second 
model was the Stroke Prognostication using Age and NIHSS (SPAN) 
index, calculated by adding the patient’s age and NIHSS score. It is a 
simple method for predicting functional outcomes in stroke patients 
treated with intravenous thrombolysis [3] and those undergoing me
chanical thrombectomy [22]. The third model was the preadmission 
comorbidities, level of consciousness, age, and neurologic deficit (PLAN) 
score [23], which was developed to predict 30-day and 1-year mortality, 
as well as an mRS score of 5–6 at discharge. The fourth model, the Dutch 
Stroke Score (DSS) [5], was developed to predict a poor functional 
outcome (mRS > 2) at three months post-stroke. The fifth model was 
derived from a cohort of patients from the Acute Stroke Registry and 
Analysis of Lausanne (ASTRAL) [24]. It was designed to predict a 3- 
month poor functional outcome (mRS > 2). 

2.4. Outcome variable 

The outcome variable was a poor functional outcome as assessed 
using the mRS score at three months post-stroke. The mRS score was 
dichotomized into a poor functional outcome (mRS score of 3–6) versus 
a good functional outcome (mRS score of 0–2). 

2.5. Deep learning imaging biomarker 

For additional details, please consult the Supplementary Methods. 
The subsequent paragraphs offer a concise overview of the modeling 
process. 

We developed an end-to-end DL model to predict outcomes at three 
months post-stroke. The network utilized DWI (b = 1000 s/mm2) and 
ADC image sequences as inputs. During the training phase, we addi
tionally used PyRadiomics to extract 11,358 radiomic features [25], 
including first-order statistical, grayscale, and shape-based features, 
from each DWI image sequence. The whole brain parenchyma was used 
for extracting radiomic features. 

The network has different architectures for training and prediction. 
Fig. 2A illustrates the architecture for training the network. The lower 
branch of the training architecture utilizes the 50-layer residual network 
(ResNet50) [26] with the iterative attentional feature fusion (iAFF) 
module [27] as an encoder. Additionally, radiomic features undergo 
dimension reduction by a multilayer perceptron (MLP) and are projected 
to Zr using a second MLP. Supervised contrastive learning is employed to 
align the feature space of ZDWI and Zr. This alignment aims to enhance 
the feature extraction capability of the iAFF-ResNet50 encoder, enabling 
it to simultaneously learn low-level features extracted directly from 
images and high-level radiomic features. The upper branch of the ar
chitecture employs another iAFF-ResNet50 encoder to extract features 
from the input ADC sequences. The features extracted from ADC and 
DWI (fADC and fDWI) are fused and subsequently passed through a fully 
connected layer to generate classification results. 

Fig. 2B illustrates the architecture of the prediction network. This 
architecture uses only the features extracted from ADC and DWI se
quences by the iAFF-ResNet50 encoders as inputs. Instead of directly 
extracting radiomic features, the encoder for the DWI sequences is uti
lized because it has already learned how to extract both low-level 
(image-level) and high-level (radiomic) features during the training 
stage. The prediction network generated the DL score for each patient in 
the test set, namely the DL imaging biomarker. 

In addition to the proposed model, we trained several baseline 
models to compare their performance. The first two models used DWI or 
ADC images as the only input and were trained using the ResNet50 [26]. 
The third model used radiomic features extracted from DWI images as 
the input and was trained using a four-layer MLP network. Finally, we 

created a model that performed score fusion on the scores generated by 
the first three baseline models. The performance of each model was 
evaluated on the validation and test sets, with the primary evaluation 
metric being the area under the receiver operating characteristic curve 
(AUC). 

2.6. Statistical analysis 

Categorical variables are presented as counts and percentages, while 
continuous variables are reported as means (standard deviations) or 
medians (interquartile ranges). Differences between groups were tested 
using Chi-square tests for categorical variables and t-tests or Mann- 
Whitney U tests for continuous variables, as appropriate. 

Logistic regression was performed by including one of the clinical 
risk scores and the DL imaging biomarker to determine the independent 
effect of the biomarker on the outcome. The model discrimination of the 
original prognostic models and those enhanced by the DL imaging 
biomarker was evaluated on the test set using the AUC [19]. AUCs were 
calculated and compared using the DeLong method. The model cali
bration was assessed using the Hosmer-Lemeshow goodness-of-fit test 
and a visual inspection of the calibration plot, which shows the observed 
risk versus the predicted risk. Additionally, the continuous net reclas
sification improvement (NRI) and integrated discrimination improve
ment (IDI) indices [28] were estimated. Higher values of NRI and IDI 
indices indicate superior discrimination. 

All statistical analyses were performed using Stata 15.1 (StataCorp, 
College Station, Texas) and R version 4.2.1 (R Foundation for Statistical 
Computing, Vienna, Austria). Two-tailed p-values of 0.05 were consid
ered significant. 

3. Results 

The study population (Table 1) included 3338 patients (2018 males, 
1320 females), with an average age of 68.9 years (standard deviation 
12.7 years). Among these patients, 1514 (45.4 %) experienced a poor 
functional outcome three months after having a stroke. Patients with 
poor functional outcomes were older, more likely to be female, and more 
likely to have hypertension, diabetes, atrial fibrillation, congestive heart 
failure, cancer, and pre-stroke dependence. However, they were less 
likely to have hyperlipidemia than those with good functional outcomes. 
Additionally, patients with poor functional outcomes had significantly 
higher levels of glucose, NIHSS, SPAN, PLAN, DSS, and ASTRAL scores. 

3.1. Model performance 

The training set consisted of 2018 patients, while the validation and 
test set each included 660 patients (Fig. 1). Supplementary Table 2 
presents the results of four baseline models and our model on the vali
dation set. Our proposed model achieved the highest AUC (0.804) on the 
validation set, which was significantly higher than models using DWI 
images (0.747, p < 0.001), ADC images (0.758, p = 0.006), or radiomic 
features (0.778, p = 0.032) as the sole input. However, our proposed 
model showed comparable performance to the model using score fusion 
(0.789, p = 0.237). 

On the test set (Supplementary Table 3), our proposed model ach
ieved the highest AUC (0.788), which was significantly higher than 
models using DWI images (0.733, p = 0.001) or ADC images (0.730, p =
0.003) as the only input. It performed similarly to models using radiomic 
features (0.769, p = 0.144) or score fusion (0.780, p = 0.566). The DL 
score generated by our proposed model was used as the DL imaging 
biomarker in the subsequent analysis. 

Fig. 3 displays the receiver operating characteristic curves and AUC 
values of the original prognostic models and the DL imaging biomarker 
in the test set. The DL imaging biomarker achieved an AUC of 0.788, 
which was comparable to the AUC values of the NIHSS (0.789, p =
0.947), SPAN (0.793, p = 0.778), PLAN (0.804, p = 0.376), and DSS 
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score (0.810, p = 0.237), but was inferior to the AUC value of the 
ASTRAL score (0.826, p = 0.038). 

Supplementary Table 4 shows the odds ratio and the corresponding 
p-value of the DL imaging biomarker in each enhanced model. After 
controlling for the clinical risk score, the DL imaging biomarker was 
significantly associated with poor functional outcomes. Table 2 com
pares the performance of the original and enhanced prognostic models 
in predicting poor functional outcomes at three months post-stroke. The 
original prognostic models had AUCs ranging from 0.789 to 0.826. 
When the DL imaging biomarker was added to the original models, their 
AUCs increased to a range of 0.825–0.839. The increase in AUC was 
statistically significant for NIHSS, SPAN, PLAN, and DSS scores. The NRI 
and IDI indices (Table 2) also showed a statistically significant 
improvement in predictive performance for all original prognostic 
models with the addition of the DL imaging biomarker. 

Fig. 4 displays the calibration plots of the original and enhanced 
models. It demonstrates that the DL imaging biomarker-enhanced 
models were generally better calibrated than the original models. This 
is evidenced by the closer distribution of all points around the 45-degree 
line and the lower Hosmer-Lemeshow statistics. 

3.2. Exemplary cases 

We present two case examples to underscore the clinical relevance of 
these predictions in patients with AIS. The first case involves a 72-year- 
old woman who exhibited progressive right-sided weakness and slurred 
speech. She has a medical history of diabetes and hypertension. Her MR 
imaging revealed a hyperintense area on the DWI (Fig. 5A) and hypo
intensity on the ADC maps (Fig. 5B) on the left side of the pons. Her 
scores were as follows: NIHSS 9, SPAN 81, PLAN 11, DSS 11, and 
ASTRAL 26. Her three-month mRS score was 2, indicating a good 
functional outcome. Based on these clinical risk scores, she was expected 
to have a more than 50 % chance of a poor functional outcome. How
ever, when the DL imaging biomarker was added, all enhanced prog
nostic models predicted a low risk of a poor functional outcome. The 
predicted probabilities of a poor functional outcome were 28 %, 28 %, 
36 %, 36 %, and 33 %, respectively. 

In the second case, an 82-year-old man presented with acute dizzi
ness, vomiting, and slurred speech. He has a medical history of hyper
tension and atrial fibrillation. His MR imaging showed multiple patch- 
like hyperintense lesions on the DWI (Fig. 5C) with low signals on the 
ADC maps (Fig. 5D) in bilateral cerebellar hemispheres and right-sided 
medulla. His scores were as follows: NIHSS 4, SPAN 86, PLAN 15, DSS 8, 
and ASTRAL 23. His mRS score was 4 at three months post-stroke, 
meaning a poor functional outcome. According to the NIHSS, DSS, and 
ASTRAL scores, he had a less than 50 % chance of having a poor func
tional outcome. However, after incorporating the DL imaging 
biomarker, the predicted probability of a poor functional outcome 
increased to 54 %, 56 %, and 60 %, respectively. 

4. Discussion 

This study found that the DL imaging biomarker obtained from MR 
images can help predict the functional outcome after AIS. This imaging 
biomarker significantly predicted poor functional outcomes at three 
months post-stroke, independent of the clinical risk score. Additionally, 
it enhanced the predictive capability of the clinical risk scores regarding 
model discrimination and calibration. 

4.1. Rationale of DL imaging biomarker 

After vessel occlusion, DWI can demonstrate the ischemic brain tis
sue within minutes, with a reduction of the ADC. DWI is more sensitive 
than CT in detecting early infarction [29]. Moreover, the infarct volume 
measured as early as 24 h on DWI strongly correlates with the final 
infarct volume measured on fluid-attenuated inversion recovery 

Table 1 
Characteristics of the study population.  

Characteristic All 
N =
3338 

Good functional 
outcome 
(n = 1824) 

Poor functional 
outcome 
(n = 1514) 

P 

Age, mean (SD) 68.9 
(12.7) 

65.2 (12.5) 73.5 (11.4)  <0.001 

Female 1320 
(39.5) 

617 (33.8) 703 (46.4)  <0.001 

Hypertension 2633 
(78.9) 

1393 (76.4) 1240 (81.9)  <0.001 

Diabetes 1404 
(42.1) 

700 (38.4) 704 (46.5)  <0.001 

Hyperlipidemia 1913 
(57.3) 

1096 (60.1) 817 (54.0)  <0.001 

Atrial fibrillation 536 
(16.1) 

192 (10.5) 344 (22.7)  <0.001 

Congestive heart 
failure 

131 (3.9) 44 (2.4) 87 (5.7)  <0.001 

Cancer 238 (7.1) 100 (5.5) 138 (9.1)  <0.001 
Pre-stroke 

dependence 
290 (8.7) 23 (1.3) 267 (17.6)  <0.001 

Onset-to-arrival > 3 
h 

2449 
(73.4) 

1332 (73.0) 1117 (73.8)  0.625 

Glucose, mean (SD), 
mmol/L 

8.93 
(4.44) 

8.63 (4.10) 9.30 (4.80)  <0.001 

NIHSS, median 
(IQR) 

5 (3–9) 4 (2–6) 8 (5–17)  <0.001 

SPAN, median (IQR) 77 
(66–86) 

71 (61–79) 85 (75–95)  <0.001 

PLAN, median (IQR) 8 (6–11) 7 (6–8) 11 (8–16)  <0.001 
DSS, median (IQR) 8 (5–11) 6 (4–9) 11 (8–16)  <0.001 
ASTRAL, median 

(IQR) 
21 
(18–26) 

19 (16–21) 26 (21–36)  <0.001 

Data are expressed in number (percentage) unless specified otherwise. 
ASTRAL: Acute Stroke Registry and Analysis of Lausanne; DSS: Dutch Stroke 
Score; IQR: interquartile range; NIHSS: National Institutes of Health Stroke 
Scale; PLAN: preadmission comorbidities, level of consciousness, age, and 
neurological deficit; SD: standard deviation; SPAN: Stroke Prognostication using 
Age and NIHSS. 

Fig. 3. Receiver operating characteristic curves for predicting a poor functional 
outcome in the test set. ASTRAL: Acute Stroke Registry and Analysis of Lau
sanne; DL: deep learning; DSS: Dutch Stroke Score; NIHSS: National Institutes of 
Health Stroke Scale; PLAN: preadmission comorbidities, level of consciousness, 
age, and neurological deficit; SPAN: Stroke Prognostication using Age 
and NIHSS. 
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sequences 90 days post-stroke [30]. Previous studies have successfully 
used DL techniques on MR images to create prognostic models for AIS 
[14–16,31]. Therefore, we chose DWI and ADC images acquired be
tween 1 and 7 days after stroke onset as the source images to construct 
the DL imaging biomarker. 

On the other hand, radiomics enables the extraction of quantitative 
features from medical images, providing an objective assessment of 
visible stroke lesions and subtle changes in surrounding tissues. Several 
prior studies have utilized radiomic features from CT [10] or MR 
[13,32–34] images to predict functional outcomes after AIS. Most of 
these studies required manually segmenting infarct lesions before 
extracting radiomic features. In addition, they generally used logistic 

regression or conventional machine learning algorithms for predictive 
modeling. 

This study differed from previous ones in several ways. Firstly, our 
model used both MR images and radiomic features as input, allowing for 
simultaneous learning of high-level radiomic features and low-level 
imaging features. Secondly, the extracted radiomic features were not 
directly used for outcome prediction. Instead, they were used to enhance 
the feature extraction capability of the DL encoder through supervised 
contrastive learning. As a result, our model does not need to compute 
radiomic features during the prediction stage. Nevertheless, our model 
achieved comparable performance to that using score fusion from 
separate models based on DWI, ADC, or radiomic features, 

Table 2 
Performance comparison in predicting a poor functional outcome at three months between original and enhanced prognostic models on the test set.   

AUC (95 % CI) 
(baseline) 

AUC (95 % CI) 
(baseline + imaging DL biomarker) 

ΔAUC P NRI, (95 % CI) P IDI, (95 % CI) P 

NIHSS 0.789 (0.755–0.823) 0.831 (0.800–0.862)  0.042  0.003 0.638 (0.492–0.784)  <0.001 0.090 (0.067–0.112)  <0.001 
SPAN 0.793 (0.759–0.828) 0.825 (0.793–0.856)  0.032  0.001 0.587 (0.439–0.734)  <0.001 0.060 (0.042–0.078)  <0.001 
PLAN 0.804 (0.771–0.838) 0.834 (0.803–0.864)  0.030  0.003 0.566 (0.418–0.714)  <0.001 0.055 (0.037–0.073)  <0.001 
DSS 0.810 (0.777–0.842) 0.836 (0.805–0.866)  0.026  0.003 0.523 (0.375–0.672)  <0.001 0.052 (0.035–0.069)  <0.001 
ASTRAL 0.826 (0.794–0.857) 0.839 (0.809–0.869)  0.013  0.177 0.411 (0.260–0.561)  <0.001 0.054 (0.036–0.071)  <0.001 

ASTRAL: Acute Stroke Registry and Analysis of Lausanne; AUC: area under the receiver operating characteristic curve; CI: confidence interval; DL: deep learning; DSS: 
Dutch Stroke Score; IDI: integrated discrimination improvement; NIHSS: National Institutes of Health Stroke Scale; NRI: net reclassification improvement; PLAN: 
preadmission comorbidities, level of consciousness, age, and neurological deficit; SPAN: Stroke Prognostication using Age and NIHSS. 

Fig. 4. Calibration plots of the baseline and DL imaging biomarker-enhanced models. ASTRAL: Acute Stroke Registry and Analysis of Lausanne; DSS: Dutch Stroke 
Score; HL: Hosmer-Lemeshow; NIHSS: National Institutes of Health Stroke Scale; PLAN: preadmission comorbidities, level of consciousness, age, and neurological 
deficit; SPAN: Stroke Prognostication using Age and NIHSS. 

Fig. 5. Magnetic resonance images from two exemplary cases. Case 1 presents with left pontine infarction, as demonstrated by hyperintensity on the DWI (A) and 
hypointensity on the ADC maps (B). Case 2 exhibits multiple infarcts in the bilateral cerebellar hemispheres and right-sided medulla, indicated by several patch-like 
hyperintense lesions on the DWI (C) and low signals on the ADC maps (D). 
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demonstrating the effectiveness of our DL model training strategy. 
Thirdly, radiomic features were extracted from the entire brain paren
chyma instead of just infarct lesions, eliminating the need for lesion 
segmentation. 

4.2. Imaging biomarkers for stroke prognosis 

Imaging biomarkers related to stroke outcomes include the extent 
and severity of ischemic injury, the degree of hemodynamic compro
mise, the patency or occlusion of large vessels, the size of salvageable 
brain tissue, and the presence of hemorrhagic transformation [35]. In 
specific clinical scenarios, such as predicting outcomes for AIS patients 
undergoing mechanical thrombectomy, the volume of salvageable brain 
tissue and the status of blood vessels are critical factors. Imaging tech
niques like MR perfusion, CT perfusion, and CT angiography are 
particularly useful in visualizing salvageable brain tissue and vessel 
status and, thus, are valuable in predicting functional outcomes in these 
scenarios [11,12,15,36,37]. 

On the other hand, this study focused on predicting outcomes in a 
broad range of AIS patients, regardless of whether they received reper
fusion therapy. MR images obtained 24 h after stroke onset were used for 
outcome prediction. These images can offer information about the size 
and location of infarct lesions, along with the effect of treatments 
administered during the hyperacute stage of stroke, especially reperfu
sion therapy. 

Many MR biomarkers help predict stroke outcomes. In addition to 
the size and location of infarct lesions, the characteristics of the brain 
surrounding the ischemic lesion and the “underlying” brain, represent
ing the pre-stroke cerebral status, are closely related to stroke outcomes 
[38]. One strong predictor of post-stroke functional outcomes is the pre- 
stroke medical history, which may be indicated by chronic brain lesions 
on brain imaging. This idea is supported by a study that used radiomic 
features from MR images of the entire brain parenchyma to determine 
the relative brain age, significantly predicting functional outcomes of 
AIS [33]. Interestingly, the relative brain age was also significantly 
associated with hypertension, diabetes, atrial fibrillation, coronary ar
tery disease, a history of smoking, and prior stroke. Since the current 
study utilized images of the whole brain parenchyma, our model could 
learn from characteristics beyond the infarct, such as the underlying 
brain. 

4.3. Clinical significance and application 

Previous studies have shown that information extracted from brain 
imaging can help predict outcomes in AIS patients. Models combining 
information from both imaging and clinical data tend to have better 
predictive performance than models based on imaging or clinical data 
alone [10,11,15,16,37,39]. This study also found improved predictive 
performance by combining the DL imaging biomarker with existing 
clinical risk scores. Instead of developing a clinical-imaging fusion 
model from scratch, we chose not to do so for the following reasons. 
Clinical risk scores are typically calculated using readily available 
clinical variables. Creating a complex DL model using extensive clinical 
data may cause issues with unstandardized data formats or missing data. 

Although the addition of the DL imaging biomarker to these risk 
scores significantly improved model discrimination, the increases in the 
AUC were all below 0.1. Similar findings were reported in previous 
studies examining the added value of biomarkers to existing clinical risk 
scores, where the AUC increases rarely exceeded 0.05 [18,19]. Given the 
marginal increase in predictive value by adding the DL imaging 
biomarker, its clinical relevance in current risk scores is debatable. 
However, the DL imaging biomarker achieved an AUC comparable to 
most of the clinical risk scores, making it a viable alternative for pre
dicting the functional outcomes of AIS. This opens the possibility of 
automating AIS prognosis through a prediction module in the PACS 
system [40]. Future studies might be needed to assess whether using the 

DL imaging biomarker for prediction impacts clinical decision-making. 

4.4. Limitations 

This study has the following limitations. Firstly, it is a single-center 
study, and the generalizability of its findings has yet to be fully estab
lished. While we evaluated the DL imaging biomarker using a hold-out 
test set, an independent external dataset would have been more suit
able for assessing generalizability. Secondly, we did not delineate infarct 
lesions using manual or automated segmentation prior to extracting 
radiomic features. This step could have helped capture specific tissue 
and lesion properties from the infarcted area. However, since charac
teristics of the underlying brain may contain relevant information that 
correlates with functional outcomes of AIS [33], we chose to extract 
radiomic features from the entire brain parenchyma. Based on these 
radiomic features, the model showed adequate predictive ability, with 
AUC values of 0.778 in the validation set and 0.769 in the test set 
(Supplementary Tables 2 and 3). Additionally, it eliminates the need for 
lesion segmentation during the prediction stage. 

5. Conclusions 

We developed a DL model that generates DL scores using DWI and 
ADC images in patients with AIS. The DL score can serve as an imaging 
biomarker, predicting the functional outcomes of AIS. This lays the 
foundation for automated outcome prediction in the PACS system. While 
the proposed DL model may seem complex, advancements in compu
tational power have significantly reduced the training time. By creating 
a standalone application for making predictions and an interface for 
importing images from the PACS system, this prediction tool can be 
implemented in a clinical routine. Furthermore, this imaging biomarker 
has the potential to enhance the predictive ability of current clinical risk 
scores, assisting clinicians in improving their functional outcome pre
diction for AIS patients. 
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