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A B S T R A C T   

Objective: To perform a systematic review and meta-analysis of the diagnostic accuracy of deep learning (DL) 
algorithms in the diagnosis of wrist fractures (WF) on plain wrist radiographs, taking healthcare experts 
consensus as reference standard. 
Methods: Embase, Medline, PubMed, Scopus and Web of Science were searched in the period from 1 Jan 2012 to 
9 March 2023. Eligible studies were patients with wrist radiographs for radial and ulnar fractures as the target 
condition, studies using DL algorithms based on convolutional neural networks (CNN), and healthcare experts 
consensus as the minimum reference standard. Studies were assessed with a modified QUADAS-2 tool, and we 
applied a bivariate random-effects model for meta-analysis of diagnostic test accuracy data. 
Results: Our study was registered at PROSPERO with ID: CRD42023431398. We included 6 unique studies for 
meta-analysis, with a total of 33,026 radiographs. CNN performance compared to reference standards for the 
included articles found a summary sensitivity of 92% (95% CI: 80%–97%) and a summary specificity of 93% 
(95% CI: 76%–98%). The generalized bivariate I-squared statistic indicated considerable heterogeneity between 
the studies (81.90%). Four studies had one or more domains at high risk of bias and two studies had concerns 
regarding applicability. 
Conclusion: The diagnostic accuracy of CNNs was comparable to that of healthcare experts in wrist radiographs 
for investigation of WF. There is a need for studies with a robust reference standard, external data-set validation 
and investigation of diagnostic performance of healthcare experts aided with CNNs. 
Clinical relevance statement: DL matches healthcare experts in diagnosing WFs, which potentially benefits patient 
diagnosis.   

1. Introduction 

The most common type of interpretational errors made by physicians 
on musculoskeletal radiographs in emergency departments (ED) are 
missed fractures [1–3]. This can result in treatment delays and may lead 
to malunion or pseudoarthrosis with attendant morbidity [4]. Human 
and environmental factors can affect the interpretation of the 

radiograph, such as clinician inexperience, fatigue, distractions, poor 
viewing conditions, and time pressures. One study concluded that 
approximately one percent of all fractures in the ED were not correctly 
diagnosed [5]. 

Inexperienced physicians or those without specialization in muscu-
loskeletal imaging have limited training in wrist fracture (WF) identi-
fication, especially with subtle presentations [6]. Conventional 

Abbreviations: AI, Artificial intelligence; CNN, Convolutional neural network; DL, Deep learning; ED, Emergency department; MDCT, Multi detector computed 
tomography; SROC, Summary receiver operating characteristics curve; WF, Wrist fractures. 
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radiography is the first line medical imaging in diagnosing WF, where 
suboptimal positioning, technique and/or patient cooperation may 
affect the radiograph [7,8]. 

Automation of WF diagnosis by deep learning (DL) could potentially 
augment the work of physicians, and the performance of DL models has 
significantly progressed in the last decade, where image classification 
error rates improved significantly [9]. Recent evidence points to the 
potential usefulness of convolutional neural networks (CNN) in classi-
fying medical radiographs [10–14]. However, small datasets and over-
fitting are two challenges in applying CNNs, where the performance of 
an algorithm should be generalizable to unfamiliar data [15]. A sys-
tematic review and meta-analysis by Liu et al. [16] compared healthcare 
professionals to CNN performance in a spectrum of clinical domains, 
including breast cancer, skin cancer, and hepatology and found a sum-
mary sensitivity of 87 % (95 % CI: 83 % to 90 %) and a summary 
specificity of 92.5 % (95 % CI: 85.1 % to 96.4 %). Diagnoses aided by 
CNNs in detection and diagnosis can help physicians identify and clas-
sify radiographs accurately, improve or maintain patient outcomes, and 
reduce interpretation times. 

Evidence of AI algorithms detecting WFs is still limited, and should 
be investigated further for a deeper understanding. Therefore, this sys-
tematic review and meta-analysis aimed to investigate the evidence of 
WF detection by CNNs on a per-patient level, considering issues of 
reporting and study design. No previous meta-analysis has assessed if 
CNNs can reliably diagnose WF on radiographs with healthcare experts 
consensus as the reference standard. 

2. Methods/materials 

The meta-analysis was registered at PROSPERO ID: 
CRD42023431398. Embase, Medline, PubMed, Scopus and Web of Sci-
ence were searched in the period from 1 Jan 2012 to 9 Mar 2023 by V.H. 
and S.L. Search strings are documented (Suppl 1), and the Preferred 
Reporting Items for Systematic reviews and Meta-analysis (PRISMA) 
were followed [17]. The Rayyan QCRI online platform was used for 
article screening [18]. Duplicates were removed, and non-relevant 
studies excluded during screening. Full-text assessments were per-
formed independently by V.H. and S.L. according to pre-defined inclu-
sion criteria described below. Any conflicts were resolved by consensus. 

We included studies of patients over the age of 18 undergoing ra-
diographs for the detection of WFs, using CNN algorithms and with 
healthcare experts’ annotation as the reference standard (cf. below). The 
inclusion of articles was limited to articles published after 1 Jan 2012, 
based on the recognized change in the development of DL performance 
in the ImageNet classification challenge [9]. 

Acceptable reference standards were: Manual, semi-automated or 
automated image labelling extracted from reports or electronic health 
records using natural language processing or recurrent neural networks. 
Also acceptable was labelling by independent readers when the number 
of human annotators and their qualifications were specified, including a 
detailed description of annotation flow process [19,20]. 

The following article types were excluded: Conference papers, edi-
torials, commentaries, reviews, guidelines, book chapters, technical 
papers, papers in other languages than English and Danish, and papers 
with insufficient reference standards. 

Risk of bias and applicability were assessed independently by M.W. 
K., S.L. and J.J. using a modified Quality Assessment of Diagnostic Ac-
curacy Studies (QUADAS-2) tool [21] (Suppl 2) and any conflicts 
resolved by consensus. Diagnostic measures on a per-patient basis for 
WF on radiographs were included in the meta-analysis. Data were 
calculated from available information, or authors were contacted when 
diagnostic measure extraction was impossible. In case of several ana-
lyses within the same study, one set of data was chosen per study 
conservatively (e.g. in favor of more challenging external test set than 
internal test set). 

We applied a bivariate random-effects model for meta-analysis of 

diagnostic test accuracy data and derived forest plots and a summary 
receiver operating characteristics (SROC) curve to compare CNN to the 
reference standards. The SROC curve provides a simultaneous estimate 
of summary sensitivity and specificity of the included studies with 95 % 
confidence intervals (95 % CI) [22]. Further, we assessed the hetero-
geneity between the studies with bivariate I-squared statistics. Signifi-
cance level was 5 %. We conducted all statistical analyses with the 
package metadta in STATA/MP 17.0 (StataCorp, College Station, Texas 
77,845 USA). Validation was performed with metandi in Stata. The hi-
erarchical summary receiver operating characteristic model (HSROC) 
derived with metandi and the SROC derived from our bivariate random- 
effects meta-analysis model with metadata are equivalent when when no 
covariates are included [22] as was the case here. 

3. Results 

A total of 15,735 records were initially screened, as illustrated in 
Fig. 1, leading to the inclusion of ten studies with a cumulative count of 
185,221 radiographs used for algorithm training [23–32]. These studies 
are comprehensively detailed in Table 1, with additional data presented 
in Suppl 3 and Suppl 4 for the PRISMA checklist and data extraction 
chart, respectively. 

The 10 included studies demonstrate a broad spectrum in dataset 
sizes, from several hundred to over a hundred thousand images, 
covering a variety of radiograph types like PA, LAT, AP, and frontal 
views. This diversity enables an extensive evaluation of CNN models 
under varied conditions, showcasing the versatility of CNNs through the 
use of diverse architectures and training methods. Employing both pre- 
trained models (such as VGG16, Inception v3, DenseNet, ResNet, Effi-
cientNet) and different training strategies (including full image and ROI- 
based training), they underscore the adaptability and effectiveness of 
CNNs in medical image analysis. Excluding Tobler et al (2021), Lindsey 
et al (2018), Kim et al (2018), and Ürethen et al (2022) reduces the 
range of dataset sizes and types, yet the remaining studies maintain 
significant diversity in dataset composition and fracture type represen-
tation. Despite the diminished variety in CNN architectures and training 
strategies due to their omission, the CNN models and methodologies in 
the remaining research continues to illustrate the diversity and inno-
vation in applying CNNs for WF detection. 

The 6 included studies for quantitative synthesis, varied between 
using radiology residents, orthopaedic surgeons, and radiologists with 
varying levels of experience as reference standards. For instance, 
Blüthgen et al. [23] and Kim et al. [31] employed radiology residents 
and a registrar, respectively, while Thian et al. [26] and Raisuddin et al. 
[27] utilized annotations by experienced radiologists. 

A significant limitation of the study not included in the meta-analysis 
by Üreten et al. [32] is the inadequate characterization of the reference 
standard, as it only mentions the re-evaluation of hand fracture radio-
graphs by an orthopedist and a radiologist, each with over five years of 
experience, without providing detailed criteria for their assessment 
proficiency or methodological consistency. 

For the index test, different CNN models was employed across the 
studies. For example, Blüthgen et al. [23] investigated two different 
transfer CNNs, while Oka et al. [29] used a modified VGG16 CNN, and 
Suzuki et al. [30] applied a CNN with EfficientNet for fine-tuning. 

Several studies incorporated external datasets to validate their 
models. For instance, Blüthgen et al. [23] used the MURA dataset for 
external testing, and the external test sets varied in size, from the 200 x- 
rays in Blüthgen et al. [23] to 9090 wrist radiographs in the study by 
Kim et al. [31]. The studies predominantly focused on wrist radiographs, 
particularly distal radius and ulnae fractures. Dataset compositions 
varied, with Kim et al. [31] annotating 9,984 wrist radiographs and 
Blüthgen et al. [23] retrospectively including 824 wrist radiographs. 

Risk of bias is presented in Table 2 and Fig. 2. Four studies were 
excluded from meta-analysis because of insufficient information on 
diagnostic measures and a high risk of bias, respectively [24,25,28,32]. 
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Figs. 3 and 4 present summary sensitivity and specificity by means of 
forest plots and an SROC-curve. Comparing the CNN performance to 
reference standard found a summary sensitivity of 92 % (95 % CI: 80 % 
to 97 %) and a summary specificity of 93 % (95 % CI: 76 % to 98 %). It 
should be noted that the bivariate I-squared analysis showed consider-
able heterogeneity between the studies (81.90 %). The I-squared sta-
tistics for sensitivity and specificity were 80.94 and 85.48, respectively. 
Source data and results from the statistical analysis with Stata as well as 
validation can be found in Suppl 5 and Suppl 6. 

4. Discussion 

4.1. Statement of principal findings 

The total amount of test data used in the meta-analysis of the six 
included studies was 33,026 plain wrist radiographs with a summary 
sensitivity of 92 % (95 % CI: 80 % to 97 %) and a summary specificity of 
93 % (95 % CI: 76 % to 98 %), in detecting WF with CNNs on 
radiographs. 

4.2. Strengths and weaknesses 

To our knowledge, our study is the first meta-analysis to quantify the 
performance of CNNs in detecting WF. The stringent choice of reference 
standards for inclusion strengthens the validity of our findings, 
compared to, e.g. Kuo et al., who did not define any a priori in-/exclu-
sion criteria in this domain [33]. 

Despite the comprehensive search strategy employed, relevant 
studies may have been excluded, limiting the systematic review and 
meta-analysis ’s comprehensiveness. Our reliance on only published 

data may have introduced publication bias. The guidelines (CLAIM) 
used for non-randomized studies, though specifically designed for AI 
studies, is novel and not yet well-established. The bivariate I-squared 
analysis results suggested high heterogeneity among studies, implying 
possible unsuitability for data pooling, and the varying experience levels 
of the authors may have introduced a level of subjective bias into the 
assessment. Another limitation is the potential variability and error 
margins inherent in human readers’ interpretations used as the refer-
ence standard, which may affect the accuracy of the results. 

4.3. Strengths and weaknesses in relation to other studies 

The six studies included in the quantitative synthesis employed 
various DL algorithms for image recognition, classification, and object 
detection tasks. These algorithms can be grouped into four categories: 
Transfer learning CNNs [23,24,29], deep CNNs [25,28,30], region- 
based CNNs [26], and modified CNNs [27]. 

Both studies by Blüthgen et al. [23] and Oka et al [29] utilized 
transfer learning, with dataset sizes of 1,626, and 1,474, respectively. 
However, Blüthgen et al. [23] included 100 radiographs in their test set 
and 200 radiographs in the external test set, with a fracture distribution 
of 42 % fractures and 50 % fractures, respectively, and Oka et al [29] 
creating two additional datasets of 120 and 50 wrist radiographs with a 
split ratio of 80 %/20 % and 40 %/60 % fractures/without fractures, 
respectively. Using small test sets for model evaluation may lead to is-
sues related to representation, diversity, and balance. Limited sample 
sizes may not adequately represent the real-world fracture distribution, 
which could impact the reliability of the model’s performance and its 
generalizability to unseen data. Moreover, the fracture distribution in 
the test sets may not mirror real-world rates, which could lead to model 

Fig. 1. Flowchart.  
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Table 1 
Study characteristics of studies included for meta-analysis.  

Author, 
year 

Study 
design 

Dataset size in 
total 

Target 
condition 

Reference standard CNN model type Training set 
size 

Validation 
set size 

External 
test set 
size 

Sensitivity 
(95 % CI) 

Specificity AUC 
(95 % CI) (95 % CI) 

Raisuddin et 
al (2021) 

R (Test set 
#1) 

2.258 wrist 
studies (4.497 PA 
and LAT) 

Distal radius 
fractures 

CT imaging – existing radiology 
report was manually labeled as 
normal or fracture by a medical 
student who received basic training 
in diagnostic radiology. 

Transfer learning CNN 
in ROI cropped image 

1.946 wrist 
studies (3.873 
PA and LAT) 

NA 207         

PA     
LAT  0.97 

(0.94–1.00) 
0.88 
(0.80–0.94) 

0.98 
(0.97–0.99) 

Ensemble  0.97 
(0.94–1.00) 

0.91 
(0.84–0.96) 

0.98 
(0.97–0.99)   

0.97 
(0.94–1.00) 

0.87 
(0.79–0.93) 

0.99 
(0.98–0.99)      

R (Test set 
#2)      

105    
PA     
LAT     
Ensemble  0.50 

(0.30–0.70) 
0.89 
(0.82–0.95) 

0.81 
(0.69–0.91)   

0.50 
(0.30–0.70) 

0.94 
(0.88–0.98) 

0.83 
(0.70–0.93)   

0.60 
(0.40–0.80) 

0.92 
(0.87–0.97) 

0.84 
(0.72–0.93) 

Tobler et al 
(2021) 

R (Test set 
#1) 

15.775 frontal 
and lateral 
radiographs 

Distal radius 
fractures 

Two musculoskeletal radiologists 
(Test set A) 

Transfer learning CNN  NA     

Frontal    
LAT Three radiology residents (Test set B) 4.06 291   

3.937 291 
R (Test set 
#2)    
Frontal    
LAT      

4.06 163   
3.937 163      

Thian et al 
(2019) 

R 7.356 wrist 
studies (7.295 
frontal and 7.319 
lateral) 

Radius and 
Ulna 
fractures 

Training set annotated by three 
radiologists 

Object detection 
transfer CNN 

13.052 1.562             

Frontal Two radiologists 6.515 780 365 0.98 
(0.94–0.99) 

0.84 
(0.79–0.89) 

0.93 
(0.90–0.95) 

LAT  6.537 782 365 0.99 
(0.95–1.00) 

0.86 
(0.81–0.91) 

0.94 
(0.92–0.96)                          

Oka et al 
(2021) 

P - Dataset 
#1  

Distal radius 
fracture 

Clinical diagnosis results by 
specialized orthopedic surgeons 

Transfer learning CNN 
(VGG16)               

AP        

(continued on next page) 
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Table 1 (continued ) 

Author, 
year 

Study 
design 

Dataset size in 
total 

Target 
condition 

Reference standard CNN model type Training set 
size 

Validation 
set size 

External 
test set 
size 

Sensitivity 
(95 % CI) 

Specificity AUC 
(95 % CI) (95 % CI) 

LAT 498  390 48 60 0.95 
(0.92–0.98) 

0.97 
(0.95–0.99)  

485  353 72 60 0.99 
(0.97–1.00) 

0.97 
(0.93–1.00)         

P - Dataset 
#2  

Ulnar styloid 
fracture              

AP                 

491  391 50 50 0.92 
(0.87–0.98) 

0.90 
(0.87–0.94)                  

Lindsey et al 
(2018) 

R - Random 
subset 

135.409 
radiographs 

Wrist 
fractures 

18 senior sub-specialized orthopedic 
surgeons 

CNN for fracture 
detection and 
localization 

28.341 3.149 3.5   0.97 
(0.96–0.97)    

P -   
Separate 
dataset    

1.4 0.98 
(0.97––0.98)     

Kim et al 
(2018) 

R - 11.112 Distal radius 
and ulna 
fractures 

Radiological report confirmed by a 
radiology registrar with 3 years of 
radiology experience 

Transfer CNN 
(Inception v3) 

1.389       
80/10/10       

R - Test set  139 0.95      

Suzuki et al 
(2021) 

R - Dataset 1.633 
radiographs 

Distal radius 
fractures 

Diagnoses were Ensemble model based 
on EfficientNet B2 and 
EfficientNet B4 

1.333  300 0.99 
(0.93–1.00) 

1.00 
(0.95–1.00) 

0.99 
confirmed by two board certified 
orthopedic surgeons.  

Blüthgen et 
al (2020) 

P - Internal 
test set 

824 AP and LAT 
radiographs 

Distal radius 
fractures 

Internal test set: 2 radiology residents 
with 3 and 5 years of experience with 
electronic health record and available 
CT scans 

Two CNN models with 
optimal parameters 
created in a generic 
image analysis software 

524  100          

Model 1      
AP      
LAT   0.86 

(0.64–0.97) 
0.86 
(0.68–0.96) 

0.93 
(0.82–0.98) 

Combined   0.86 
(0.64–0.97) 

1.00 
(0.88–1.00) 

0.94 
(0.84–0.99)    

0.81 
(0.58–0.95) 

1.00 
(0.88–1.00) 

0.95 
(0.85–0.99) 

Model 2      
AP External test set: Evaluated by 2 

attending radiologists with 16 and 7     

(continued on next page) 
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Table 1 (continued ) 

Author, 
year 

Study 
design 

Dataset size in 
total 

Target 
condition 

Reference standard CNN model type Training set 
size 

Validation 
set size 

External 
test set 
size 

Sensitivity 
(95 % CI) 

Specificity AUC 
(95 % CI) (95 % CI) 

years of experience + one 2nd year 
radiology resident 

LAT   0.86 
(0.64–0.97) 

0.97 
(0.82–1.00) 

0.95 
(0.85–0.99) 

Combined   0.90 
(0.70–0.99) 

0.90 
(0.73–0.98) 

0.94 
(0.83–0.99)    

0.90 
(0.70–0.99) 

0.97 
(0.82–1.00) 

0.96 
(0.87–1.00)       

P - External 
test set        

200    
Model 1      
AP      
LAT      
Combined   0.74 

(0.60–0.85) 
0.64 
(0.49–0.77) 

0.80 
(0.71–0.88)    

0.80 
(0.66–0.90) 

0.66 
(0.51–0.79) 

0.83 
(0.74–0.90) 

Model 2   0.80 
(0.66–0.90) 

0.86 
(0.73–0.94) 

0.87 
(0.79–0.93) 

AP      
LAT      
Combined   0.64 

(0.49–0.77) 
0.90 
(0.78–0.97) 

0.82 
(0.73–0.89)    

0.92 
(0.81–0.98) 

0.60 
(0.45–0.74) 

0.84 
(0.76–0.91)    

0.82 
(0.69–0.91) 

0.78 
(0.64–0.88) 

0.89 
(0.81–0.94)  

Kim et al 
(2021) 

P - Model 1 9.984 wrist 
radiographs 

Distal radius 
and ulnar 
fractures 

Dual radiological reporting DenseNet-161 8.994  990 0.90 
(0.89–0.92) 

0.90 
(0.89–0.92) 

0.96      

P - Model 2 ResNet-152 0.89 
(0.88–0.90) 

0.88 
(0.87–0.89) 

0.95  

Ürethen et 
al (2022) 

P - Model 1 545 hand and 
wrist radiographs 

Wrist 
fractures 

Orthopedist and radiologist, both 
with over 5 years experience 

VGG-16 697 123 135 0.97 0.9      

P - Model 2 ResNet-50 0.95 0.84     

P - Model 3 GoogLeNet 0.91 0.86     

AUC: Area under the curve. 
NA: Not applicable (Anything that is not reported in the study). 
CNN: Convolutional Neural Network. 
R: Retrospective. 
P: Prospective. 
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bias towards the more prevalent class and affect the model’s perfor-
mance on datasets with different fracture distributions [19,34]. 

The studies by Blüthgen et al. [23] and Suzuki et al. [30] investigated 
deep CNNs to analyze large datasets. The large dataset sizes, ranging 
from 824 to 1633 radiographs, provide the models with a decent amount 
of data to learn from. However, these larger datasets require more 

computational resources and longer training times. In terms of limita-
tions, while deep CNNs can deliver impressive results, they require large 
amounts of labeled data to train effectively. Labeled medical images can 
be difficult and time-consuming to produce, as they require the expertise 
of trained clinicians [20]. The method by Suzuki et al. [30] is compre-
hensive, involving diagnosis confirmation by two board-certified 

Table 2 
QUADAS-2 evaluation of risk of bias and applicability.  

Study Risk of bias Applicability concerns 

Patient selection Index test Reference standard Flow and timing Patient selection Index test Reference standard 

Raisuddin et al (2021) Yes Yes Yes Yes Low Low Low 
Unclear Yes Yes Yes 
Yes Yes Yes No 
Low Low Low Unclear  

Tobler et al (2021) Unclear Yes Yes Yes Unclear Low Low 
Yes No Yes Yes 
Yes Yes Yes Unclear 
Unclear Low Low Low      

Thian et al (2019) Yes Yes Unclear Yes Low Low Unclear 
Yes Unclear Yes Yes 
Yes Yes Unclear Yes 
Low Low Unclear Low          

Oka et al (2021) Unclear Yes Unclear Yes Unclear Low High 
Yes Unclear No No 
Unclear Yes No Unclear 
Unclear Low High Unclear      

Lindsey et al (2018) Yes Yes Unclear Yes Low Low High 
Yes Yes No Unclear 
Yes Yes No Yes 
Low Low High Unclear      

Kim et al (2018) Yes Yes Yes Yes Low Low Unclear 
Yes Yes Yes Yes 
Yes Yes No Unclear 
Low Low Unclear Unclear      

Blüthgen et al (2020) Yes Yes Yes Yes Low Unclear Unclear 
Yes No Yes Yes 
Yes Yes Unclear Yes 
Low Unclear Unclear Low      

Kim et al (2021) Yes Yes Yes Yes Unclear Low Unclear 
No Yes Yes Yes 
Yes Yes No No 
Unclear Low Unclear Unclear      

Suzuki (2022) Yes Yes Unclear Yes Low Low High 
Yes Yes Unclear UnclearYes 
Yes Yes Unclear Unclear 
Low Low High       

Üreten et al (2022) Yes Yes Unclear Unclear Unclear Low High 
Yes Yes Unclear No 
Unclear Yes Unclear Yes 
Unclear Low High Unclear     

Low, high and unclear risk. 
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orthopedic surgeons, and uses multiple modalities - radiographs and 
computed tomography - along with clinical information. From the 
qualitative synthesis the method from Lindsey et al. [25] comes out on 
top, due to its rigorous approach involving subspecialized orthopedic 
surgeons using an annotation software tool. Tobler et al. [28] presents a 
more automated methods, relying on key phrases to label and classify 
fractures. While this could be highly efficient, its accuracy is contingent 
on the quality of the reports. Finally, Kim et al. [24] involves classifying 
images into fracture and non-fracture groups based on dual radiological 
reporting, is considered the least detailed. It may not provide the same 
level of detail or accuracy as the other methods, despite its potential 
efficiency. 

An increasing number of studies are investigating the performance of 
AI compared to healthcare professionals. In our quantitative synthesis, 
we found two studies comparing AI performance with expert clinicians 
[23,27]. Four studies compared their trained DL algorithm with clini-
cians showing comparable performance of the DL algorithms when the 

clinicians had varying degrees of experience. However, Blüthgen et al. 
[23] found that the less experienced radiologist (2 years) was less sen-
sitive and specific than the DL models. They found their algorithm 
comparable to the orthopedists and outperformed the radiologists. 
Meanwhile, Raisuddin et al. [27] compared their algorithm to two ra-
diologists and two primary care physicians. They found high disagree-
ment between the primary care physicians and high agreement between 
the two radiologists on their test set with trivial cases. However, all 
raters had a low agreement on the test set labelled as complex cases, 
with CT as the ground truth. The performance of their algorithm was 
lower than radiologists and higher than the primary care physicians on 
the test set with trivial cases but higher than all raters on the test set with 
complicated cases, highlighting the clinical value of a fracture algorithm 
in cases with subtle findings that may be initially overlooked by 
healthcare professionals. In the study from the qualitative synthesis by 
Tobler et al. [28], the AI performance was compared to radiology resi-
dents showing similar abilities in detecting fractures and classifying 

Fig. 2. QUADAS-2 overview.  

Fig. 3. Forest plot for sensitivity and specificity.  
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multiple fragments. Still, it differed significantly in classifying fragment 
displacement and joint involvement, with worse AI performance. One 
similar study found comparable diagnostic accuracy between AI and 
clinicians with a summary sensitivity of 91 % (95 % CI: 84 % to 85 %) 
and specificity of 91 % (95 % CI: 81 % to 95 %), including studies 
focusing on both upper and lower limb fractures [33]. In the qualitative 
synthesis in the study by Lindsey et al. [25] investigated fracture 
detection of 16 physician assistants and 24 medical doctors with and 
without the assistance of AI and found their model to improve the 
sensitivity and specificity for both groups. A similar study found 
improved clinical performance with aided AI assistance, improving the 
sensitivity and specificity of physicians by 8.7 % (95 % CI: 3.1 % to 14.2 
%; P = 0.003) and 4.1 % (95 % CI: 0.5 % to 7.7 %; P < 0.001), 
respectively [33,35]. Another prospective study reviewed a commer-
cially available AI algorithm and found increased sensitivity for two 
humans with AI assistance from 84.74 % (95 % CI: 84.34 % to 85.14 %) 
to 91.28 % (95 % CI: 91.25 % to 91.31 %), with almost similar specificity 
of humans without assistance of 97.11 % (95 % CI: 97.10 % to 97.12 %) 
and with assistance of 97.36 % (95 % CI: 97.35 % to 97.37 %) [36]. 
These results suggest that the AI algorithm used can enhance human 
sensitivity in this particular context, without significantly affecting 
specificity. 

4.4. Implications for practice and future research 

The potential benefits of AI in healthcare must be balanced against 
the challenges and potential risks. These include ethical issues related to 
data privacy and responsibility for decision-making, as well as practical 
considerations such as cost and the need for ongoing training and al-
gorithm validation. 

An important area for further research is the evaluation of CNN 
performance in the presence of multiple findings. Flagging an area 
suspect for fracture will, in our analysis, count as a positive finding. 
Hovewer more discrete findings, such as ligamental injuries or sublux-
ation of carpal bones may present concurrent with fractures, some of 
which require treatment. By marking a fracture, there is a real risk that 
secondary findings may be overlooked due to satisfaction of search er-
rors, especially by less experienced clinicians [6]. At present such al-
gorithms are separate entities [37], but will need to be integrated with 

WF technologies for comprehensive evaluation. Thus the ultimate 
metric should be the ability of CNNs to allocate patients for correct 
treatment. 

In light of the study’s findings that AI may compensate for less 
experienced clinicians, research could focus on how AI can be used to 
augment the skills of newer or less specialized practitioners. Given that 
AI has shown promise in improving or maintaining diagnostic accuracy, 
further research could focus on how these improvements translate into 
improved patient outcomes. This could include studying the impact of AI 
on patient care in terms of reduced misdiagnosis, shorter hospital stays, 
or improved treatment plans. 

5. Conclusion 

Our meta-analysis found high performance of CNN algorithms 
detecting WF on plain radiographs, but the conlusion is limited by the 
small number of available studies. Studies with external dataset testing 
and evaluation with uniformity of methods and robust reference stan-
dard by independent experts in unselected patient cohorts are needed. 
For clinicians, AI could potentially be used to enhance diagnostic con-
fidence, especially in fields of radiology. AI algorithms may be partic-
ularly useful for less experienced clinicians. 

Key points 

• Convolutional neural network algorithms has high diagnostic per-
formance in finding WF in plain wrist radiographs.  

• There is a dire need for studies with a robust reference standard, 
external data-set validation with investigation of diagnostic 
performance.  

• Future studies on convolutional neural network algorithms should be 
evaluated with patient outcomes as the reference. 
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