The histologic fetal inflammatory response and neonatal outcomes: systematic review and meta-analysis

Check for updates

Kinga Kovács, MD; Őzike Zsuzsanna Kovács; Dorina Bajzát, MD; Marcell Imrei, MD; Rita Nagy, MD; Dávid Németh; Tamás Kói, PhD; Miklós Szabó, MD, ScD; Attila Fintha, MD, PhD; Péter Hegyi, MD, ScD; Miklós Garami, MD, MSc, PhD; Ákos Gasparics, MD, PhD

OBJECTIVE: This study aimed to investigate the prognostic role of concomitant histological fetal inflammatory response with chorioamnionitis on neonatal outcomes through a systematic review and meta-analysis of existing literature.

DATA SOURCES: The primary search was conducted on October 17, 2021, and it was updated on May 26, 2023, across 4 separate databases (MEDLINE, the Cochrane Central Register of Controlled Trials, Embase, and Scopus) without using any filters.

STUDY ELIGIBILITY CRITERIA: Observational studies reporting obstetrical and neonatal outcomes of infant-mother dyads with histological chorioamnionitis and histological fetal inflammatory response vs infant-mother dyads with histological chorioamnionitis alone were eligible. Studies that enrolled only preterm neonates, studies on neonates born before 37 weeks of gestation, or studies on neonates with very low birthweight (birthweight <1500 g) were included. The protocol was registered with the International Prospective Register of Systematic Reviews (registration number: CRD42021283448).

METHODS: The records were selected by title, abstract, and full text, and disagreements were resolved by consensus. Random-effect model-based pooled odds ratios with corresponding 95% confidence intervals were calculated for dichotomous outcomes.

RESULTS: Overall, 50 studies were identified. A quantitative analysis of 14 outcomes was performed. Subgroup analysis using the mean gestational age of the studies was performed, and a cutoff of 28 weeks of gestation was implemented. Among neonates with lower gestational ages, early-onset sepsis (pooled odds ratio, 2.23; 95% confidence interval, 1.76–2.84) and bronchopulmonary dysplasia (pooled odds ratio, 1.30; 95% confidence interval, 1.02–1.66) were associated with histological fetal inflammatory response. Our analysis showed that preterm neonates with a concomitant histological fetal inflammatory response are more likely to develop intraventricular hemorrhage (pooled odds ratio, 1.54; 95% confidence interval, 1.18–2.02) and retinopathy of prematurity (pooled odds ratio, 1.37; 95% confidence interval, 1.03–1.82). The odds of clinical chorioamnionitis were almost 3-fold higher among infant-mother dyads with histological fetal inflammatory response than among infant-mother dyads with histological chorioamnionitis alone (pooled odds ratio, 2.99; 95% confidence interval, 1.96–4.55). **CONCLUSION:** This study investigated multiple neonatal outcomes and found association in the case of 4 major morbidities: early-onset sepsis, bronchopulmonary dysplasia, intraventricular hemorrhage, and retinopathy of prematurity.

Key words: bronchopulmonary dysplasia, early-onset sepsis, fetal inflammatory response, fetal inflammatory response syndrome, funisitis, histological chorioamnionitis, intraventricular hemorrhage, intrauterine inflammation, meta-analysis, preterm, sepsis, systematic review

From the Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Dr K Kovács, Ms O Kovács, Drs Bajzát, Imrei, and Nagy, Mr Németh, and Drs Kói, Hegyi, and Garami); Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary (Drs K Kovács, Szabó, and Gasparics); Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary (Ms O Kovács); Heim Pál National Pediatric Institute, Budapest, Hungary (Drs Bajzát and Imrei); Division of Neonatology, First Department of Pediatrics, Semmelweis University, Budapest, Hungary (Dr Szabó); Faculty of Medicine, Department of Pathology and Cancer Research, Semmelweis University, Budapest, Hungary (Dr Fintha); Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary (Dr Hegyi); Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary (Dr Hegyi); and Department of Pediatrics, Semmelweis University, Budapest, Hungary (Dr Garami).

Received Aug. 9, 2023; revised Oct. 30, 2023; accepted Nov. 5, 2023.

The authors report no conflict of interest.

This study received no funding.

No ethical approval was required for this systematic review with meta-analysis, as all data had already been published in peer-reviewed journals. No patient was involved in the design, conduct, or interpretation of our study.

The protocol of this systematic review and meta-analysis was registered with the International Prospective Register of Systematic Reviews (registration number: CRD42021283448). The date of registration was October 17, 2021.

Corresponding author: Ákos Gasparics, MD, PhD. gasparics.akos@med.semmelweis-univ.hu

0002-9378 • © 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). • https://doi.org/10.1016/j.ajog.2023.11.1223

10

Click <u>Supplemental Materials</u> and <u>aiog</u> <u>Video</u> under article title in Contents at

MAY 2024 American Journal of Obstetrics & Gynecology 493

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en mayo 17, 2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

AJOG at a Glance

Why was this study conducted?

Preterm neonates with a history of histological chorioamnionitis (HCA) have worse outcomes than those without HCA. In this association, the effect of histological fetal inflammatory response (FIR) is unclear.

Key findings

The concomitant occurrence of HCA and histological FIR was associated with a higher incidence of intraventricular hemorrhage and retinopathy of prematurity. An elevated incidence of early-onset sepsis and bronchopulmonary dysplasia was found in the group of preterm infants with histological FIR with a mean gestational age of <28 weeks. Our analysis showed higher odds for clinical chorioamnionitis when HCA and histological FIR were present.

What does this add to what is known?

This histological evaluation-based meta-analysis suggests that the presence of histological FIR with HCA is associated with worse outcomes in preterm infants than the presence of HCA alone.

Introduction

Worldwide, 1 in 10 pregnancies ends with preterm birth (PTB). The cause of PTB cannot be specified in most cases¹; however, intrauterine inflammation is present in approximately 50% of extremely PTBs.² The term chorioamnionitis is well known among obstetricians and neonatal specialists and is extensively used to define heterogeneous conditions, such as intrauterine inflammation, intrauterine infection, or both (intrauterine inflammation [IUI]).³ Chorioamnionitis can be defined by clinical symptoms, although the accuracy of the diagnosis using this approach is only approximately 50%.^{4,5}

Histological examination is an objective method to assess the presence of IUI and has higher specificity and sensitivity than clinical predictors.^{6,7} The prevalence of histological chorioamnionitis (HCA) in PTBs is inversely related to gestational age (GA).8 HCA is diagnosed in approximately 50% of PTBs before 28 weeks of gestation.² According to Redline et al,⁹ during histological examination, maternal inflammatory responses and fetal inflammatory responses (FIRs) can be separated. To draw the line on the origin of the inflammation, the localization of infiltrating neutrophils is crucial. It has been proven that the neutrophils that have migrated to the chorioamnionic

membranes are of maternal origin; in contrast, the neutrophil infiltration of the vessels of the chorionic plate or the umbilical cord is mainly of fetal origin.^{10–12} Thus, HCA is part of the histological maternal inflammatory response, and funisitis and chorionic vasculitis are the elements of the histological FIR.^{10,11,13}

The association between HCA and increased adverse neonatal outcomes has been extensively investigated and demonstrated. These outcomes included mortality, early-onset sepsis (EOS) and late-onset sepsis (LOS), bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), cerebral white matter damage, and long-term neurodevelopmental sequelae.^{14–21}

In addition, 50% to 70% of preterm placentas with HCA show signs of FIR as well.^{22,23} Over the past few decades, several studies have divided HCAaffected placentas into the following subgroups: placentas with HCA alone and placentas with HCA and FIR. The influence of FIR, in addition to HCA, on neonatal and maternal outcomes is unclear. Some studies showed worse prognosis for preterm infants in the case of HCA and FIR than for preterm infants in the case of HCA alone, whereas other studies reported no difference in neonatal outcomes.^{24–29}

Objective

Our objective was to investigate whether HCA with concomitant FIR was accompanied by a higher incidence of adverse neonatal outcomes than HCA without FIR. Therefore, we conducted a systematic review and meta-analysis of the existing literature.

Material and Methods

The protocol of this systematic review and meta-analysis was registered with the International Prospective Register of Systematic Reviews (registration number: CRD42021283448). The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines.³⁰

Sources and search strategy

The literature search was performed in MEDLINE (via PubMed), Embase, the Cochrane Central Register of Controlled Trials, and Scopus on October 17, 2021, and was updated on May 26, 2023. No language restriction was applied. The search key is detailed in the Supplemental Data.

Of note, 3 of the authors (K.K., D.B., and O.K.) independently performed the selection using a reference management tool (Endnote X9 software; Clarivate, Philadelphia, PA). After automatic and manual duplicate removal, the records were screened according to the title, abstract, and full text, based on previously arranged criteria. Disagreements among the 3 reviewers were resolved by discussion. After each step of the selection process, the level of agreement was calculated using the Cohen κ coefficient. The values indicated substantial agreement (0.61-0.80) for title and abstract and full-text selection.³¹ References of the included studies were reviewed and, in case of eligibility, added to the pool.

Eligibility criteria

Cohort and case-control studies and case series were considered eligible for inclusion. Animal studies, case reports, or studies without original data were excluded. Our clinical question was

formulated within the Population, Exposure, Comparator, and Outcome framework (Supplemental Table 1).³²

Our population was defined as preterm infants (born before 37 weeks of gestation) or very low birthweight (VLBW) neonates (birthweight \leq 1500 g). We compared the rate of adverse neonatal outcomes in infants with HCA combined with FIR with that of preterm infants who were diagnosed with HCA alone.

We further reviewed the included articles based on the definition of FIR. The group of articles that used the term FIR based on the definition by the Amsterdam Placental Consensus Workshop³³ will be referred to as the "FIR Amsterdam criteria" (FIR-AC) group. In the "FIR-AC" group, the presence of chorionic vasculitis was part of the definition of FIR. The FIR not otherwise specified (FIR-NOS) refers to other publications that either did not specify the definition of FIR or used different terminologies (eg, chorionic vasculitis was not included). Considering these differences, we run 2 analyses for each outcome. All articles were examined in the first analysis, whereas only articles belonging to the FIR-AC group were examined in the second analysis.

The main outcomes were neonatal mortality, EOS, LOS, necrotizing enterocolitis (NEC), and BPD. In addition, we collected data on additional outcomes: retinopathy of prematurity (ROP), IVH, periventricular leukomalacia (PVL), respiratory distress syndrome (RDS), length of hospital stay (LOH), cerebral palsy (CP), neurodevelopmental delay, sensory impairment, and small for gestational age (SGA). Furthermore, we analyzed clinical chorioamnionitis (CCA).

Data extraction

Of note, 2 of the authors (K.K. and O.K.) independently abstracted relevant data into a data sheet (Microsoft Excel 2019; Microsoft Corporation, Redmond, WA), and any mismatch was discussed. Whenever clarification was required, attempts were made to contact the corresponding authors to provide supplemental information.

Risk of bias assessment

According to the recommendations of the Cochrane Prognosis Methods Group, the Quality in Prognosis Studies tool was used.³⁴ Moreover, 2 of the authors (K.K. and O.K.) independently assessed the risk of bias (RoB) in the included studies for each outcome. Any debates were resolved based on consensus.

Data synthesis

Statistical analyses were performed using package 'meta' of the R statistical software (version 4.1.2.) and the R script of the online tool described by Freeman et al.³⁵ Statistical analyses were performed according to Harrer et al.³⁶

We collected the incidence of different neonatal outcomes among neonates with FIR and HCA and among neonates with HCA alone. Pooled odds ratios (ORs), 95% confidence and prediction intervals, and P values corresponding to the null hypothesis that the OR equals 1 were calculated using the random effect variant of the Mantel-Haenszel method^{37,38} implemented in the metabin function. To estimate τ^2 , we used the Paule-Mandel method.³⁹ Moreover, the Hartung-Knapp adjustment⁴⁰ was used. In addition to the prediction interval, heterogeneity was assessed by calculating the I^2 measure and its confidence interval (CI) and performing the Cochrane Q test. I^2 values of 25%, 50%, and 75% were considered to indicate low, moderate, and high heterogeneity, respectively. In the presence of zero frequency, the ORs within studies were calculated by adding 0.5 to the cell frequencies; however, to calculate the pooled OR, the exact Mantel-Haenszel method was used, which can handle zero frequencies without the mentioned correction. Whenever we had at least 3 studies in each subgroup, we performed subgroup analysis to assess the effect of GA. We used the mean GA of 28 weeks as the cutoff. Publication bias was assessed visually via funnel plot, and Harbord tests⁴¹ were performed when at least 10 studies were available.

Although our main focus was to provide pooled ORs, we decided to separately pool the 2 proportions behind the OR value as an insightful supplemental analysis. In diagnostic meta-analyses, the usual methodology for providing pooled sensitivity and sensitivity is to fit the random-effect bivariate model.42 The same bivariate model was used in this study. This approach considers the dependency on the random effect terms between the proportions in the "FIR and HCA" and "HCA alone" groups (see also Riley et al⁴³). The advantage of this method is that it provides 95% confidence and prediction regions. We plotted these regions on a 2-dimensional scatter plot, along with the proportions of the included studies and the resulting summary estimates. The confidence region contains the pooled sensitivity and specificity (more exactly 1-specificity) in 95% of the cases. The prediction region contains the true proportion pair of a new study in 95% of the cases; hence, it provides excellent insights into the heterogeneity. In these visualizations, the sizes of the ellipsoids reflect the weights of the studies, calculated according to the method described by Burke et al.44 We note that the employed bivariate approach is used in Stijnen et al,⁴⁵ even for providing pooled ORs (see the "Data analysis" section). Nevertheless, for simplicity, as mentioned above, we decided to use the conventional Mantel-Haenszel method to obtain pooled OR.

For all statistical analyses, a P value of <.05 was considered significant. Because of several outcomes, the number of tests performed is high, so false-positive associations may occur. In this respect, the P value provides useful insights: the smaller the P value, the smaller the probability of a false-positive result.

Results

Study selection

During the initial selection process, we screened 7881 articles. After title and abstract screening and full article review, 47 articles^{20,23-29,46-84} met the inclusion criteria for the qualitative synthesis, of which all but one⁷¹ were included in the quantitative synthesis. During the updated search, we identified 3 additional studies.^{85–87} Moreover, 25 articles included chorionic vasculitis in their definition of FIR. These studies were

MAY 2024 American Journal of Obstetrics & Gynecology 495

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en mayo 17, 2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart

Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.

part of the FIR-AC group.^{24–29,} ^{50-52,54,60-62,64-66,69,72,75,77,79,80,84-86} The PRISMA flow diagram of the search is shown in Figure 1.⁸⁸ We did not identify any additional studies from the references of eligible studies.

Study characteristics

An overview of the characteristics of the included studies is presented in the Table. Most of the studies were observational cohort studies, and 1 study was a retrospective case-control study.

Moreover, 25 articles included chorionic vasculitis as part of FIR. The remaining 25 studies either did not report about its status or separated it as a different entity. We included 2 conference abstracts,48,87 and because of the high RoB, we also performed sensitivity analyses, omitting these articles from the analysis (Supplemental Figures 1-6). To assess the influence of the individual articles, we performed influential analyses in the case of all outcomes (Supplemental Figures 7–20).

Risk of bias and quality assessment

Regarding all outcomes, we also included studies assessed at a moderate or high RoB (Supplemental Figures 21-34). On one hand, the reason was the nature of cohort studies, and on the other hand, most of the studies were not primarily designed to assess the difference between the 2 groups that we investigated. Therefore, there is a lack of information regarding the confounding factors and the differences between the 2 groups. However, the varying-or, in some cases, vaguedefinitions of the outcomes caused a high RoB.

We were able to assess publication bias in the case of 11 outcomes (Supplemental Figures 35-45). Based

on the funnel plot and Harbord test, publication bias was assumed in the case of PVL.

Synthesis of the results

No change in mortality

Of note, 17 studies, including 3547 preterm infants reported mortality rates. A total of 2212 preterm infants (62.4%) had HCA with histological FIR, and 1335 offspring had HCA alone. The overall OR was 1.18 (95% CI, 0.91-1.52; $I^2=0\%$), as shown in Figure 2, A, suggesting that there was no significant association between mortality and the progression of histological intrauterine inflammation. As shown in Figure 2, B, we found similar results in the FIR-AC group, where the OR is 1.19 (95% CI, $0.72 - 1.97; I^2 = 27\%$).

Higher odds of early-onset sepsis

EOS was reported in 9 studies with 1631 neonates of which 1058 (64.9%) had

2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en mayo 17,

TABLE Characteristics of included studies in the meta-analysis and systematic review

Studies	Country	Design	Sample size	No. of cases in exposure/ control group	FIR definition	Inclusion criteria	Mean GA±SD	Outcomes
Al-Mulaabed et al, ⁴⁸ 2017 ^a	United States	Retrospective	85	11/29	FIR-NOS	BW<1500 g	28.40±3.00	NEC
Babnik et al, ⁶⁷ 2006	Slovenia	Prospective	125	26/21	FIR-NOS	GA<30 wk	27.40±2.00	IVH
Been et al, ²⁶ 2009	The Netherlands	Prospective	301	68/53	FIR-AC	GA \leq 32 wk	28.31 ±2.01	CCA, SGA, mortality, RDS, EOS, LOS, IVH, cystic PVL, NEC, PDA, BPD
Budal et al, ⁸⁵ 2023	Norway	Prospective	71	51/20	FIR-AC	GA \leq 28 wk	25,73	CCA, SGA, mortality, EOS, NEC, ROP, BPD
Burgner et al, ⁷² 2017	Australia	Retrospective	1218	406/171	FIR-AC	GA<30 wk	27	Mortality
Dessardo et al, ⁷⁷ 2019	Croatia	Prospective	262	45/60	FIR-AC	GA≤32 wk	29.20±2.30	PDA, BPD
Durrmeyer et al, ⁷⁸ 2012	France	Prospective	384	85/93	FIR-NOS	GA<28 wk	NA	Mortality, BPD
Gantar et al, ⁸¹ 2011	Slovenia	Retrospective	115	28/9	FIR-NOS	GA<30 wk	27.26±1.45	BPD
Gisslen et al, ⁵⁸ 2016	United States	Prospective	477	31/79	FIR-NOS	GA>32 wk and GA<37 wk	34.71±1.52 ^b	CCA; RDS; LOH
Hendson et al, ⁷⁵ 2011	Canada	Prospective	628	134/95	FIR-AC	GA \leq 32 wk and BW \leq 1250 g	26.10±0.10	CP, visual impairment, hearing impairment, mental delay
Holcroft et al, ⁴⁷ 2004	United States	Retrospective	354	87/59	FIR-NOS	GA<34 wk	$28.00{\pm}3.06$	CCA, mortality, RDS, NEC
Horvath et al, ⁶³ 2012	Hungary	NA	141	14/29	FIR-NOS	BW<1500 g	$29.92{\pm}6.88$	СР
lkeda et al, ⁷⁰ 2015	Japan	Retrospective	294	180/50	FIR-NOS	GA<32 wk	$27.71 {\pm} 1.63^{b}$	BPD
Kelly et al, ⁸⁷ 2022 ^a	United States	Retrospective	152	36/24	FIR-NOS	GA<30 wk	NA	RDS, IVH, PVL, NEC, ROP, BPD
Kent and Dahlstrom, ⁵³ 2004	Australia	Retrospective	241	40/40	FIR-NOS	GA<30 wk	$27.10{\pm}1.95$	BPD
Kent et al, ⁴⁶ 2005	Australia	Retrospective	220	33/39	FIR-NOS	GA<30 wk	$27.03{\pm}1.89$	Mortality, IVH, CP
Kim et al, ⁷⁶ 2015	Korea	Retrospective	258	34/65	FIR-NOS	BW<1500 g	28.14±2.71	CCA, SGA, mortality, RDS, EOS, LOS, IVH, cystic PVL, NEC, ROP, BPD
Kim et al, ⁷¹ 2016	Korea	Retrospective	267	54/74	FIR-NOS	GA≤32 wk	28.32±2.47	Hearing impairment
Lahra et al, ⁷³ 2008	Australia	Prospective	724	219/138	FIR-NOS	GA<30 wk	27.10±1.60	SGA, RDS
Lahra et al, ⁶⁸ 2009	Australia	Prospective	761	208/140	FIR-NOS	GA<30 wk	27.40±1.50	PDA
Lee et al, ⁶⁹ 2015	Korea	Retrospective	339	189/29	FIR-AC	GA<34 wk	29.20±2.99	Mortality, CCA, RDS, IVH, PVL, NEC, ROP, BPD
Liu et al, ²⁴ 2012	China	Prospective	216	51/53	FIR-AC	GA<34 wk	31.46±1.64	Mortality, RDS, EOS, LOS, IVH, cystic PVL, NEC, PDA, ROP, BPD
Kovács. The histologic fetal inflamma	tory response and neonal	tal outcomes. Am J Oł	ostet Gynecol 20	24.				(continued)

Systematic

Reviews

498

TABLE Characteristics of	included studies	in the meta-a	nalysis and	systematic rev	view (continued)	
Studies	Country	Design	Sample size	No. of cases in exposure/ control group	FIR definition	Inclusi

Studies	Country	Design	size	control group	FIR definition	Inclusion criteria	Mean GA±SD	Outcomes
Lynch et al, ⁸⁴ 2017	United States	Retrospective	1217	305/82	FIR-AC	GA \leq 30 wk or BW \leq 1500 g	29.00±2.50	ROP
Maisonneuve et al, ⁵⁰ 2020	France	Prospective	1470	217/211	FIR-AC	GA<32 wk	NA	СР
Matulova et al, ⁸⁶ 2022	Czech Republic	Retrospective	818	343/151	FIR-AC	GA<37 wk	33 ^c	Mortality, RDS, EOS, LOS, IVH, NEC, ROP, BPD, SGA
Mestan et al, ²⁹ 2010	United States	Prospective	256	54/40	FIR-AC	GA<37 wk	28.75±2.70	CCA, IVH, NEC, BPD
Mir et al, ⁶⁶ 2019	United States	Retrospective	241	75/42	FIR-AC	GA<29 wk	26.00±1.53	BPD
Park et al, ⁷⁴ 2015	Korea	NA	378	125/94	FIR-NOS	GA≤34 wk	30.20±2.29 ^b	RDS
Cortelyou et al, ⁸⁰ 2020	United States	Retrospective	255	61/21	FIR-AC	GA<33 wk	28.60±2.00	IVH
Perniciaro et al, ⁵⁵ 2020	Italy	Retrospective	162	17/31	FIR-NOS	BW<1500 g	28.70±3.10	SGA, PDA, BPD
Pietrasanta et al, ²⁸ 2019	Italy	Prospective	807	61/73	FIR-AC	GA ${<}35$ wk and/or BW ${\leq}1500$ g	30.14±3.32	CCA, SGA, mortality, RDS, EOS, LOS, IVH, PDA, ROP, BPD
Plakkal et al, ²⁷ 2013	Canada	Retrospective	529	186/84	FIR-AC	GA<29 wk	25.70±1.60	CCA, SGA, mortality, RDS, NEC, PDA, BPD, LOH
Richardson et al, ⁸² 2006	United Kingdom	Prospective	660	178/114	FIR-NOS	GA<34 wk	29.44±2.64	Mortality, CCA, RDS, IVH, cystic PVL, BPD
Rocha et al, ⁵² 2007	Portugal	Retrospective	452	81/44	FIR-AC	GA<34 wk	29.80±1.73 ^b	IVH, cystic PVL
Rovira et al, ²³ 2011	Spain	Prospective	177	45/42	FIR-NOS	GA<32 wk or BW<1500 g	28.30±2.50	Mortality, IVH, cystic PVL, CP, visual impairment, hearing impairment, mental delay
Salas et al, ⁶¹ 2013	United States	Retrospective	347	110/38	FIR-AC	GA<19 wk	25.35±2.31 ^b	CCA, RDS, CP, visual impairment, hearing impairment, mental delay
Sharma et al, ⁵⁴ 2021	United States	Retrospective	246	127/34	FIR-AC	GA<28 wk	25.23±1.22	BPD
Smit et al, ⁵¹ 2015	The Netherlands	Retrospective	300	55/80	FIR-AC	GA≤32 wk	28.84±2.08	RDS, IVH, cystic PVL, NEC, PDA, BPD
Soraisham et al, ²⁰ 2013	Canada	Retrospective	384	140/57	FIR-NOS	GA<29 wk	26.60±1.30	CP, visual impairment, hearing impairment, mental delay
Strunk et al, ⁶² 2019	Australia	Retrospective	1089	396/131	FIR-AC	GA<30 wk	26.52±1.94	EOS, LOS, NEC, PDA, ROP, BPD
Torchin et al, ⁶⁰ 2017	France	Prospective	1731	269/250	FIR-AC	GA<30 wk	29.10±2.52 ^b	BPD, mortality
Trevisanuto et al, ²⁵ 2013	Italy	Prospective, case-control	320	44/27	FIR-AC	GA<32 wk	27.76±2.73	CCA, SGA, EOS, LOS, mortality, IVH, cystic PVL, NEC, BPD, LOH
Kovács. The histologic fetal inflamma	ntory response and neonat	al outcomes. Am J Oł	stet Gynecol 20)24.				(continued)

ajog.org

TABLE Characteristics of includ	ed studies in t	he meta-analy	sis and s	ystematic revi	iew (continued)			
Studies	Country	Design	Sample size	No. of cases in exposure/ control group	FIR definition	Inclusion criteria	Mean GA±SD	Outcomes
Tsiartas et al, ⁴⁹ 2013	Czech Republic	NA	231	45/97	FIR-NOS	GA<37 wk	32.00 ^c	PDA
van Doorn et al, ⁵⁷ 2022	The Netherlands	Retrospective	1014	168/72	FIR-NOS	GA<32 wk or BW<1500 g	29.00±2.10	SOT
Vergani et al, ⁸³ 2000	Italy	Retrospective	88	5/37	FIR-NOS	GA < 32 wk	28.03±2.22	IVH
Woo et al, ⁵⁶ 2012	Korea	Retrospective	246	35/52	FIR-NOS	$GA{\leq}32$ wk	29.20±1.90	ROP
Yamada et al, ⁶⁵ 2015	Japan	NA	272	93/19	FIR-AC	$GA{<}34$ wk	25.00	Mortality, IVH, NEC, BPD
Ykema et al, ⁷⁹ 2018	The Netherlands	Retrospective	88	12/3	FIR-AC	GA < 32 wk	28.40±5.43 ^b	EOS
Zanardo et al, ⁶⁴ 2008	Italy	Prospective	287	16/52	FIR-AC	GA < 32 wk	31.70±5.10	IVH
Zanardo et al, ⁵⁹ 2011	Italy	Prospective	234	71/46	FIR-NOS	GA < 32 wk	27.67±3.00 ^b	RDS
<i>BPD</i> , bronchopulmonary dysplasia; <i>BW</i> , birt age; <i>LOH</i> , age; <i>LOH</i> , intraventricular hemorrhage; <i>LOH</i> , prematurity; <i>SD</i> , standard deviation; <i>SGA</i> , is ^a Conference abstract; ^b Estimated from the	hweight, <i>CCA</i> , clinical cho length of hospital stay, <i>LL</i> small for gestational age. e median, ^c Median.	rioamnionitis; <i>CP</i> , cerebra 3S, late-onset sepsis; <i>N</i> A,	al palsy; <i>EOS</i> , eal not applicable; <i>I</i>	ry-onset sepsis; <i>FIR-AC</i> , VEC, necrotizing enteroor	, fetal inflammatory respoi olitis, <i>PDA</i> , patent ductus	nse Amsterdam criteria; <i>FIR-N</i> arteriosus; <i>PV</i> L, periventricul	<i>VOS</i> , fetal inflammatory i ar leukomalacia; <i>RDS</i> , re	esponse not otherwise specified; <i>GA</i> , gestational spiratory distress syndrome; <i>ROP</i> , retinopathy of
Kovács. The histologic fetal inflammato	y response and neonata	il outcomes. Am J Obste	et Gynecol 2024					

HCA with concomitant FIR (Figure 3, A). We observed a difference between the 2 groups with higher odds of EOS in the exposure group (OR, 1.84; 95% CI, 1.00-3.40; $I^2 = 44\%$), and this was statistically significant in the subgroup with lower GA (OR, 2.23; 95% CI, 1.76–2.84; $I^2=0\%$). Similar results were observed in the FIR-AC population, as shown in Figure 3, B. No difference in case of late-onset sepsis Of note, 8 studies included LOS as an outcome, including 1781 neonates, among which 1161 (65.2%) were diagnosed with concomitant FIR (Figure 4, A and B). There was no difference in the rate of LOS between the 2 groups, neither in the analysis of all included studies (OR, 1.18; 95%) CI, 0.81–1.72; $I^2=14\%$) nor in the case of the FIR-AC group (OR, 1.31; 95% CI, 0.91-1.88; $I^2=0\%$). Necrotizing enterocolitis

NEC was analyzed in 15 publications involving 2555 preterm infants, of which 1694 (66.3%) had HCA with FIR. According to our analysis, we found no significant association between NEC and the presence of FIR (OR, 0.94; 95% CI, 0.62–1.40; $I^2 = 4\%$) (Figure 5, A). However, in the subgroup of neonates with lower GA, we found significantly lower odds of NEC in the group of preterm infants with FIR (OR, 0.60; 95% CI, 0.41-0.90; $I^2=0\%$) (Figure 5, A). Similar results were observed in the FIR-AC population, as shown in Figure 5, B (OR, 0.74; 95% CI, $0.50 - 1.08; I^2 = 0\%$).

Higher incidence of bronchopulmonary dysplasia among extremely preterm infants with fetal inflammatory response

Of note, 22 studies reported the incidence of BPD, including 4063 preterm infants, of which 2581 (63.5%) had chorioamnionitis with FIR. According to our analysis, there was no significant difference in the odds of BPD between the 2 investigated populations (OR, 1.32; 95% CI, 0.95–1.82; I^2 =56%) (Figure 6, A). However, in the subgroup with lower mean GA, we found a significant increase in the odds of BPD among

MAY 2024 American Journal of Obstetrics & Gynecology 499

FIGURE 2

The odds of mortality among preterm neonates with HCA and FIR vs with HCA alone

A Study	HCA a Events	nd FIR Total	HCA Events	alone Total	Mortality	OR	95%-CI Weight
subgroup = mean GA >	28 week	S					
Liuetal 2012	1	51	3	53		0.33	[0 03: 3 31] 1 1%
Durrmever et al 2012	8	85	12	93		0.00	[0.00, 0.01] 1.1%
Kim et al 2015	3	34	5	65		- 1.16	[0.26; 5.18] 2.6%
Torchin et al. 2017	57	258	47	243		1.10	[0.20, 0.10] 2.0%
Richardson et al 2006	6	178	3	114		- 1.29	[0.32; 5.27] 3.0%
Matulova et al. 2022	6	343	2	151		- 1.33	[0.26: 6.65] 2.2%
Rovira et al 2011	7	45	5	42		- 1.36	[0.20, 0.00] 2.2%
Lee et al 2015	10	189	1	29			$[0 \ 19 \ 12 \ 70]$ 1.3%
Pietrasanta et al 2019	11	61	5	73		2 99	[0.98 9.16] 4.7%
Been et al 2009	13	68	3	53		3.94	[1 06: 14 64] 3 4%
Random effects model	10	1312	Ũ	916		1.29	[0.91: 1.81] 59.8%
Prediction interval							[0.89: 1.86]
Heterogeneity: $I^2 = 0\%$ [0%:	62%1.?*	= 0, p = 0	.525				
Test for effect in subgroup:	$t_9 = 1.66$ ()	0 = 0.131)				
subgroup = mean GA <	<= 28 wee	ks					
Trevisanuto et al., 2013	1	44	3	27		0.19	[0.02; 1.89] 1.1%
Budal et al. 2023	4	51	4	20		0.34	[0.08; 1.52] 2.6%
Plakkal et al., 2013	27	186	14	84		0.85	[0.42; 1.72] 11.8%
Burgner et al., 2017	54	406	19	171		1.23	[0.70; 2.14] 18.9%
Holcroft et al. 2004	4	87	2	59		— 1.37	[0.24; 7.75] 2.0%
Kent et al. 2005	5	33	3	39		2.14	[0.47; 9.74] 2.5%
Yamada et al., 2015	12	93	1	19		2.67	[0.33; 21.84] 1.3%
Random effects model		900		419	+	1.01	[0.57; 1.78] 40.2%
Prediction interval							[0.43; 2.38]
Heterogeneity: $I^2 = 10\% [0\%]$	6; 74%] , 🐔	= 0.0579	p = 0.354				
Test for effect in subgroup:	$t_6 = 0.03 (p$	0 = 0.978)				
Random effects model		2212		1335	•	1.18	[0.91; 1.52] 100.0%
Prediction interval	0				· · · · · · · · · · · · · · · · · · ·		[0.90; 1.53]
Heterogeneity: $I^2 = 0\%$ [0%;	; 51%] , ? =	= 0, p = 0	.486			1	
Test for overall effect: $t_{16} =$	1.33 (p = 0)	0.201)			0.1 0.51 2	10	
Test for subgroup differences	s: $?_1^2 = 0.7$	7, df = 1	(p = 0.379)				
		Hi	gher odds	with HC	A alone	Higher odds v	with HCA and FIR

There is no change in the case of mortality. **A**, All studies. **B**, Fetal inflammatory response Amsterdam criteria group. *Cl*, confidence interval; *FIR*, fetal inflammatory response; *GA*, gestational age; *HCA*, histological chorioamnionitis; *OR*, odds ratio.

Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.

neonates with concomitant FIR (OR, 1.30; 95% CI, 1.02–1.66; $I^2=0\%$) (Figure 6, A). In the FIR-AC group, the subgroup analysis showed similar results (Figure 6, B).

Higher rates of intraventricular hemorrhage and retinopathy of prematurity and no change in cases of periventricular leukomalacia and cerebral palsy

We analyzed several neurologic outcomes. In the case of IVH, we extracted the data separately according to the severity. We found a significant association between IVH and the presence of FIR (OR, 1.54; 95% CI, 1.18–2.02; $I^2 = 0\%$); however, this association with severe IVH was not observed (Supplemental Figures 46 and 47). Our analysis showed a significant association between ROP and the presence of FIR with chorioamnionitis. We found no significant difference between the 2 investigated populations in cases of ROP, PVL, and CP (Supplemental Figures 48–50). Our analysis showed a significant association between ROP and the presence of FIR with chorioamnionitis (Supplemental Figure 48, OR, 1.37; 95% CI, 1.03–1.82; $I^2 = 0\%$). We found no significant difference between the 2 investigated populations in cases of PVL, and CP (Supplemental Figures 49 and 50).

Three-fold elevated clinical chorioamnionitis

In both analyses, the presence of CCA was significantly elevated in the group of preterm infants with FIR (OR, 2.99; 95% CI, 1.96–4.55; $I^2 = 55\%$). Interestingly,

FIGURE 2 Continued

B	HCA a	nd FIR	HCA	alone	Marchael Stee		
Study	Events	Total	Events	Total	wortanty	UR	95%-CI weight
subgroup = mean GA >	28 week	S					
Liu et al., 2012	1	51	3	53		0.33	[0.03: 3.31] 3.3%
Torchin et al., 2017	57	258	47	243		1.18	[0.77: 1.82] 21.1%
Matulova et al. 2022	6	343	2	151		- 1.33	[0.26: 6.65] 5.9%
Lee et al., 2015	10	189	1	29		1.56	[0.19; 12.70] 3.8%
Pietrasanta et al., 2019	11	61	5	73		2.99	[0.98; 9.16] 9.8%
Been et al., 2009	13	68	3	53	- <u></u>	3.94	[1.06; 14.64] 8.0%
Random effects model		970		602		1.55	[0.80; 2.98] 51.9%
Prediction interval						-	[0.55; 4.37]
Heterogeneity: $I^2 = 20\%$ [0%	6; 65%] , ? ²	= 0.0746	, p = 0.282				
Test for effect in subgroup:	$t_5 = 1.71 \ (\mu$	0 = 0.148)				
subgroup = mean GA <	<= 28 wee	ks					
Trevisanuto et al., 2013	1	44	3	27		0.19	[0.02; 1.89] 3.2%
Budal et al. 2023	4	51	4	20		0.34	[0.08; 1.52] 6.6%
Plakkal et al., 2013	27	186	14	84		0.85	[0.42; 1.72] 15.9%
Burgner et al., 2017	54	406	19	1/1		1.23	
Yamada et al., 2015	12	93	1	19		2.67	[0.33; 21.84] 3.8%
Random effects model		780		321		0.86	[0.35; 2.11] 48.1%
Prediction Interval	. 700/1 2	0.4047	0.000				[0.15; 4.85]
Heterogeneity: $T^2 = 28\% [0\%$	6; 72%], ?=	= 0.1917	p = 0.236				
rescior eneccin subgroup.	(40.40 (p = 0.050))				
Pandom offects model		1750		923		1 19	IO 72: 1 971 100 0%
Prediction interval		1750		525			[0.72, 1.57] 100.070 [0.39: 3.64]
Heterogeneity: $l^2 = 27\% 10\%$	6:64%1 2	= 0 1929	n = 0.188				[0.00, 0.04]
Test for overall effect: $t_{10} =$	0.78 (p = 0	.456)	, p 0.100		01 051 2	10	
Test for subgroup difference	s: $?_{4}^{2} = 2.0$	5. df = 1	(p = 0.152)		0.01 2		
		Hi	gher odds	with HC	A alone	Higher odds v	vith HCA and FIR
						0	

Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.

according to the subgroup analysis, this elevation was not significant in groups of infant-mother dyads with lower mean GA (Supplemental Figure 51).

Respiratory distress syndrome, patent ductus arteriosus, and small for gestational age Our analysis showed no association between FIR and RDS (Supplemental Figure 52). In the case of patent ductus arteriosus (PDA), we found no significant difference between the 2 groups of neonates. Moreover, we assessed the incidence of SGA, and our data suggest that there was no difference between the cases associated with FIR and the comparison group (Supplemental Figures 53 and 54).

Systematic review

Of note, 4 studies^{20,23,61,75} reported neurodevelopmental impairments, and

none of the studies showed significant differences between the 2 groups of neonates. Hearing impairment or deafness was analyzed in 5 studies,^{20,23,61,71,75} and visual impairment was analyzed in 4 studies,^{20,23,61,75} none of which found an association with the exposure. However, the results for the different endpoints could not be included in the quantitative synthesis because of heterogeneity.

The LOH was analyzed in 3 studies^{25,27,58}; however, although it was included as an outcome of our protocol, analyzing it was not reasonable because of the differences between institutional protocols and capacities.

Meta-analysis of proportions

In addition, we conducted a study of proportions, which are shown in

Supplemental Figures 55 to 68 and Supplemental Table 2.

Comment

Principal findings

We performed a meta-analysis of 47 observational studies to assess the influence of the concomitant presence of histological FIR with HCA vs HCA alone on the complications of prematurity. This analysis was based on unadjusted data, using the mean GAs to perform a subgroup analysis.

The main result of our study was that the incidence of IVH was significantly higher in the group of preterm infants with HCA and histological FIR than in the group of preterm infants with HCA alone. Moreover, a similar comparison in the subgroup of preterm infant

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en mayo 17, 2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

The odds of EOS with H	CA and F	IR vs w	ith HCA a	lone			
A Study	HCA ar Events	nd FIR Total	HCA Events	alone Total	EOS	OR	95%-Cl Weight
subgroup = mean GA > Been et al., 2009 Kim et al. 2015 Liu et al., 2012 Ykema et al., 2012 Ykema et al., 2015 Matulova et al. 2022 Pietrasanta et al., 2019 Random effects model Prediction interval Heterogeneity: / ² = 58% [0% Test for effect in subgroup:	28 weeks 15 0 8 3 30 6 6; 83%], ? ² $t_5 = 1.21$ (p	68 32 51 12 343 61 567 = 0.4739	18 1 6 0 3 1 , <i>p</i> = 0.036	53 62 53 3 151 73 395		0.55 [0 0.63 [0. 1.46 [0 	0.25; 1.23] 19.4% 02; 15.93] 2.4% 0.47; 4.54] 13.3% 10; 63.69] 2.5% 42; 15.74] 12.4% 92; 67.15] 5.1% .55; 5.25] 55.0% 18; 16.39] 2.5%
subgroup = mean GA < Trevisanuto et al., 2013 Strunk et al., 2018 Budal et al. 2023 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$ [0%; Test for effect in subgroup:	28 wee 14 189 4 90%] , ? ² = t ₂ = 14.35 (44 396 51 491 • 0, p = 0 p = 0.00	5 38 0	27 131 20 178		2.05 [0 2.23 [1 	0.64; 6.55] 13.0% .46; 3.42] 29.2% 20; 75.51] 2.8% .76; 2.84] 45.0% 17; 29.14]
Random effects model Prediction interval Heterogeneity: $I^2 = 44\%$ [0% Test for overall effect: $t_8 = 2$ Test for subgroup differences	$6;74\%],?^2$ 2.29 ($p = 0.0$ s: $?_1^2 = 0.38$	1058 = 0.1952 051) 3, df = 1 Hig	, p = 0.072 (p = 0.536) Jher odds y	573 with HCA	0.1 0.51 2 10 A alone Highe	1.84 [1 [0 er odds with	.00; 3.40] 100.0% .54; 6.23] HCA and FIR

I here is no significant difference in the case of EUS. **A**, All studies included. **B**, Fetal inflammatory response Amsterdam criteria group. *Cl*, confidence interval; *EOS*, early-onset sepsis; *FlR*, fetal inflammatory response; *GA*, gestational age; *HCA*, histological chorioamnionitis; *OR*, odds ratio. *Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.*

populations with a mean GA of <28 weeks showed a significantly higher incidence of EOS and BPD but a lower incidence of NEC in the cases of HCA and histological FIR. In addition, we found nearly 3-fold higher odds for clinically apparent HCA when HCA and histological FIR were present.

The rate of all other investigated complications in preterm infants, including severe IVH, did not differ by the presence of histological FIR with HCA.

Comparison with the existing literature

Several meta-analyses deal with the association of chorioamnionitis and adverse outcomes of preterm infants, and some of them also included the effect of histological FIR in the investigation. $^{15-19,89-91}$ This review is strictly based on histological evaluation vs other systematic reviews investigating histological FIR as a part of the FIR syndrome (FIRS). 92

In the subgroup of preterm infants with a mean GA of <28 weeks, an elevated rate of BPD was observed. This correlation was statistically significant only in the FIR-AC group. Similar to our findings, the results in the literature are also inconsistent. Most cohort studies and meta-analyses have found an association between BPD and IUI; however, its role as an independent risk factor has not been proven.¹⁵ BPD has been the subject of extensive research during the past few

decades, and it is no longer considered that immature lungs and aggressive ventilation alone would be responsible for the development of BPD. As one of the first organs to encounter the amniotic fluid, the fetal lung might be one of the first organs to initiate FIR as well. In an experimental setting, the exposure of the fetal lung to lipopolysaccharide (LPS) initiated FIR.93 Inflammation and microbial particles facilitate lung maturation.94 However, this accelerated maturation induces anatomic and structural changes within the lung tissue, turning this benefit into a disadvantage, an impaired lung function.^{95,96}

In the subgroup with lower GA, we also found an association between the presence of histological FIR and EOS

Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.

in contrast to other meta-analyses focusing on this topic.¹⁶ This discrepancy could be due to more recent publications or the excluded articles because of the different populations and designs.

Surprisingly, our analysis showed a reduced incidence of NEC in the group of preterm infants with histological FIR in the subgroup with lower mean GA. Another meta-analysis conducted in 2013¹⁸ found no significant association between HCA and NEC. The pathogenesis of NEC is still not fully elucidated. factors include Risk immaturity. hypoxic-ischemic states, abnormal microbiological colonization, and formula feeding.97 Therefore, local protocols for antibiotic prophylaxis and enteral feeding may have affected the incidence of NEC in different studies.98,99

In the case of LOS and PDA, we found no significant association, similar to other meta-analyses.^{16,90,91} Villamor-Martinez et al⁸⁹ detected a higher risk of ROP among neonates with histological FIR, and we could substantiate this by analyzing a larger number of studies.

According to our results, there was an increased occurrence of IVH in the presence of HCA with histological FIR, in contrast to the results of Villamor-Martinez et al.¹⁹ This finding may be explained by the larger number of included studies and the design focused on answering the particular question of the role of histological FIR with HCA. According to our results, this significant association was not demonstrated in the case of severe IVH. The discrepancy between the 2 analyses regarding all IVH and severe IVH-only cases can easily be caused by the different grading

systems^{100,101} or the potentially different etiology of intraparenchymal bleeding.^{100,102}

Our analysis showed a 3-fold increase in CCA among infant-mother dyads with HCA and histological FIR. More than 90% of pregnant women diagnosed with CCA are expected to deliver within the next 12 hours.¹⁰³ Based on these results, HCA is more likely to be clinically silent than additional histological FIR. This association could support the understanding that fetal inflammation develops later, depending on the duration and intensity of the exposure to inflammation. However, this also raises the possibility of further explanation. For example, in the case of HCA, bacteria are more commonly identified when CCA is present.¹⁰⁴ As specific inflammatory patterns have been described in the cord, several pathogens have been proposed to

FIGURE 4

The odds of LOS with HCA and FIR vs with HCA alone

Α	HCA a	nd FIR	HCA	alone				
Study	Events	Total	Events	Total	LOS	OR	95%-CI	Weight
subgroup = mean GA >	28 week	S						
Kim et al., 2015	1	31	7	61		0.26	[0.03; 2.19]	2.1%
van Doorn et al., 2021	65	168	31	72	— <mark>—</mark> —	0.83	[0.48; 1.46]	22.1%
Been et al., 2009	17	68	15	53		0.84	[0.38; 1.90]	12.5%
Liu et al., 2012	18	51	12	53		- 1.86	[0.79; 4.41]	11.3%
Matulova et al. 2022	13	343	3	151		1.94	[0.55; 6.92]	5.7%
Pietrasanta et al., 2019	14	60	8	72		2.43	[0.94; 6.28]	9.6%
Random effects model		721		462		1.21	[0.63; 2.33]	63.4%
Prediction interval						_	[0.34; 4.38]	
Heterogeneity: $I^2 = 37\%$ [0%]	6; 75%] , ? ²	= 0.1493	, p = 0.159					
Test for effect in subgroup:	$t_5 = 0.76 \ (\mu$	b = 0.482)					
Strupk et al. 2018	- 20 wee	306	51	121		1 1 /	10 76: 1 711	33 10/
Trevisanuto et al. 2013	5	11	2	27		1.14	[0.70, 1.71]	3 2%
Prediction interval	5	44	2	21		1.00	[0.29, 0.90]	0.270
Test for effect in subgroup:	$t_1 = 2.02$ (1	p = 0.292)					
rection encount can group.	· 1 =··= (1		/					
Random effects model		1161		620		1 18	[0 81· 1 72]	100 0%
Prediction interval							[0 64: 2 15]	
Heterogeneity: $l^2 = 14\%$ [0%]	6: 56%] . ?	2 = 0.0350	p = 0.324				[
Test for overall effect: $t_7 = 1$.02 (p = 0.	341)			0.1 0.5 1 2	10		
Test for subgroup differences	s: $?_1^2 = 0.0$	2, df = 1	(p = 0.878)					
		Hig	gher odds	with HC	A alone	Higher odds v	vith HCA and	FIR

В	HCA a	nd FIR	HCA	alone				
Study	Events	Total	Events	Total	LOS	OR	95%-CI	Weight
subgroup = mean GA >	28 week	S						
Been et al., 2009	17	68	15	53		0.84	[0.38; 1.90]	13.7%
Liu et al., 2012	18	51	12	53		1.86	[0.79; 4.41]	12.2%
Matulova et al. 2022	13	343	3	151		1.94	[0.55; 6.92]	5.6%
Pietrasanta et al., 2019	14	60	8	72		2.43	[0.94; 6.28]	10.1%
Random effects model		522		329		- 1.55	[0.70; 3.42]	41.5%
Prediction interval							[0.45; 5.33]	
Heterogeneity: $I^2 = 10\%$ [0%	6: 86%] . ? ²	= 0.0204	p = 0.345					
Test for effect in subgroup:	$t_3 = 1.75$ (p	0 = 0.178)					
subgroup = mean GA <	<= 28 wee	ks						
Strunk et al. 2018	167	396	51	131		1.14	[0.76: 1.71]	55.4%
Trevisanuto et al 2013	5	44	2	27			[0 29 8 90]	31%
Prediction interval	0		-	21		1.00	[0.20, 0.00]	0.170
Test for effect in subgroup:	$t_1 = 2.02$ (r	0 = 0.292)					
reetter eneettin eabgreap.		01202	/					
Random effects model		962		487		1.31	[0 91· 1 88]	100.0%
Prediction interval		UUL		401	-	1.01	[0.85: 2.00]	100.070
Hotorogonaity: $l^2 = 0\%$ [0%]	750/1 2-	- 0 n - 0	512				[0.00, 2.00]	
Test for overall effect: $t_r = 1$	189(n = 0	(117)	.012		02 05 1 2	5		
Test for subgroup difference	$2^2 = 12$	0 df = 1	(n = 0.274)		0.2 0.3 1 2	5		
rescion subgroup unlefence	· · · 1 ^{- 1.2}	ui – T Hi	(p = 0.274)	with HC	A alone	Higher odde w	ith HCA and	EID
		1 115	grici ouus	WITHIO	A dione	righter ouus w	A and	E II X

$\textbf{504} \quad \textbf{American Journal of Obstetrics } \mathfrak{S} \textbf{Gynecology} \quad \textbf{MAY } 2024$

FIGURE 5

The odds of NE	C with HCA	and FIR vs	s with HCA	alone
----------------	------------	------------	------------	-------

Α	HCA a	nd FIR	HCA	alone			
Study	Events	Total	Events	Total	NEC	OR	95%-CI Weight
subgroup = mean $GA > 28$	weeks						
Lee et al 2015	6	188	3	29		0.29	[0 07 [.] 1 21] 6 3%
Mestan et al 2010	4	54	4	40		0.72	[0.17; 3.07] 6.3%
Smit et al. 2015 Veldhoven	4	55	5	80		1 18	[0.30; 4.59] 7.1%
Been et al., 2009	6	68	4	53		1.19	[0.32: 4.44] 7.6%
Al-Mulaabed, 2017	2	11	4	29		1.39	[0.22: 8.93] 3.9%
Kim et al., 2015	3	31	3	62		2.11	[0.40: 11.11] 4.8%
Liu et al., 2012	2	51	1	53	_	- 2.12	[0.19; 24.16] 2.3%
Matulova et al. 2022	10	343	2	151		2.24	[0.48; 10.34] 5.7%
Holcroft et al. 2004	15	87	3	59		3.89	[1.07; 14.10] 7.9%
Random effects model		888		556		1.32	[0.71; 2.44] 51.9%
Prediction interval							[0.60; 2.92]
Heterogeneity: $I^2 = 7\% [0\%; 67\%]$	%],? ² =0.0	0415, p =	0.373				
Test for effect in subgroup: $t_8 =$	1.03 (p =	0.331)					
subgroup = mean GA <= 2	8 weeks						
Plakkal et al., 2013	13	186	12	84		0.45	[0.20; 1.04] 18.0%
Budal et al. 2023	7	51	4	20		0.64	[0.16; 2.47] 7.2%
Strunk et al., 2018	15	396	7	131		0.70	[0.28; 1.75] 15.0%
Trevisanuto et al., 2013	3	44	2	27		0.91	[0.14; 5.86] 3.9%
Yamada et al., 2015	3	93	0	19		-1.51	[0.07; 30.40] 1.5%
Random effects model		770		281		0.60	[0.41; 0.90] 45.6%
Prediction interval							[0.26; 1.42]
Heterogeneity: $I^2 = 0\% [0\%; 79\%]$	[%], ? = 0,	$p = 0.89^{\circ}$	1				
Test for effect in subgroup: $t_4 =$	-3.55 (p =	0.024)					
subgroup = unknown							
Kelly et al 2022	3	36	1	24		- 2.09	[0 20 [.] 21 38] 2 5%
Prediction interval						2.00	[0.20, 21.00] 2.070
Random effects model		1694		861		0.94	[0.62; 1.40] 100.0%
Prediction interval							[0.57; 1.54]
Heterogeneity: $l^2 = 4\% [0\%; 56\%]$	%], ? ² = 0.0	0172, p =	0.403				
Test for overall effect: $t_{14} = -0.3$	5 (p = 0.73	33)			0.1 0.5 1 2 10		
Test for subgroup differences:	$P_2^2 = 7.44$, d	f=2 (p=	0.024)				
	-	Hi	gher odds	with HC	A alone Highe	er odds w	ith HCA and FIR

There is no significant difference in the case of NEC. **A**, All studies. **B**, Fetal inflammatory response Amsterdam criteria group. *Cl*, confidence interval; *FIR*, fetal inflammatory response; *GA*, gestational age; *HCA*, histological chorioamnionitis; *NEC*, necrotizing enterocolitis; *OR*, odds ratio. *Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.*

play a role in the development of histo- equilibrium logical FIR.¹⁰⁵ It would be reasonable the

that certain pathogens could induce an FIR, leading to a higher rate of CCA. As discussed in the literature, histological FIR is the morphologic

◀

equivalent of the clinical FIRS.¹⁰⁶ With the clear effect of HCA on nearly all adverse neonatal outcomes, the presence of histological FIR may propose a more extensive inflammation that brings even worse odds for neonatal mortality and morbidity. Based on animal studies, the progression of HCA occurs chronologically from stage 1 to stage 3 after an inflammatory stimulus.¹⁰⁷ A parallel between the manifestation and advancement of histological FIR is less

There is no significant difference in the case of LOS. A, All studies. B, Fetal inflammatory response Amsterdam criteria group.

CI, confidence interval; FIR, fetal inflammatory response; HCA, histological chorioamnionitis; LOS, late-onset sepsis; OR, odds ratio.

Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.

MAY 2024 American Journal of Obstetrics & Gynecology 505

FIGURE 5 Continued							
B Study	HCA a Events	nd FIR Total	HCA Events	alone Total	NEC	OR	95%-Cl Weight
subgroup = mean GA > 28 Lee et al., 2015 Mestan et al., 2010 Smit et al., 2015 Veldhoven Been et al., 2009 Liu et al., 2012 Matulova et al. 2022 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$ [0%; 759 Test for effect in subgroup: $t_5 = 100$	weeks 6 4 6 2 10 6],? ² = 0, -0.12 (<i>p</i> =	188 54 55 68 51 343 759 p = 0.464 0.906)	3 4 5 4 1 2	29 40 53 53 151 406		0.29 [(0.72 [(1.18 [(1.19 [(2.12 [0 - 2.24 [0 0.96 [0 [0	0.07; 1.21] 7.7% 0.17; 3.07] 7.6% 0.30; 4.59] 8.6% 0.32; 4.44] 9.2% .19; 24.16] 2.7% .48; 10.34] 6.8% 4.45; 2.09] 42.7% 0.40; 2.30]
subgroup = mean GA <= 2 Plakkal et al., 2013 Budal et al. 2023 Strunk et al., 2018 Trevisanuto et al., 2013 Yamada et al., 2015 Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$ [0%; 799 Test for effect in subgroup: $t_4 =$	8 weeks 13 7 15 3 3 () -3.53 (p =	186 51 396 44 93 770 <i>p</i> = 0.891 0.024)	12 4 7 2 0	84 20 131 27 19 281		0.45 [(0.64 [(0.70 [(0.91 [(1.51 [0 0.60 [0 [0	0.20; 1.04] 23.2% 0.16; 2.47] 8.7% 0.28; 1.75] 19.0% 0.14; 5.86] 4.6% .07; 30.40] 1.8% .41; 0.90] 57.3% .26; 1.42] 57.3%
Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$ [0%; 60% Test for overall effect: $t_{10} = -1.7$ Test for subgroup differences: T_{10}	6], $?^2 = 0$, 8 ($p = 0.10$ $p_1^2 = 1.98$, d	1529 p = 0.723 5) f = 1 (p = Hi	3 = 0.160) gher odds	687	0.1 0.5 1 2 1 A alone Hi	0.74 [0] 0 gher odds wit	9.50; 1.08] 100.0% 9.46; 1.17] h HCA and FIR

clear.¹⁰⁴ According to the literature, FIR usually presents with a higher stage of maternal chorioamnionitis.^{108,109} Furthermore, when comparing HCA alone with HCA with histological FIR, the levels of several interleukins and tumor necrosis factor alpha in the amniotic fluid were significantly higher in the latter group. These findings suggest a progressed level of inflammation reaching the chorionic vessels and the umbilical vein and arteries.¹¹⁰ Therefore, histological FIR is considered an "advanced stage" of HCA.¹¹¹

However, this equation might be more complicated. Experimental fetal inflammation can induce functional maturation and activation of monocytes and macrophages. Activated fetal cells may alter the intrauterine response of the fetus during intrauterine inflammation.¹¹¹ The nature of these complex immunologic mechanisms in the fetus may explain why HCA with histological FIR is not always associated with worse neonatal outcomes but might influence the course of CCA.

Strengths and limitations

This was a meta-analysis that focused on the consequences of the presence of histological FIR with HCA in a wide range of neonatal outcomes. We only included articles that defined chorioamnionitis based on histological examination. Furthermore, we have a selected population of articles with uniform histological classification. To decrease the possible influence of GA on outcomes, subgroup analyses were performed on the basis of the mean GA.

Our study has some limitations. All of the included studies were observational studies, mainly with a moderate to high RoB because of our particular research question. Our population consists of preterm infants or VLBW neonates, and we did not make any other restrictions. This resulted in a rather heterogeneous population. The definitions of the outcomes differed in certain articles or were described only vaguely.

The morbidities of preterm infants are multifactorial and highly influenced by several confounding factors, such as maternal medical complications, premature rupture of membranes, antenatal steroid prophylaxis, GA, or surfactant therapy. Here, data were not adjusted for

506 American Journal of Obstetrics & Gynecology MAY 2024

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en mayo 17, 2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

FIGUI	RE 6	

|--|

A Study	HCA a Events	nd FIR Total	HCA Events	alone Total	BPD	OR	95%-CI We	eight
subgroup = mean GA > 28 Liu et al., 2012 Richardson et al., 2006 Mestan et al., 2010 Torchin et al., 2017 Kim et al., 2015 Smit et al., 2015 Smit et al., 2015 Veldhoven Been et al., 2009 Lee et al., 2009 Lee et al., 2015 Matulova et al. 2022 Perniciaro et al., 2020 Pietrasanta et al., 2019 Dessardo et al., 2018 Random effects model Prediction interval Heterogeneity: l^2 = 75% [55%; 3 Test for effect in subgroup: t_{14}	weeks 3 39 12 28 9 9 11 51 38 8 19 33 36%], ? ² =	51 178 54 201 31 55 56 183 343 15 51 45 1263 0.9278, <i>p</i> 0.247)	7 30 10 31 19 13 9 6 10 8 13 4	53 114 40 196 61 80 51 28 151 23 70 60 927		0.41 0.79 0.86 0.90 1.01 1.14 1.42 1.76 2.14 2.60 38.50 1.46	[0.10; 1.69] [0.45; 1.36] [0.33; 2.24] [0.50; 1.50] [0.35; 2.33] [0.40; 2.55] [0.43; 3.03] [0.54; 3.70] [0.85; 3.63] [0.57; 8.09] [1.14; 5.96] [11.47; 129.18] [0.74; 2.91] 4 [0.15; 13.97]	2.8% 5.5% 4.0% 5.5% 4.1% 4.1% 4.0% 4.0% 4.0% 4.9% 3.3% 9.6%
subgroup = mean GA <= 2 Durrmeyer et al., 2012 Gantar et al., 2011 Kent et al., 2014 Mir et al., 2019 Plakkal et al., 2013 Trevisanuto et al., 2013 Sharma et al., 2013 Yamada et al., 2015 Strunk et al., 2014 Budal et al. 2023 Random effects model Prediction interval Heterogeneity: $I^2 = 0\% [0\%; 60]$ Test for effect in subgroup: t_{10}	28 weeks 5 8 13 33 109 15 75 36 103 114 32 %], ? ² = 0 = 2.39 (p =	85 38 40 75 157 44 127 93 396 180 47 1282 , <i>p</i> = 0.60 0.038)	10 3 14 19 45 8 18 6 23 25 6	93 12 40 42 68 27 34 19 131 50 15 531		0.52 0.80 0.89 0.95 1.16 1.23 1.28 1.37 1.65 1.73 3.20 1.30	[0.17; 1.58] [0.17; 3.66] [0.35; 2.26] [0.44; 2.03] [0.63; 2.13] [0.44; 3.46] [0.60; 2.74] [0.48; 3.92] [1.00; 2.73] [0.92; 3.25] [0.96; 10.64] [1.02; 1.66] 4 [0.99; 1.71]	3.5% 2.5% 4.1% 5.3% 3.8% 4.7% 3.7% 5.6% 5.2% 3.3% 6.6%
subgroup = unknown Kelly et al. 2022 Prediction interval Random effects model Prediction interval	17	36 2581	11	24 1482		1.06 1.32	[0.38; 2.98] [0.95; 1.82] 10 [0.36; 4.87]	3.8% 0.0%
Test for overall effect: $t_{23} = 1.76$ Test for subgroup differences:	$p^{2} = 0.30, d$	f=2 (p = Hic	= 0.863) her odds	0 with HC	.01 0.1 1 10 A alone Hial	100 her odds wit	h HCA and FIR	

There is higher incidence of BPD among extremely preterm infants with FIR. **A**, All studies. **B**, Fetal inflammatory response Amsterdam criteria group. *BPD*, bronchopulmonary dysplasia; *Cl*, confidence interval; *FIR*, fetal inflammatory response; *GA*, gestational age; *HCA*, histological chorioamnionitis; *OR*, odds ratio. *Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024*.

these factors. In addition, in some studies where the baseline characteristics were available separately in the HCA alone and HCA with FIR groups, significant differences were observed regarding these characteristics.^{28,29,77} Regarding long-term outcomes, we could only make a meta-analysis in the case of CP. In the case of other outcomes, such as hearing or visual impairment or neurodevelopmental delay, the different effect measurements were not suitable for merging. Therefore, to avoid protocol deviation, we cover this topic in the narrative review section. Moreover, we

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en mayo 17, 2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

Continued									
3	HCA a	nd FIR	НСА	alone					
Study	Events	Total	Events	Total		BPD	OR	95%-CI	Weight
subgroup = mean GA > 28	weeks								
Liu et al., 2012	3	51	7	53			0.41	[0.10: 1.69]	4.5%
Mestan et al., 2010	12	54	10	40			0.86	[0.33; 2.24]	6.0%
Torchin et al., 2017	28	201	31	196		-	0.86	[0.50; 1.50]	7.5%
Smit et al., 2015 Veldhoven	9	55	13	80			1.01	[0.40; 2.55]	6.2%
Been et al., 2009	11	56	9	51			1.14	[0.43; 3.03]	6.0%
Lee et al., 2015	51	183	6	28		-	1.42	[0.54; 3.70]	6.0%
Matulova et al. 2022	38	343	10	151		+	1.76	[0.85; 3.63]	6.9%
Pietrasanta et al., 2019	19	51	13	70			2.60	[1.14; 5.96]	6.5%
Dessardo et al., 2018	33	45	4	60			38.50	[11.47; 129.18]	5.2%
Random effects model		1039		729			1.62	[0.63; 4.20]	54.8%
Prediction interval							_	[0.09; 28.26]	
Heterogeneity: $I^2 = 79\%$ [61%; 8 Test for effect in subgroup: $t_8 =$	39%] , ? ² = 1.17 (p = 0	1.2901, p 0.274)	< 0.001						
subgroup = mean GA <= 2	8 weeks								
Mir et al., 2019	33	75	19	42			0.95	[0.44: 2.03]	6.8%
Plakkal et al., 2013	109	157	45	68			1.16	[0.63: 2.13]	7.3%
Trevisanuto et al., 2013	15	44	8	27			1.23	[0.44; 3.46]	5.8%
Sharma et al., 2021	75	127	18	34		_ 	1.28	[0.60; 2.74]	6.8%
Yamada et al., 2015	36	93	6	19			1.37	[0.48; 3.92]	5.7%
Strunk et al., 2018	103	396	23	131			1.65	[1.00; 2.73]	7.6%
Budal et al. 2023	32	47	6	15			3.20	[0.96; 10.64]	5.2%
Random effects model		939		336			1.37	[1.04; 1.81]	45.2%
Prediction interval								[0.95; 1.98]	
Heterogeneity: $I^2 = 0\% [0\%; 71]$	$\%$], $?^2 = 0$,	p = 0.719	9						
Test for effect in subgroup: $t_6 =$	2.82 (p = 0	0.030)							
Random effects model		1978		1065			1.51	[0.94; 2.43]	100.0%
Prediction interval							1.100-12	[0.27; 8.38]	
Heterogeneity: $l^2 = 65\%$ [40%; 7 Test for overall effect: $t_{45} = 1.84$	(p = 0.086)	0.5887, p	< 0.001	0	01 0 1	1 10	100		
Test for subgroup differences: 2	$p^2 = 0.15 d$	f = 1 (p = 1)	0.695)	0	.01 0.1	10	100		
Higher odds with HCA alone Higher odds with HCA alone Higher odds with HCA and FIR									
when The histologic fetal inflammatory response and neonatal outcomes. Am I Obstet Conecol 2024									

did not have a histologically negative population, which is a substantial limitation. Defining the FIR-AC group was necessary to differentiate articles with precise histological descriptions. Because of the vague definitions used by some articles, we cannot ensure that all articles referred to as FIR-NOS are not based on the same criteria as the FIR-AC group.

Conclusion and implication

Higher rates of EOS, BPD, IVH, and ROP provide further information for prognostic evaluation. Histological examination of the umbilical cord can provide an additional element in the diagnostic workup of EOS and could be a helpful guide in clinical decisionmaking. Based on our results, the presence of CCA-a more advanced stage of intrauterine inflammation-should be suspected.

In our comparison, there was no histologically negative population. To obtain a better understanding, a metaanalysis comparing HCA alone with a histologically negative population should be performed. To decrease the influence of confounding factors in the analyses, original datasets should be made available in future studies.

ACKNOWLEDGMENTS

The authors would like to thank János Pápai, MD for his contributions to the literature search performed in this study and Beata Hargitai, MD and Péter Varga, MD, PhD for their valuable discussions and crucial review of the manuscript. None of them have any conflict of interest concerning our systematic review and meta-analysis.

REFERENCES

1. Goldenberg RL, Culhane JF, lams JD, Romero R. Epidemiology and causes of preterm birth. Lancet 2008;371:75-84.

2. Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 2010;126:443-56.

$\textbf{508} \quad \textbf{American Journal of Obstetrics } \mathfrak{S} \textbf{ Gynecology } \text{ MAY } 2024$

3. Jung E, Romero R, Suksai M, et al. Clinical chorioamnionitis due to intraamniotic infection in term gestations: the definition, microbiology, pathogenesis, differential diagnosis, and treatment. Am J Obstet Gynecol 2023. https://doi.org/10.1016/j.ajog.2023.02.002.

4. Sung JH, Choi SJ, Oh SY, Roh CR. Should the diagnostic criteria for suspected clinical chorioamnionitis be changed? J Matern Fetal Neonatal Med 2021;34:824–33.

5. Romero R, Pacora P, Kusanovic JP, et al. Clinical chorioamnionitis at term X: microbiology, clinical signs, placental pathology, and neonatal bacteremia - implications for clinical care. J Perinat Med 2021;49: 275–98.

6. Romero R, Salafia CM, Athanassiadis AP, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol 1992;166;1382–8.

7. Romero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term VI: acute chorioamnionitis and funisitis according to the presence or absence of microorganisms and inflammation in the amniotic cavity. J Perinat Med 2016;44:33–51.

8. Lahra MM, Jeffery HE. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol 2004;190:147–51.

9. Redline RW, Faye-Petersen O, Heller D, et al. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 2003;6:435–48.

10. Steel JH, O'Donoghue K, Kennea NL, Sullivan MH, Edwards AD. Maternal origin of inflammatory leukocytes in preterm fetal membranes, shown by fluorescence in situ hybridisation. Placenta 2005;26:672–7.

11. Lee SD, Kim MR, Hwang PG, Shim SS, Yoon BH, Kim CJ. Chorionic plate vessels as an origin of amniotic fluid neutrophils. Pathol Int 2004;54:516–22.

12. Sampson JE, Theve RP, Blatman RN, et al. Fetal origin of amniotic fluid polymorphonuclear leukocytes. Am J Obstet Gynecol 1997;176: 77–81.

13. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol 2015;213:S29–52.

14. Venkatesh KK, Jackson W, Hughes BL, Laughon MM, Thorp JM, Stamilio DM. Association of chorioamnionitis and its duration with neonatal morbidity and mortality. J Perinatol 2019;39:673–82.

15. Villamor-Martinez E, Álvarez-Fuente M, Ghazi AMT, et al. Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-analysis, and metaregression. JAMA Netw Open 2019;2: e1914611.

16. Villamor-Martinez E, Lubach GA, Rahim OM, et al. Association of histological and clinical chorioamnionitis with neonatal sepsis

among preterm infants: a systematic review, meta-analysis, and meta-regression. Front Immunol 2020;11:972.

17. Beck C, Gallagher K, Taylor LA, Goldstein JA, Mithal LB, Gernand AD. Chorioamnionitis and risk for maternal and neonatal sepsis: a systematic review and meta-analysis. Obstet Gynecol 2021;137:1007–22.

18. Been JV, Lievense S, Zimmermann LJI, Kramer BW, wolfs TGAM. Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. J Pediatr 2013;162:236–42.e2.

19. Villamor-Martinez E, Fumagalli M, Mohammed Rahim O, et al. Chorioamnionitis is a risk factor for intraventricular hemorrhage in preterm infants: a systematic review and meta-analysis. Front Physiol 2018;9:1253.

20. Soraisham AS, Trevenen C, Wood S, Singhal N, Sauve R. Histological chorioamnionitis and neurodevelopmental outcome in preterm infants. J Perinatol 2013;33:70–5.

21. Xiao D, Zhu T, Qu Y, et al. Maternal chorioamnionitis and neurodevelopmental outcomes in preterm and very preterm neonates: a meta-analysis. PLoS One 2018;13:e0208302.

22. Dammann O, Allred EN, Leviton A, et al. Fetal vasculitis in preterm newborns: interrelationships, modifiers, and antecedents. Placenta 2004;25:788–96.

23. Rovira N, Alarcon A, Iriondo M, et al. Impact of histological chorioamnionitis, funisitis and clinical chorioamnionitis on neurodevelopmental outcome of preterm infants. Early Hum Dev 2011;87:253–7.

24. Liu Z, Tang Z, Li J, Yang Y. Effects of placental inflammation on neonatal outcome in preterm infants. Pediatr Neonatol 2014;55: 35–40.

25. Trevisanuto D, Peruzzetto C, Cavallin F, et al. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: a case-control study. J Matern Fetal Neonatal Med 2013;26:1484–90.

26. Been JV, Rours IG, Kornelisse RF, et al. Histologic chorioamnionitis, fetal involvement, and antenatal steroids: effects on neonatal outcome in preterm infants. Am J Obstet Gynecol 2009;201:587.e1–8.

27. Plakkal N, Soraisham AS, Trevenen C, Freiheit EA, Sauve R. Histological chorioamnionitis and bronchopulmonary dysplasia: a retrospective cohort study. J Perinatol 2013;33:441–5.

28. Pietrasanta C, Pugni L, Merlo D, et al. Impact of different stages of intrauterine inflammation on outcome of preterm neonates: gestational age-dependent and-independent effect. PLoS One 2019;14:e0211484.

29. Mestan K, Yu Y, Matoba N, et al. Placental inflammatory response is associated with poor neonatal growth: preterm birth cohort study. Pediatrics 2010;125:e891–8.

30. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.

31. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 2012;22: 276–82.

32. Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int 2018;121:1027–31.

33. Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med 2016;140:698–713.

34. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med 2013;158:280–6.

35. Freeman SC, Kerby CR, Patel A, Cooper NJ, Quinn T, Sutton AJ. Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies: MetaDTA. BMC Med Res Methodol 2019;19:81.

36. Harrer M, Cuijpers P, Furukawa T, Ebert D. Doing meta-analysis with R: A hands-on guide. New York: Chapman & Hall/CRC; Number of pages. https://doi.org/10.1201/9781003107347.
37. Robins J, Greenland S, Breslow NE. A general estimator for the variance of the Mantel-Haenszel odds ratio. Am J Epidemiol 1986;124:719–23.

38. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22:719–48.

39. Paule RC, Mandel J. Consensus values and weighting factors. J Res Natl Bur Stand (1977) 1982;87:377–85.

40. Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med 2001;20:3875–89.

41. Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in metaanalyses of controlled trials with binary endpoints. Stat Med 2006;25:3443–57.

42. Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 2006;59:1331–2.

43. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Thompson JR. Bivariate randomeffects meta-analysis and the estimation of between-study correlation. BMC Med Res Methodol 2007;7:3.

44. Burke DL, Ensor J, Snell KIE, van der Windt D, Riley RD. Guidance for deriving and presenting percentage study weights in metaanalysis of test accuracy studies. Res Synth Methods 2018;9:163–78.

45. Stijnen T, Hamza TH, Özdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 2010;29:3046–67.

46. Kent A, Lomas F, Hurrion E, Dahlstrom JE. Antenatal steroids may reduce adverse neurological outcome following chorioamnionitis:

MAY 2024 American Journal of Obstetrics & Gynecology 509

neurodevelopmental outcome and chorioamnionitis in premature infants. J Paediatr Child Health 2005;41:186–90.

47. Holcroft CJ, Askin FB, Patra A, Allen MC, Blakemore KJ, Graham EM. Are histopathologic chorioamnionitis and funisitis associated with metabolic acidosis in the preterm fetus? Am J Obstet Gynecol 2004;191:2010–5.

48. Al-Mulaabed S, Kupferman F, Hamza M, O'Donnell J, Jean-Baptiste D, Nathan R. The association between abnormal placental pathology (chorioamnionitis) and necrotizing enterocolitis in preterm infants. J Pediatr Gastroenterol Nutr 2017;65:S314–5.

49. Tsiartas P, Kacerovsky M, Musilova I, et al. The association between histological chorioamnionitis, funisitis and neonatal outcome in women with preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2013;26: 1332–6.

50. Maisonneuve E, Lorthe E, Torchin H, et al. Association of chorioamnionitis with cerebral palsy at two years after spontaneous very preterm birth: the EPIPAGE-2 cohort study. J Pediatr 2020;222:71–8.e6.

51. Smit AL, Been JV, Zimmermann LJ, et al. Automated auditory brainstem response in preterm newborns with histological chorioamnionitis. J Matern Fetal Neonatal Med 2015;28:1864–9.

52. Rocha G, Proença E, Quintas C, Rodrigues T, Guimarães H. Chorioamnionitis and brain damage in the preterm newborn. J Matern Fetal Neonatal Med 2007;20:745–9.

53. Kent A, Dahlstrom JE. Chorioamnionitis/ funisitis and the development of bronchopulmonary dysplasia. J Paediatr Child Health 2004;40:356–9.

54. Sharma A, Sood BG, Qureshi F, Xin Y, Jacques SM. Chronic inflammatory placental lesions correlate with bronchopulmonary dysplasia severity in extremely preterm infants. Pediatr Dev Pathol 2021;24:430–7.

55. Perniciaro S, Casarin J, Nosetti L, et al. Early- and late-respiratory outcome in very low birth weight with or without intrauterine inflammation. Am J Perinatol 2020;37:S76–83.

56. Woo SJ, Park KH, Jung HJ, et al. Effects of maternal and placental inflammation on retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 2012;250:915–23.

57. van Doorn MB, van der Voorn JP, Tanger HL, van Weissenbruch MM, Visser DH. Exposure to intrauterine inflammation and lateonset sepsis in very preterm infants. Pediatr Res 2022;91:230–4.

58. Gisslen T, Alvarez M, Wells C, et al. Fetal inflammation associated with minimal acute morbidity in moderate/late preterm infants. Arch Dis Child Fetal Neonatal 2016;101:F513–9.

59. Zanardo V, Trevisanuto D, Vedovato S, Cavallin F, Chiarelli S. Funisitis and risk for the development of neonatal respiratory distress syndrome. Placenta 2011;32:921.

60. Torchin H, Lorthe E, Goffinet F, et al. Histologic chorioamnionitis and bronchopulmonary dysplasia in preterm infants: the epidemiologic study on low gestational ages 2 cohort. J Pediatr 2017;187:98–104.e3.

61. Salas AA, Faye-Petersen OM, Sims B, et al. Histological characteristics of the fetal inflammatory response associated with neurodevelopmental impairment and death in extremely preterm infants. J Pediatr 2013;163: 652–7.e1.

62. Strunk T, Campbell C, Burgner D, et al. Histological chorioamnionitis and developmental outcomes in very preterm infants. J Perinatol 2019;39:321–30.

63. Horvath B, Grasselly M, Bodecs T, Boncz I, Bodis J. Histological chorioamnionitis is associated with cerebral palsy in preterm neonates. Eur J Obstet Gynecol Reprod Biol 2012;163: 160–4.

64. Zanardo V, Vedovato S, Suppiej A, et al. Histological inflammatory responses in the placenta and early neonatal brain injury. Pediatr Dev Pathol 2008;11:350–4.

65. Yamada N, Sato Y, Moriguchi-Goto S, et al. Histological severity of fetal inflammation is useful in predicting neonatal outcome. Placenta 2015;36:1490–3.

66. Mir IN, Chalak LF, Brown LS, et al. Impact of multiple placental pathologies on neonatal death, bronchopulmonary dysplasia, and neurodevelopmental impairment in preterm infants. Pediatr Res 2020;87:885–91.

67. Babnik J, Štucin-Gantar I, Kornhauser-Cerar L, Šinkovec J, Wraber B, Derganc M. Intrauterine inflammation and the onset of periintraventricular hemorrhage in premature infants. Biol Neonate 2006;90:113–21.

68. Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics 2009;123:1314–9.

69. Lee Y, Kim HJ, Choi SJ, et al. Is there a stepwise increase in neonatal morbidities according to histological stage (or grade) of Acute chorioamnionitis and funisitis?: effect of gestational age at delivery. J Perinat Med 2015;43: 259–67.

70. Ikeda S, Kihira K, Yokoi A, Tamakoshi K, Miyazaki K, Furuhashi M. The levels of the neutrophil elastase in the amniotic fluid of pregnant women whose infants develop bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 2015;28:479–83.

71. Kim SH, Choi BY, Park J, Jung EY, Cho SH, Park KH. Maternal and placental factors associated with congenital hearing loss in very preterm neonates. Pediatr Neonatol 2017;58: 236–44.

72. Burgner DP, Doherty D, Humphreys J, et al. Maternal chorioamnionitis and postneonatal respiratory tract infection in ex-preterm infants. J Pediatr 2017;184:62–7.e2.

73. Lahra MM, Beeby PJ, Jeffery HE. Maternal versus fetal inflammation and respiratory distress syndrome: a 10-year hospital cohort study. Arch Dis Child Fetal Neonatal Ed 2009;94:E13–6.

74. Park CW, Park JS, Jun JK, Yoon BH. Mild to moderate, but not minimal or severe, acute

histologic chorioamnionitis or intra-amniotic inflammation is associated with a decrease in respiratory distress syndrome of preterm newborns without fetal growth restriction. Neonatology 2015;108:115–23.

75. Hendson L, Russell L, Robertson CM, et al. Neonatal and neurodevelopmental outcomes of very low birth weight infants with histologic chorioamnionitis. J Pediatr 2011;158: 397–402.

76. Kim SY, Choi CW, Jung E, et al. Neonatal morbidities associated with histologic chorioamnionitis defined based on the site and extent of inflammation in very low birth weight infants. J Korean Med Sci 2015;30:1476–82.

77. Sindičić Dessardo N, Mustać E, Banac S, Dessardo S. Paths of causal influence from prenatal inflammation and preterm gestation to childhood asthma symptoms. J Asthma 2019;56:823–32.

78. Durrmeyer X, Kayem G, Sinico M, Dassieu G, Danan C, Decobert F. Perinatal risk factors for bronchopulmonary dysplasia in extremely low gestational age infants: a pregnancy disorder-based approach. J Pediatr 2012;160:578–83.e2.

79. Ykema JMA, D'Haens EJ, Havenith M, van Eyck J, van Lingen RA, Hemels MAC. Pilot study demonstrates that placental histology can provide an additional tool for diagnosing early-onset neonatal sepsis. Acta Paediatr 2018;107: 2086–91.

80. Pazandak C, Mir IN, Brown LS, Chalak LF. Placental pathology, cerebral blood flow, and intraventricular hemorrhage in preterm infants: is there a link? Pediatr Neurol 2020;108:65–9.

81. Gantar IS, Babnik J, Cerar LK, Šinkovec J, Wraber B. Prenatal and postnatal risk factors for developing bronchopulmonary dysplasia. Signa Vitae 2011;6:46–51.

82. Richardson BS, Wakim E, daSilva O, Walton J. Preterm histologic chorioamnionitis: impact on cord gas and pH values and neonatal outcome. Am J Obstet Gynecol 2006;195: 1357–65.

83. Vergani P, Patanè L, Doria P, et al. Risk factors for neonatal intraventricular haemorrhage in spontaneous prematurity at 32 weeks gestation or Less. Placenta 2000;21:402–7.

84. Lynch AM, Berning AA, Thevarajah TS, et al. The role of the maternal and fetal inflammatory response in retinopathy of prematurity. Am J Reprod Immunol 2018;80:e12986.

85. Budal EB, Bentsen MHL, Kessler J, et al. Histologic chorioamnionitis in extremely preterm births, microbiological findings and infant outcome. J Matern Fetal Neonatal Med 2023;36:2196599.

86. Matulova J, Kacerovsky M, Hornychova H, et al. Acute histological chorioamnionitis and birth weight in pregnancies with preterm prelabor rupture of membranes: a retrospective cohort study. Front Pharmacol 2022;13: 861785.

87. Kelly M, Vignes K, Cockerham C, et al. Cord blood CRP: preferred biomarker to histologic chorioamnionitis for neonatal outcomes in early

510 American Journal of Obstetrics & Gynecology MAY 2024

preterm infants. Am J Obstet Gynecol 2022;226:S94.

88. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.

89. Villamor-Martinez E, Cavallaro G, Raffaeli G, et al. Chorioamnionitis as a risk factor for retinopathy of prematurity: an updated systematic review and meta-analysis. PLoS One 2018;13: e0205838.

90. Park HW, Choi YS, Kim KS, Kim SN. Chorioamnionitis and patent ductus arteriosus: a systematic review and meta-analysis. PLoS One 2015;10:e0138114.

91. Behbodi E, Villamor-Martínez E, Degraeuwe PLJ, Villamor E. Chorioamnionitis appears not to be a Risk Factor for patent ductus arteriosus in preterm Infants: a Systematic Review and Meta-Analysis. Sci Rep 2016;6: 37967.

92. Tang Q, Zhang L, Li H, Shao Y. The fetal inflammation response syndrome and adverse neonatal outcomes: a meta-analysis. J Matern Fetal Neonatal Med 2021;34:3902–14.

93. Kallapur SG, Presicce P, Rueda CM, Jobe AH, Chougnet CA. Fetal immune response to chorioamnionitis. Semin Reprod Med 2014;32:56–67.

94. Kallapur SG, Moss TJ, Ikegami M, Jasman RL, Newnham JP, Jobe AH. Recruited inflammatory cells mediate endotoxin-induced lung maturation in preterm fetal lambs. Am J Respir Crit Care Med 2005;172:1315–21.

95. Kramer BW, Kramer S, Ikegami M, Jobe AH. Injury, inflammation, and remodeling in fetal

sheep lung after intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol 2002;283: L452–9.

96. Jung E, Romero R, Yeo L, et al. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med 2020;25:101146.

97. Quigley M, Embleton ND, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 2019;7:CD002971.

98. Cuna A, Morowitz MJ, Sampath V. Early antibiotics and risk for necrotizing enterocolitis in premature infants: a narrative review. Front Pediatr 2023;11:1112812.

99. Cho SX, Rudloff I, Lao JC, et al. Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities. Nat Commun 2020;11:5794.

100. Volpe JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol 1998;5:135–51.

101. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92:529–34.

102. Gould SJ, Howard S, Hope PL, Reynolds EO. Periventricular intraparenchymal cerebral haemorrhage in preterm infants: the role of venous infarction. J Pathol 1987;151: 197–202.

103. Conde-Agudelo A, Romero R, Jung EJ, Garcia Sánchez ÁJ. Management of clinical

chorioamnionitis: an evidence-based approach. Am J Obstet Gynecol 2020;223:848–69.

104. Goldstein JA, Gallagher K, Beck C, Kumar R, Gernand AD. Maternal-fetal inflammation in the placenta and the developmental origins of health and disease. Front Immunol 2020;11:531543.

105. Salafia CM, Misra DP. Histopathology of the fetal inflammatory response to intra-amniotic pathogens. Semin Fetal Neonatal Med 2020;25: 101128.

106. Pacora P, Chaiworapongsa T, Maymon E, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med 2002;11:18–25.

107. Redline RW. Inflammatory responses in the placenta and umbilical cord. Semin Fetal Neonatal Med 2006;11:296–301.

108. Park CW, Moon KC, Park JS, Jun JK, Romero R, Yoon BH. The involvement of human amnion in histologic chorioamnionitis is an indicator that a fetal and an intra-amniotic inflammatory response is more likely and severe: clinical implications. Placenta 2009;30:56–61.

109. Machin G. Funisitis and chorionic vasculitis: relation to chorioamnionitis, timing and scoring. Fetal Pediatr Pathol 2011;30:414–30.

110. Revello R, Alcaide MJ, Dudzik D, Abehsera D, Bartha JL. Differential amniotic fluid cytokine profile in women with chorioamnionitis with and without funisitis. J Matern Fetal Neonatal Med 2016;29:2161–5.

111. Sabic D, Koenig JM. A perfect storm: fetal inflammation and the developing immune system. Pediatr Res 2020;87:319–26.

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en mayo 17, 2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

Appendix

Population	Preterm neonates (born before the 37 th completed gestational week) or very low birth weight neonates (birth weight ≤1500 g).
Exposure	Preterm neonates with histological chorioamnionitis but no histological signs of fetal inflammatory response.
Comparison	Preterm neonates with histological chorioamnionitis and the presence of histological signs of fetal inflammatory response. FIR-AC group: FIR definition based on the Amsterdam Placental Consensus Workshop FIR-NOS group: FIR defined only with funisitis or not otherwise specified
Outcomes	Primary outcomes: neonatal mortality, early-onset sepsis, late-onset sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia. Additional outcomes: retinopathy of prematurity; intraventricular hemorrhage; periventricular leukomalacia; respiratory distress syndrome; length of hospital stay; cerebral palsy; neurodevelopmental delay; sensory impairment; small for gestational age; clinical chorioamnionitis.

$\textbf{511.e1} \quad \textbf{American Journal of Obstetrics } \mathfrak{S} \textbf{Gynecology} \quad \textbf{MAY } \textbf{2024}$

SUPPLEMENTARY TABLE 2 Meta-analysis of proportions			
Outcomes	value	lower Cl	upper Cl
Mortality GA>28 HCA and FIR	0.081070254	0.047920021	0.133927332
Mortality GA>28 HCA alone	0.066397704	0.038433546	0.112331592
Mortality GA $<=$ 28 HCA and FIR	0.105386926	0.074307628	0.147395406
Mortality GA<=28 HCA alone	0.098536878	0.065329232	0.145987882
EOS GA>28 HCA and FIR	0.115482579	0.072606327	0.178797042
EOS GA>28 HCA alone	0.049390531	0.013661988	0.16310459
EOS GA<=28 HCA and FIR	0.257986496	0.0959882	0.53237881
EOS GA<=28 HCA alone	0.103838846	0.018214591	0.419844816
LOS GA>28 HCA and FIR	0.179552903	0.091244285	0.322955353
LOS GA>28 HCA alone	0.149885812	0.064412896	0.311067478
NEC GA>28 HCA and FIR	0.069391085	0.042985364	0.110150723
NEC GA>28 HCA alone	0.053231591	0.034342886	0.081630936
NEC GA<=28-HCA and FIR	0.056804107	0.034547944	0.092031203
NEC GA<=28 HCA alone	0.088450943	0.045119801	0.166154511
BPD GA>28 HCA and FIR	0.242172659	0.158971341	0.350758346
BPD GA>28 HCA alone	0.176947096	0.133761662	0.230367219
BPD GA<=28 HCA and FIR	0.408204906	0.284678985	0.544528436
BPD GA<=28 HCA alone	0.347622638	0.241742724	0.471066709
IVH GA>28 HCA and FIR	0.251654505	0.201335516	0.309673306
IVH GA>28 HCA alone	0.187873512	0.146943901	0.237035802
Severe IVH GA>28 HCA and FIR	0.069666992	0.045139074	0.106042859
Severe IVH GA>28 HCA alone	0.054804329	0.028582859	0.102541731
Severe IVH GA<=28 HCA and FIR	0.127262001	0.044086874	0.315556164
Severe IVHGA<=28 HCA alone	0.085529519	0.034076287	0.198692857
ROP GA>28 HCA and FIR	0.145603238	0.054118183	0.336691477
ROP GA>28 HCA alone	0.094841791	0.031162837	0.25446687
PVL GA>28 HCA and FIR	0.029549078	0.015177863	0.056743696
PVL GA>28 HCA alone	0.01705803	0.004281642	0.065452968
CP GA<=28 HCA and FIR	0.088147665	0.051729895	0.146249396
CP GA<=28 HCA alone	0.106318279	0.0706149	0.15702359
CCA GA>28 HCA and FIR	0.456744715	0.269213428	0.657395147
CCA GA>28 HCA alone	0.183363328	0.0816588	0.361830053
CCA GA<=28 HCA and FIR	0.336183355	0.283923069	0.392786504
CCA GA<=28 HCA alone	0.143342357	0.056401787	0.318992583
RDS GA>28 HCA and FIR	0.376518379	0.215615416	0.570207612
RDS GA>28 HCA alone	0.352553837	0.229026935	0.499537303
RDS GA<=28 HCA and FIR	0.73455352	0.504149129	0.882788157
RDS GA<=28 HCA alone	0.818103789	0.675358437	0.906750111
SGA GA>28 HCA and FIR	0.078689978	0.046623283	0.129808669
Kovács. The histologic fetal inflammatory response and neonate	al outcomes. Am J Obstet Gynecol 2024		(continued)

MAY 2024 American Journal of Obstetrics & Gynecology ~511.e2

SUPPLEMENTARY TABLE 2

Meta-analysis of proportions (continued)

Outcomes	value	lower Cl	upper Cl
SGA GA>28 HCA alone	0.140742933	0.100909605	0.192926151
SGA GA<=28 HCA and FIR	0.054	0.037288458	0.077597458
SGA GA<=28 HCA alone	0.040892193	0.022787722	0.072315942
PDA GA>28 HCA and FIR	0.266301567	0.154617254	0.418702829
PDA GA>28 HCA alone	0.166314051	0.082335129	0.30726789
PDA GA $<=$ 28 HCA and FIR	0.256942568	0.044165293	0.72127689
PDA GA<=28 HCA alone	0.303561884	0.058363734	0.754014215

Point estimates and confidence intervals.

CI, confidence interval; GA, gestational age; HCA, histological chorioamnionitis; FIR, fetal inflammatory response; EOS, early onset sepsis; LOS, late-onset sepsis; NEC, necrotizing enterocolitis; BPD, bronchopulmonary dysplasia; IVH, intraventricular hemorrhage; ROP, retinopathy of prematurity; PVL, periventricular leukomalacia; CP, cerebral paresis; CCA, clinical chorioamnionitis; RDS, respiratory distress syndrome; PDA, patent ductus arteriosus; SGA, small for gestational age.

Kovács. The histologic fetal inflammatory response and neonatal outcomes. Am J Obstet Gynecol 2024.

$\textbf{511.e3} \quad \textbf{American Journal of Obstetrics } \mathfrak{S} \textbf{ Gynecology } \text{ MAY } 2024$