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Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and
sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular
composition of the glomerular basement membrane ultimately led to the identification of COL4A3,
COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and
α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that auto-
somal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease,
whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more
variability. Variant type is also influential—protein-truncating variants in autosomal recessive Alport
syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized
by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-
moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane
and are associated with protracted kidney involvement without extrarenal manifestations. Regardless
of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-
converting enzyme inhibitors. There are several therapies under investigation including sodium/
glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-
modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene
therapy remains in preclinical stages.
creativecommons.org/
licenses/by-nc-nd/4.0/).
INTRODUCTION

In 1927, Dr Cecil Alport reported a family in which several
members were experiencing hematuria and deafness, with
higher mortality observed in males compared with fe-
males.1 However, it would take decades to understand the
cause of the disease now known as Alport syndrome. A
crucial step came in 1966 when collagen was first identi-
fied in the glomerular basement membrane (GBM) of
canine kidneys and subsequently named type IV in
1973.2,3 Research on Goodpasture syndrome, an autoim-
mune condition that targets the GBM, also helped shed
insight into Alport syndrome pathophysiology. In search-
ing for the autoantigen in Goodpasture syndrome, in-
vestigators observed that Goodpasture syndrome
autoantibodies bound to normal kidney tissue but not to
Alport kidney tissue, suggesting that the antigen was
absent.2,4 Electron microscopy provided granular char-
acterization of the GBM in Alport syndrome, character-
ized by thickening, splitting, and lamellation.4

In 1981, type IV collagenwas digested from the basement
membranes of tumors found in an Engelbreth-Holm-Swarm
tumor mouse line.2,5 Two isoforms of collagen, the α1(IV)
and α2(IV) chains, were identified and found to be a
ubiquitous component of basement membranes.2,5-7 By
1987, COL4A1 and COL4A2 were sequenced by molecular
cloning and their complete primary protein structures
established in human and mouse.2,5,6,8-20 Eventually all 6
type IV collagen isoforms, α1(IV) to α6(IV) chains, were
reported, cloned, and described to share similar structures
including: a C-terminal non-collagenous (NC1) domain
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of w230 residues, a w1,400 residue collagenous Gly-X-Y
repeat that forms a triple-helix with 2 other chains, and an
N-terminal ‘7S’ domain.10,21-27 The glycine residue is
frequently mutated in Alport syndrome.28 Unlike the
ubiquitous basement membrane α1(IV) and α2(IV) chains,
the other isoforms were observed to have more limited
tissue distribution.3,29-33

Thus, based on the observations of GBM abnormalities
in Alport syndrome and the knowledge that type IV
collagen comprised a major component of basement
membranes, these then served as candidate genes. Linkage
analysis suggested that X-linked forms of Alport syndrome
were the most common, and subsequent studies evaluating
different Alport syndrome kindreds identified mutations in
COL4A5, residing on chromosome Xq22.25,26,34,35 Still,
some families displayed autosomal recessive rather than X-
linked inheritance patterns. COL4A3 and COL4A4, located
on chromosome 2q36, became of interest because of their
expression in the GBM. In an initial discovery paper, ho-
mozygous mutations in both genes were reported in 4
consanguineous families.25,30,32,34

GENETICS

By now, Alport syndrome is a well-known monogenetic
disorder, resulting from pathogenic variants in COL4A3,
COL4A4, or COL4A5. These genes encode the α(IV) chains
in the mature GBM and basement membranes in the co-
chlea and base of the ocular lens, explaining the multi-
system organ involvement seen in disease.33 As indicated,
there are 6 type IV collagen isoforms, encoded by different
1
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Figure 1. Type IV collagen from gene to protein trimerization to disease. The 6 collagens are arranged in a head-to-head configu-
ration, with COL4A1 and COL4A2 on chromosome 13, COL4A3 and COL4A4 on chromosome 2, and COL4A5 and COL4A6 on
chromosome X. The arrow above each gene indicates the direction in which transcription takes place. The collagen monomers come
together to form heterotrimers, with the α1-α1-α2 (IV) expressed in the glomerular basement membrane during development, which
later switches to the α3-α4-α5 (IV) in adulthood. Uniquely, the α5-α5-α6 (IV) heterotrimer is expressed in the basement membrane of
Bowman’s capsule. Pathogenic variants in these genes can lead to congenital abnormalities of the kidney and urinary tract (CAKUT)
(COL4A1), autosomal recessive Alport syndrome (COL4A3 or COL4A4), autosomal dominant Alport syndrome (COL4A3 or
COL4A4), digenic Alport syndrome (COL4A3 and COL4A4 or COL4A3/COL4A4 and COL4A5), or diffuse leiomyomatosis
accompanying X-linked Alport syndrome (COL4A5 and COL4A6). ADAS, autosomal dominant Alport syndrome; ARAS, autosomal
recessive Alport syndrome; AS, Alport syndrome; XLAS, X-linked Alport syndrome.
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genes that are numerically labeled: COL4A1, COL4A2,
COL4A3, COL4A4, COL4A5, and COL4A6 (Fig 1).36 Their
encoded protein products assemble into heterotrimers,
including α1-α1-α2(IV), α3-α4-α5(IV), and α5-α5-
α6(IV), to comprise network-forming collagen in base-
ment membranes with restricted tissue expression (Fig 1).
Within the GBM, type IV collagen is subjected to temporal
regulation. The α1-α1-α2(IV) heterotrimer is highly
expressed during development with low expression of α3-
α4-α5(IV) (Fig 1).36,37 At the capillary loop stage of
glomerular development, the α1-α1-α2(IV) network is
replaced by the α3-α4-α5(IV) network.36,37 This devel-
opmental switching is postulated to be related to the
biomechanical differences between the networks, with α3-
α4-α5(IV) conferring greater structural integrity to
counter intracapillary flow.36,37

The prevalence of Alport syndrome is unknown
although is frequently reported as ranging from 1 in 5000
to 1 in 50,000 in the United States and Europe, respec-
tively. These estimations, however, are based on clinical
experience with imprecise inclusion criteria rather than
epidemiologic studies.38-42 Reports using the UK Biobank,
2
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a genetically characterized population-based cohort of
w500,000 individuals, demonstrate an association of
variants in COL4A3 and COL4A4 with Alport syndrome traits
but only included adults between the ages of 40 to 69 at
the time of recruitment.43 By contrast, deCODE is a
genetically characterized cohort of nearly the entire Ice-
landic population. In one deCODE study, 1 in 600 in-
dividuals in the Icelandic population are reported to carry a
2.5 kb COL4A3 coding deletion (Gly289_Lys330del) or a
COL4A3 missense variant (rs200287952[A],
p.Gly695Arg).44,45 Both variants are associated with he-
maturia (odds ratio [OR], 11.78; 95% confidence interval
[CI], 7.26-19.11 and OR, 5.46; 95% CI, 2.94-10.16,
respectively) while the former is also associated with
proteinuria (OR, 2.17; 95% CI, 1.52-3.09). Neither
variant was homozygous in any individual, and they were
not identified in 4 documented Alport syndrome families
in Iceland. In another study, rare missense variants pre-
dicted to be pathogenic by in silico programs involving the
first Gly residue within the collagenous domain of COL4A3,
COL4A4, and COL4A5 were identified from gnomAD, a
public database of 136,920 individuals with whole exome
Kidney Med Vol 5 | Iss 5 | May 2023 | 100631
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or genome sequencing but without phenotypic data.28 The
bioinformatically predicted pathogenic missense variants
were then evaluated in 39,421 individuals from the
100,000 Genomes Project, where 5.6% had a history of
hematuria. Thus, most individuals did not have hematuria,
and most predicted pathogenic variants were found in
individuals without hematuria. In our own reported
experience, we find that in silico programs tend to over-
estimate pathogenicity when compared to in vitro studies.46

Categorization of single missense variants are vulnerable to
misclassification for several reasons, which include not
matching cases for population structure to controls and
limited understanding of protein residue contribution to
function. By comparison, the effect of protein-truncating
variants is easier to understand and is among the highest
levels of criteria for pathogenic classification by medical
genetic society guidelines.47

Alport syndrome follows 3 inheritance patterns: X-linked
Alport syndrome, autosomal recessive Alport syndrome, and
autosomal dominant Alport syndrome.33 X-linked Alport
syndrome is caused by pathogenic variants in COL4A5 and in
the past has been reported to be the most common form.
Many papers report that X-linked Alport syndrome accounts
for 80% of cases, but newer studies are challenging this
statistic.28,33,48 Autosomal recessive Alport syndrome and
autosomal dominant Alport syndrome are caused by path-
ogenic variants in COL4A3 and/or COL4A4, respectively.33,48

Although autosomal forms were previously felt to account
for a minority of cases, this is now changing in light of these
more recent studies. Autosomal recessive Alport syndrome
results from homozygous or compound heterozygous rare
variants in COL4A3 or COL4A4, whereas autosomal dominant
Alport syndrome results from heterozygous rare variants in
these genes.

Alport syndrome can also follow digenic inheritance,
which is the presence of 2 pathogenic variants in different
type IV collagen genes.49 There have been several reports
of digenic inheritance in Alport syndrome, which is
another factor that likely contributes to variability in
clinical presentation.49-51
TERMINOLOGY

Like other kidney disorders, terminology is an issue that
has been discussed in Alport syndrome for some time with
varying perspectives. Previously, thin basement membrane
nephropathy was a descriptive diagnosis used to describe
this pathologic pattern, observed to be usually associated
with mild clinical features of hematuria and some albu-
minuria with favorable kidney prognoses.52-55 However,
as the experience with genetic testing expands, there is
now recognition that previously labeled thin basement
membrane nephropathy is often a manifestation of auto-
somal dominant disease, which has more variable course
and can include progression albeit later in life with ex-
ceptions.50,56-60 Similarly, females heterozygous for
pathogenic COL4A5 variants have been previously labeled
Kidney Med Vol 5 | Iss 5 | May 2023 | 100631
Descargado para Eilyn Mora Corrales (emorac17@gmail.com) en National Libr

2023. Para uso personal exclusivamente. No se permiten otros usos sin auto
as carriers, but we now recognize that these cases also have
variability and can progress.61,62 As a result, a consensus
statement made by one working group in Alport syndrome
has recommended that the term carrier be abandoned with
wording felt to be important so as not to deprive in-
dividuals from necessary monitoring and intervention by
specialists.56

These observations also suggest that Alport syndrome
does not follow classic Mendelian patterns but is more
consistent with additive inheritance, the model that is
assumed in most genome-wide association studies. With
additive inheritance, phenotype varies cumulatively with the
number of pathogenic variants that are in trans involving
the disease-associated genes. By contrast, in true autosomal
dominant and autosomal recessive disease, the number of
variants has no influence on phenotypic severity. So, for
instance, a pathogenic dominant variant should manifest
with the same phenotypic severity if present in 1 copy or 2
copies in trans. However, there is evidence that at least one
protein-truncating variant, COL4A4 (rs35138315,
p.Ser969X, minor allele frequency = 6.7 × 10-4), follows an
additive inheritance pattern, which has been identified as
strongly associated in the UK Biobank with hematuria and as
a common cause of autosomal recessive Alport syn-
drome.45,63-66 In UK Biobank studies, this variant is
observed mostly as heterozygous in participants with he-
maturia, where cases have a mean age of 60 years, urinary
albumin-creatinine ratio (UACR) of 1.19 mg/mmol and
estimated glomerular filtration rate (eGFR) of 88 mL/min/
1.73 m2.67 This same variant, however, is described in re-
ports of autosomal recessive Alport syndrome in which
affected individuals manifest the traditional constellation of
symptoms and extrarenal involvement.

The challenge thus has been what constitutes Alport
syndrome? An all-encompassing term would be to define
Alport syndrome as any condition in which a type IV
collagen variant that is felt to be causative for the pheno-
typic traits of Alport syndrome is included, regardless of
number of symptoms or organs with clinically significant
involvement, as recommended by the Alport Syndrome
Classification Working Group.56 With this cautious
approach, the risk of excluding patients from specialist
clinical care will be potentially lower.45
CLINICAL PRESENTATION

Alport syndrome includes kidney, auditory, and ocular
involvement, with these 3 organs unified by the presence of
α3-α4-α5(IV) in the basement membranes (Fig 2). The
natural history of Alport syndrome has been best charac-
terized in males with X-linked Alport syndrome.68,69 Two
large family studies in Europe and North America identified
a strong correlation between the variant type and disease
severity (Fig 3).68,69 Variants with substantial effect on the
encoded protein, such as large deletions/rearrangements,
protein truncations, and frameshifts, are associated with
more severe disease and are more likely to have extrarenal
3
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Figure 2. Clinical characteristics and GBM features observed in Alport syndrome. There is wide clinical variability in Alport syn-
drome. Stages of progression for the most severe forms are shown. eGFR, estimated glomerular filtration rate; GBM, glomerular
basement membrane.
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involvement. By contrast, variants with more minor effects
on the encoded protein, including missense and splice site
variants, can attenuate the phenotype.

Affected X-linked Alport syndrome males, in which
there is only 1 X chromosome, are more severely affected
than heterozygous X-linked Alport syndrome females, in
which there are 2. In heterozygous X-linked Alport syn-
drome females, there is large variability in clinical pre-
sentation as a result of X-linked inactivation, in which the
maternal or paternal inherited X chromosome is marked
for inactivation randomly in cells.70 Male patients with X-
linked Alport syndrome and patients with autosomal
recessive Alport syndrome share similar clinical courses,
whereas patients with autosomal dominant Alport syn-
drome display large clinical variability.

Kidney Involvement

Kidney involvement includes glomerular hematuria,
albuminuria, GBM abnormalities, and kidney failure.
α3-α4-α5 (IV) 
Expression 

Variant

AS Subtype

Mild
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Some expression

ADAS
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Figure 3. Factors that affect disease severity. The severity of Alpo
COL4A3/COL4A4/COL4A5 and pattern of inheritance, which in tu
basement membrane. The combination of these factors contribute
autosomal dominant Alport syndrome; ARAS, autosomal recessive
normalities of the kidney and urinary tract; XLAS, X-linked Alport s
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Hematuria is often the first sign and can occur as early as
infancy. Males with X-linked Alport syndrome and affected
individuals with autosomal recessive Alport syndrome can
present with hematuria in their first year of life.60,68,71,72

Albuminuria typically occurs later, and depending on the
duration and degree, decreased eGFR subsequently fol-
lows. The age at which kidney failures occurs, if it is to
happen, has broad variability.68,69,73 In one retrospective
study, the median ages at kidney failure for X-linked
Alport syndrome males with large deletion/protein-
truncating, splice site, and missense variants were 25
(95% CI, 21-31), 28 (95% CI, 26-32), and 37 (95% CI,
34-40) years, respectively (P < 0.001 for the former 2
versus the latter), indicating allelic heterogeneity.69 In
another study, 5 heterozygous X-linked Alport syndrome
females had a progressive course that varied from 12 to 83
years at the time of kidney failure.74 Jais et al61 observed
that 12% of heterozygous X-linked Alport syndrome fe-
males reached kidney failure by age 40 and 30%-40%
Severe

Splice site
High impact: protein truncating, 
nonsense, frameshift, deletion, 

rearrangement

No expression

ARAS
Males with XLAS

rt syndrome is influenced by the type of pathogenic variant(s) in
rn affects the levels of α3-α4-α5 (IV) expression in the glomerular
s to the broad spectrum of disease observed clinically. ADAS,
Alport syndrome; AS, Alport syndrome; CAKUT, congenital ab-
yndrome.
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by age 60 in their cohort of 195 X-linked Alport syndrome
families. In the same study, 70% of hemizygous men at the
age of 30 and 90% at age 40 had reached kidney failure.

Kidney Pathology and Imaging the GBM

Electron microscopy is a useful tool in imaging the GBM
(Fig 2). In the earlier stage, GBM thinning and splitting are
observed.75 As the disease progresses, the GBM becomes
thickened with more pronounced splitting.75,76 GBM
thickening can follow the classic basket-weave pattern,
where short fragments of fibrils are oriented perpendicular
to the GBM. These advanced pathologic features are
accompanied by albuminuria and reduced eGFR.75-77 In
the final stages, Alport syndrome is associated with focal
and segmental glomerulosclerosis (FSGS), an accumulation
of extracellular matrix proteins in glomeruli along with
podocyte foot process effacement.75,78,79 Some cases of
Alport syndrome present as adult-onset FSGS without
obvious extrarenal symptoms and therefore elude accurate
diagnosis.65,66,80 This clinical scenario thus highlights the
importance of electron microscopy for diagnosis, in
particular its usefulness if genetic testing is not available or
is inconclusive.

Staining for Type IV Collagen

Staining for type IV collagen is not typically done in
routine clinical kidney biopsy testing but can be infor-
mative when performed. In studies, large deletions/rear-
rangements and protein-truncating (ie, nonsense or
frameshift) variants in males with X-linked Alport syn-
drome or patients with autosomal recessive Alport syn-
drome are associated with loss of GBM expression of α3-
α4-α5(IV) and earlier progression to kidney failure,
sensorineural deafness, and ocular lesions compared with
missense or splice site mutations (Fig 3).68,69 In compar-
ison, α3-α4-α5(IV) will be synthesized in autosomal
dominant Alport syndrome and females with X-linked
Alport syndrome. It will also be expressed in X-linked
Alport syndrome males and autosomal recessive Alport
syndrome due to missense and splice site mutations. Thus,
the absence of α3-α4-α5 is informative of the underlying
genetics and can be prognostic.

Ocular abnormalities and sensorineural hearing

loss

Ocular abnormalities are common due to the presence of
type IV collagen in the lens capsule, Descemet’s mem-
brane, Bowman’s membrane, and retinal pigment epithe-
lium of the eye.81,82 Most ocular abnormalities occur as
the disease progresses, with some associated with kidney
failure before the age of 30 years in males with X-linked
Alport syndrome.82,83 Characteristic ocular abnormalities
include corneal opacities, anterior lenticonus, cataract, and
retinal abnormalities.82

Ocular examination can assist in diagnosing Alport
syndrome, although the absence of findings does not rule
Kidney Med Vol 5 | Iss 5 | May 2023 | 100631
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out disease. In a study of 14 families with X-linked Alport
syndrome, 6 of 15 affected males had ocular abnormalities
including lenticonus (1) or retinopathy (5).84 Despite this,
no eye findings were described in heterozygous COL4A5
females.84

Like ocular abnormalities, sensorineural hearing loss
typically develops and worsens as the disease progresses.
Approximately 12% of female patients with X-linked
Alport syndrome and 90% of male patients with X-linked
Alport syndrome present with hearing loss by 40 years old,
which contrasts with autosomal dominant Alport syn-
drome, where deafness is less commonly reported.33 The
α3-α4-α5 (IV) network comprises the basilar membrane in
the cochlea. Tension fibroblasts generate tension on the
basilar membrane for high frequency sound detection, and
the absence of α3-α4-α5 (IV) by staining, which is only
possible to do after death, is associated with sensorineural
hearing loss.85
THERAPEUTICS FOR KIDNEY DISEASE IN

ALPORT SYNDROME

Angiotensin-converting enzyme inhibitors and angiotensin
receptor blockers (ARBs) are the mainstay of treatment in
Alport syndrome. In the past few years, there has been
renewed interest in developing drugs for chronic kidney
diseases including Alport syndrome. Several investigational
drugs are at different stages of development including
sodium/glucose cotransporter 2 inhibitors (SGLT2is),
aminoglycoside analogs, endothelin type A antagonists,
lipid-modifying drugs, hydroxychloroquine (HCQ), anti-
miR-21, bardoxolone methyl, and gene replacement
therapy. Agents in phase 2 clinical trials are shown in
Table 1.

Angiotensin-converting Enzyme Inhibitors and

ARBs

Angiotensin-converting enzyme inhibitors were initially
shown to reduce proteinuria and blood pressure in a small
study of 3 patients with a clinical diagnosis of Alport
syndrome in 1996.86 Subsequently, a study in a Col4a3
knockout mouse model demonstrated that treatment
with ramipril, initiated before the onset of proteinuria,
doubled the life expectancy of Alport syndrome-affected
mice.87 In 2012, results from a noninterventional obser-
vational study involving 283 Alport syndrome patients
followed for over 2 decades showed that initiation of
angiotensin-converting enzyme inhibitors significantly
delayed age of kidney failure.88 There was a statistically
significant difference in the delay of kidney replacement
therapy between the nontreated and each of the 3 treat-
ment groups anywhere between 3 to 40 years (P < 0.001
for each comparison), with the greatest delay observed
in the hematuria or microalbuminuria (treatment)
group.88

However, to answer the question of whether early
angiotensin-converting enzyme inhibitor/ARB initiation at
5
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Table 1. Current Phase 2 Clinical Trials Testing Safety and Efficacy of Different Agents in Alport Syndrome.

Agent Class Sponsor Study Population Clinical Trials Link
ELX-02 Aminoglycoside

analog
Eloxx
Pharmaceuticals

Alport syndrome
(nonsense mutations)

https://clinicaltrials.gov/ct2/
show/NCT05448755

Atrasentan Endothelin A
receptor
antagonist

Chinook Therapeutics
U.S., Inc

IgA nephropathy
FSGS
Alport syndrome
Diabetic kidney disease

https://clinicaltrials.gov/ct2/
show/NCT04573920

Sparsentan Dual endothelin
Angiotensin
Receptor
Antagonist

Travere Therapeutics FSGS
Minimal change
IgA nephropathy
IgA vasculitis
Alport syndrome

https://clinicaltrials.gov/ct2/
show/NCT05003986

R3R01 Lipid-modifying River 3 Renal Corp Alport syndrome
FSGS

https://clinicaltrials.gov/ct2/
show/NCT05267262

Hydroxychloroquine
sulfate (HCQ)
Benazepril
hydrochloride

HCQ
ACEi

Shanghai Children’s
Hospital

X-linked Alport syndrome https://clinicaltrials.gov/ct2/
show/NCT04937907

ACEi, angiotensin-converting enzyme inhibitor; FSGS, focal and segmental glomerulosclerosis; HCQ, hydroxychloroquine.
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the time of isolated hematuria and/or microalbuminuria in
children and youth is effective, a randomized control study
known as EARLY PROTECT was designed to test ramipril in
Alport syndrome individuals with an eGFR above 90 mL/
min/1.73 m2 who were between the ages of 24 months to
18 years old.89 Of 66 patients, 43 were part of an open-
label treatment arm due to pretreatment with
angiotensin-converting enzyme inhibitors or lack of
parental consent; 10 were assigned to the placebo group,
and 12 were assigned to ramipril over 2 months.89 There
were no safety issues (adverse event risk ratio, 1.00; 95%
CI, 0.66-1.53; P = 0.9), and ramipril reduced the slope of
albuminuria and decrease in eGFR between treated and
untreated groups by almost 50%, although it was not
statistically significant (hazard ratio, 0.51; 95% CI, 0.12-
2.20; P = 0.4).89

SGLT2is

The use of SGLT2is for treatment of diabetic kidney disease
has become popularized in recent years due several large,
randomized control studies demonstrating benefit and has
been approved for this indication by several federal
agencies including the Food and Drug Administration and
Health Canada.90-95 This in turn has bolstered enthusiasm
for studying SGLT2is in nondiabetic proteinuric kidney
diseases. The purported mechanism of action is SGLT2i-
mediated afferent arteriole vasoconstriction.90

Recently the EMPA-KIDNEY trial with 6,609 chronic
kidney disease patients enrolled to assess the efficacy of
empagliflozin was reported.96 The mean age of the par-
ticipants was 63.8 years, with mean (± standard deviation)
eGFR 37.3 ± 14.5 mL/min/1.73 m2 and a median UACR
of 329. Approximately 26% of patients were diagnosed
with glomerular disease.96 The study’s primary outcome
was the composite of differences in the progression of
kidney disease or death from cardiovascular causes. After a
6
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median follow-up time of 2.0 years, there was a statisti-
cally significant difference in the primary outcome in the
empagliflozin compared with the placebo group (hazard
ratio, 0.72; 95% CI, 0.64-0.82; P < 0.001).96 The geo-
metric mean UACR ratio was 19% lower in the treated
compared with placebo group (95% CI, 15-30). There was
no increase in serious adverse events in the empagliflozin
group.96

In an observational, prospective case series assessing the
effects of SGLT2is on early kidney function and safety, 6
patients diagnosed with Alport syndrome and/or FSGS via
kidney biopsy, genetic testing, or both were treated with
SGLT2is along with their usual medications, although one
patient was forced to stop angiotensin-converting enzyme
inhibitors due to angioedema.90 SGLT2is were given once
daily, with the mean duration of treatment 4.5 months.90

There was a 40% decline in the mean UACR from 1,827 (±
1560) mg/g to 1,127 (± 854) mg/g and no differences in
median eGFRs before and after treatment.90

Larger trials with greater Alport syndrome patient
enrollment are needed to determine if SGLTis will have
benefit in these individuals clinically, although its use is
becoming increasingly popular while waiting for more
robust data. However, this will take time, and many do not
want to deprive patients of this therapy in the meantime.

Aminoglycoside Analogs

Aminoglycosides have been used in genetic diseases
including cystic fibrosis and Duchenne muscular dystrophy
by virtue of their action to correct nonsense variants.97,98

This is achieved by the therapeutic binding to the 16S
rRNA amino-acyl site, which results in the read-through of
the stop codon, preventing premature peptide termina-
tion.97-101

In a phase 1 randomized, double-blind study, ELX-02,
an aminoglycosideanalog, was tested to assess its safety
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and pharmacokinetics in 62 healthy participants over 29
days.101 Ninety percent of participants experienced at least
1 treatment-emergent adverse event, with the most com-
mon being injection site reaction, and 7% experienced
hearing impairment.101 ELX-02 is now in phase 2 clinical
trials for patients with X-linked Alport syndrome and
autosomal recessive Alport syndrome that are known to
have nonsense variants.

Endothelin Type A Antagonists

Endothelin 1 (ET-1) produced by endothelial cells has also
become a target of study as a result of its upregulation in
Alport glomeruli through biomechanical strain-sensitive
activation of mesangial actin dynamics.102-104 The
administration of an endothelin A receptor antagonist to
prevent ET-1 binding in an X-linked Alport syndrome
mouse model over 5 weeks resulted in a reduction in
proteinuria and serum urea nitrogen, the inhibition of
mesangial filopodial invasion and the normalization of
GBM morphology.102 Currently, there are 2 clinical studies
evaluating endothelin receptor antagonists.

Lipid-modifying Drugs

Fatty acids are important energy sources for the kidney,
especially tubular cells, whereas glomerular cells mostly
prefer glucose as a first choice.105 Cholesterol and sphin-
golipids also have a substantial role as the structural
component of the podocyte slit diaphragm.106 Deposition
of fatty acids in the mitochondrial matrix leads to the
production of reactive oxygen species, which, together
with lipid peroxidation, results in damage to several or-
ganelles, particularly the mitochondria. Cell apoptosis is
also triggered, leading to the release of proinflammatory/
profibrotic mediators.107,108 The most susceptible renal
cells to lipotoxicity are podocytes.105

Several studies have shown a prevalence of lipid accu-
mulation in mouse models of Alport syndrome and FSGS.
In one study, hydroxypropyl-β-cyclodextrin, which is
known to bind to cholesterol, was shown to be beneficial
in a FSGS NFAT mouse model.109 In another, hydrox-
ypropyl-β-cyclodextrin administered for 4 weeks in Col4a3
Alport syndrome mice resulted in reduced kidney lipid
accumulation, fibrosis, podocyte foot process effacement
in the glomeruli and a decrease in UACR compared with
littermate controls.109 As such, various drugs have been
developed to reduce the effects of lipotoxicity in kidney
diseases, one being R3R01, a novel lipid-modifying agent
currently in phase 2 clinical trials.

HCQ

HCQ is an antimalaria agent that is also used to treat certain
autoimmune conditions, including lupus erythematosus
and inflammatory arthritis.110 HCQ suppresses the activa-
tion of toll-like receptors on the surface of endosomes.110

Toll-like receptors are responsible for the activation of
interferon-regulated genes and tumor necrosis factor α,
Kidney Med Vol 5 | Iss 5 | May 2023 | 100631
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which play an important role in inflammation path-
ways.110 HCQ has been evaluated in membranous lupus
nephritis and IgA nephropathy. In a randomized controlled
trial of 60 IgA nephropathy participants treated for 6
months with HCQ, there was a statistically significant
reduction in proteinuria in the treated compared to pla-
cebo group (percentage change −48.4% vs 10.0%,
P<0.001; 0.9 g/d vs 1.9 g/d, P=0.002) and without any
reported serious adverse effects.111 Clinical trials for HCQ
are currently in phase 2 testing for individuals with X-
linked Alport syndrome.112

Anti-miR-21

MicroRNA-21 (miR-21) expression has been found to
drive fibrosis, and preclinical work in Col4a3 knockout
mice supported use of oligonucleotides that inhibit its
action.113,114 These data formed the rationale for the
development of a phase 2 clinical trial (HERA) testing
anti-miR-21 (lademirsen or SAR339375) in Alport syn-
drome. Some of the eligibility criteria included ages 18-55
years, with an eGFR between 35-90 mL/min/1.73m2

based on CKD-EPI (chronic kidney disease epidemiology
collaboration) at the time of enrollment and an eGFR
decline of ≥4 mL/min/1.73 m2/year within 3 years
before the study (https://clinicaltrials.gov/ct2/show/
NCT02855268). Disappointingly, the study was termi-
nated due to the interim analysis for futility failing to
demonstrate a meaningful improvement in the primary
endpoint of annualized eGFR decline.

Bardoxolone Methyl

Bardoxolone methyl was another investigational drug that
was tried in Alport syndrome. Bardoxolone methyl is
thought to promote resolution of inflammation by acti-
vating nuclear factor erythroid 2-related factor 2 and in-
hibition of nuclear factor κ-light-chain enhancer of
activated B cells.115,116 Clinical trials for bardoxolone
methyl began in 2011 in patients with type 2 diabetes and
stage 3 chronic kidney disease but was associated with
excess risk of hospitalization or death from heart failure
(relative risk, 1.82; 95% CI, 1.32-2.55; P < 0.001).117 The
drug increased eGFR but also increased urinary albumin
excretion, perhaps due to raised intraglomerular pressure,
which would be predicted to lead to kidney function
decline over time.118

In 2017, a clinical trial (CARDINAL; https://
clinicaltrials.gov/ct2/show/NCT03019185) re-emerged
involving Alport syndrome patients.116,117 The trial’s
phase 3 data was recently published reporting outcomes in
157 Alport syndrome participants. The mean age (standard
deviation) was 39 (15) and 40 (16) years in the bardox-
olone methyl and placebo groups, respectively. The mean
baseline eGFR was 63 mL/min/1.73 m2 for both with a
geometric mean baseline UACR of 148 and 134 mg/g.119

The primary endpoint was a change from baseline
eGFR after 48 and 100 weeks.116,119 The between-group
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differences for the primary endpoint was statistically sig-
nificant at both times, favoring bardoxolone methyl (48
weeks, 9.2; 97.5% CI, 5.1-13.4; P < 0.001 and 100 weeks,
7.4; 95% CI, 3.1-11.7; P = 0.0008).119 A post hoc analysis
at week 104 using all available eGFR data did not reach
statistical significance, however. Additionally, discontinu-
ations from treatment were more frequent among patients
randomized to bardoxolone methyl (10 of 77) with most
due to protocol-specified criteria being met for increases in
serum transaminases. Despite this, there were more serious
adverse events reported in the placebo compared with the
treatment group (n = 15 and 8).119 The FDA did not
approve bardoxolone methyl, citing lack of evidence for
efficacy and concerns over safety, particularly potential for
hepatotoxicity.
Gene Replacement Therapy

The therapeutics discussed thus far focus on managing and
slowing disease progression. Gene replacement therapies,
however, focus on restoring gene function to produce
functional proteins. In Alport syndrome, all development
of gene therapies is in preclinical stages.

A creative gene editing strategy that has been tested is
exon skipping therapy where antisense oligonucleotides
bind to exonic splicing enhancer regions causing the
splicing out of whole exons. In this approach, exons that
harbor truncating variants are targeted and replaced with in-
frame deletion mutations, lessening the disease pheno-
type.120 In the only reported study, subcutaneous injections
1-2 times a week resulted in partial recovery of COL4A5
staining, reduced proteinuria, and delayed kidney failure in
Alport mice with a nonsense mutation in Col4a5.120-122

In another study, podocyte specific expression of an
inducible Col4a3 transgene was applied to Col4a3 knockout
mice.123 Normal GBM was observed in transgenic lines,
even at 23 weeks of age, with little to no albuminuria
compared with Col4a3 knockout littermates, which reach
kidney failure and death by 8 weeks.123

Finally, CRISPR/Cas9 genome editing has been tested
in vitro but is also in early stages of development. In one
report, CRISPR/Cas9 gene editing was applied to podo-
cytes cultured from Alport syndrome patient urine, and
results indicated that <40% of pathogenic variants were
corrected.124 Additionally, undesired effects were
observed, including insertions and deletions.124
CONCLUSION

Alport syndrome is an inherited disorder caused by
pathogenic variants in COL4A3, COL4A4, or COL4A5,
encoding the α3-α4-α5(IV) chains expressed in the
mature GBM of the kidney. Alport syndrome presents
as a broad spectrum of disease influenced by genetic
factors in affected individuals with clinical manifesta-
tions including hematuria, albuminuria, kidney failure,
ocular abnormalities, and sensorineural hearing loss.
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Angiotensin-converting enzyme inhibitors and ARBs are
currently the mainstay of therapy, reducing albuminuria
and slowing progression, which is the most marked with
early intervention. Additionally, SGLT2is have promise
and are already being used as adjunctive therapy to
angiotensin-converting enzyme inhibitors/ARBs, while
awaiting larger clinical trials in Alport syndrome and
other proteinuric conditions. In recent years, there has
been renewed interest in elaborating the therapeutic
spectrum further, and several agents have been or are
currently in clinical trials including aminoglycoside an-
alogs, endothelin type A antagonists, lipid-modifying
drugs, HCQ, anti-miR-21, bardoxolone methyl, and
gene replacement therapy. These novel therapeutics
highlight the growing knowledge in Alport syndrome
and provide optimism for improved clinical outcomes in
the future.
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