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H I G H L I G H T S

• This study utilized fMRI data to construct an artificial intelligence model to predict postoperative delirium.
• The trained random forest model exhibited excellent performance in predicting postoperative delirium.
• The most discriminative nodes for prediction were located in the default, cingulo-opercular, and frontoparietal networks.
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A B S T R A C T

Study objective: Delirium is a common complication after cardiac surgery and is associated with poor prognosis. 
An effective delirium prediction model could identify high-risk patients who might benefit from targeted pre-
vention strategies. We introduce machine learning models that employ resting-state functional MRI datasets 
obtained before surgery to predict postoperative delirium.
Design: A secondary analysis of a prospective observational study.
Setting: The study was conducted at one tertiary hospital in China.
Patients: The study involved 103 patients who underwent preoperative functional MRI scan and cardiac valve 
replacement.
Interventions: None.
Measurements: Delirium was assessed twice daily for the first seven postoperative days using the Confusion 
Assessment Method. We used three whole-brain functional connectivity (FC) measures (parcel-wise connectivity 
matrix, mean FC and degree of FC) and trained three machine models, namely, random forest, logistic regression, 
and linear support vector machine, to distinguish delirium patients from patients without delirium. The top 
performing model was selected for further training with functional MRI datasets and clinical variables.
Main results: This study included 103 participants. A total of 29 participants (28.2 %) met postoperative delirium 
criteria. Based solely on functional MRI datasets, the random forest model trained using the degree of FC ach-
ieved the highest accuracy (0.864), precision (0.887), specificity (0.894), F1 score (0.859) and area under the 
curve (0.924), and this model was further optimized for accuracy (0.879), sensitivity (0.909), F1 score (0.882) 
and area under the curve (0.928) by fusing clinical variables. The most discriminative nodes for predicting 
postoperative delirium were located in the default, cingulo-opercular, and frontoparietal networks.
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Conclusions: This study found that the random forest model using preoperative functional MRI data and clinical 
variables was accurate in identifying patients at high risk of developing delirium after cardiac surgery.

1. Introduction

Delirium is a syndrome characterized by acutely occurred and fluc-
tuating disturbances of cognition, attention, and consciousness [1,2]. 
Postoperative delirium (POD) is a common complication of surgery and 
is associated with poor short- and long-term sequelae, including noso-
comial complications, increased hospital stay, worsening cognitive 
decline, increased mortality, and loss of independence [1,3]. The inci-
dence of POD varies with the type of surgery and patient age, occurring 
in up to 54.9 % of older patients after cardiac surgery [4]. Although POD 
is often transient, it is an indicator of brain insufficiency and a harbinger 
of worsened outcomes.

The underlying mechanisms behind delirium have not been fully 
elucidated. Several hypotheses of delirium pathology include neuro-
inflammation, neurotransmitter interference and functional disconnec-
tion [5–8]. However, there is currently no effective way to treat delirium 
or eliminate its adverse effects, highlighting the importance of pre-
venting this disease [9]. Studies on effective prevention strategies have 
made some progress in recent years [10–13]. Early accurate prediction 
of postoperative delirium can help medical staff target high-risk patients 
to prevent delirium [14].

Despite research identifying several risk factors or prediction models 
for delirium based on clinical data [15,16], there is no validated pre-
operative prediction rule for postoperative delirium in complex clinical 
situations. Functional MRI provides a reliable method for identifying 
brain dysfunction based on the correlation of blood oxygen level- 
dependent (BOLD) signal fluctuations between different brain regions. 
Our previous study revealed perioperative changes in brain functional 
connectivity in cardiac surgery patients using resting-state fMRI [17]. 
Similar findings were observed for other types of surgery [18,19]. 
However, no studies have examined the prediction of postoperative 
delirium based on preoperative functional connectivity features.

Machine learning methods based on data-driven approaches to 
neuroimaging are increasingly utilized to overcome the problem of 
prediction or treatment selection for individuals suffering from a variety 
of neuropsychiatric disorders [20–23]. Studies have shown that graph 
theory and machine learning approaches can be utilized to predict the 
progression of mild cognitive impairment to Alzheimer’s disease in pa-
tients using resting-state fMRI [24,25]. In addition, addiction treatment 
completion was well predicted using machine learning pattern classifi-
cation of fMRI data in persons with substance abuse problems [26]. In 
this study, we extracted connectivity (correlation) maps from pairs of 
brain regions in a whole-brain analysis before cardiac surgery. We 
subsequently trained machine learning models to identify features that 
distinguished patients with postoperative delirium. We anticipate that 
this study will establish a method for accurately predicting post-
operative delirium incidence preoperatively, thereby enabling more 
effective identification of high-risk patients.

2. Materials and methods

2.1. Participants

This was a second analysis of database from a prospective observa-
tional study registered in the Chinese Clinical Trial Registry (ChiCTR- 
OOC-17012542) [17]. During the underlying study, we enrolled patients 
who underwent valve replacement surgery under cardiopulmonary 
bypass (CPB), had an education level above sixth grade, and a Mini- 
Mental State Examination (MMSE) score ≥ 23. Patients with a history 
of craniocerebral surgery, cerebrovascular disease, hepatorenal failure, 

psychiatric illness, alcoholism, illiteracy, left-handedness, or metal im-
plants incompatible with MRI were excluded. In the current study, pa-
tients over 60 years of age who completed a preoperative MRI scan were 
selected from the previously enrolled population. The study was con-
ducted in accordance with the principles of the Declaration of Helsinki 
and was approved by the Ethics Committee of Xuzhou Central Hospital 
(XZXY-LK-20240823-0128).

2.2. Perioperative management

Perioperative management was performed as described in our pre-
vious study [17]. All patients underwent general anesthesia according to 
our standardized protocol. Anesthesia was induced using midazolam 
(0.05 mg/kg), cisatracurium (0.3 mg/kg), etomidate (0.3 mg/kg), and 
sufentanil (5 μg/kg), and maintained with remifentanil, sevoflurane, 
and propofol, with the Bispectral Index (BIS) maintained between 40 
and 60. Heart rate, arterial pressure, respiratory rate, body temperature, 
PETCO2, and SpO2 were continuously monitored. All patients under-
went surgery with standard CPB. Nasopharyngeal or rectal temperature 
during CPB was maintained under mild hypothermia (32 ◦C). Intra-
operative blood salvage and α-stat pH management were employed. 
Perfusion pressure was maintained between 60 and 80 mmHg with 
norepinephrine, while pump flow was kept at 2.0–2.5 L/min/m2. He-
matocrit was kept above 21 % during CPB and above 25 % throughout 
the remaining perioperative period. The body rewarming rate was 
maintained at approximately 0.25 ◦C per minute. All patients received 
standardized postoperative pain management with hydromorphone.

2.3. Clinical assessment and delirium diagnosis

All participants underwent baseline measurements and clinical as-
sessments performed by trained research staff. Age, education, gender, 
diabetes, hypertension, body mass index, left ventricular ejection frac-
tion, Mini-Mental State Examination score, procedure duration, CPB 
pump duration, and aortic cross-clamp time were extracted from patient 
medical records. Delirium was defined according to the 5th edition of 
the Diagnostic and Statistical Manual of Mental Disorders. Patients were 
assessed continuously for 7 days after surgery twice daily. The delirium 
assessment was performed by trained research staff using the Confusion 
Assessment Method (CAM) and CAM for the Intensive Care Unit (CAM- 
ICU). Measurements were conducted in the morning between 8:00 AM 
and 12:00 PM, and in the afternoon between 4:00 PM and 8:00 PM [27].

2.4. MRI acquisition

Patients underwent MRI scans (Siemens Skyra 3 Tesla scanner with a 
20-channel head coil) before surgery. High-resolution sagittal three- 
dimensional magnetization-prepared rapid acquisition with gradient 
echo structural images was acquired with the following parameters: 
matrix, 256 × 256; field-of-view, 256 mm × 224 mm; 192 one- 
millimetre-thick slices; echo time, 2.98 ms; repetition time, 2530 ms. 
Axial T2-weighted imaging images were acquired with the following 
parameters: matrix, 320 × 320; field-of-view, 230 mm × 230 mm; 18 
six-millimetre-thick slices; echo time, 99 ms; and repetition time, 6000 
ms. Rs-fMRI data were acquired with the following parameters: matrix, 
64 × 64; field-of-view, 220 mm × 220 mm; 35 three-millimetre-thick 
slices; echo time, 30 ms; and repetition time, 2000 ms.
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2.5. MRI data preprocessing

Resting-state fMRI data were preprocessed using SPM12 (Statistical 
Parametric Mapping, Wellcome Department of Imaging Neuroscience, 
London, UK). The first ten time points were discarded to avoid magnetic 
coil saturation. The remaining images were corrected for slice timing 
and subsequently realigned. Next, the T1 images were co-registered with 
the realigned images and segmented into gray matter, white matter, and 
cerebrospinal fluid. The functional images were then spatially normal-
ized into Montreal Neurological Institute (MNI) space using trans-
formations from segmentation, resampled to 3 × 3 × 3 mm3 voxels, and 
smoothed with a 6-mm full-width at half-maximum (FWHM) isotropic 
Gaussian kernel. After preprocessing, bandpass filtering (0.008–0.09 
Hz), detrending, and regression of six motion parameters and their first- 
order derivatives, along with signals from white matter and cerebro-
spinal fluid (using the CompCor strategy), were further applied.

2.6. Functional connectivity analysis

The functional connectivity matrix of each subject was calculated 
using the Dosenbach 160 (DOS160) atlas in MATLAB (R2020a) [28]. 
Specifically, blood oxygen level-dependent (BOLD) time courses were 
extracted for each ROI. Subsequently, Pearson correlation coefficients 
between these fMRI time series of each ROI pair were computed to 
construct an adjacency matrix. Fisher-Z-transformation was applied to 
this adjacency matrix, ensuring that the resulting elements of the final 
functional connectivity (FC) matrix for each subject followed a normal 
distribution. A subject-specific threshold was used to extract the top 10 
% correlation values from the matrix, thereby enhancing the fidelity of 
FC assessments both intra- and interindividually. Additionally, the mean 
FC for each ROI, quantified as the mean of its nonzero correlation co-
efficients, was computed. The FC degree was quantified as the ratio of 
the number of connections (i.e., nonzero values in the upper decile 
matrix) to the aggregate number of feasible connections per parcel 
grounded in graph theory.

2.7. Classification models and statistical analysis

In the present study, 29 individuals with postoperative delirium were 
identified as the positive class, labelled ‘1’, while 74 individuals without 
postoperative delirium were designated the negative class, labelled ‘0’. 
The features included functional connectivity between brain regions 
calculated using DOS160, mean FC, and degree FC.

Machine learning was implemented using nested cross-validation, 

with the outer layer consisting of stratified tenfold cross-validation 
(Fig. 1). The synthetic minority oversampling technique (SMOTE) was 
utilized for oversampling to balance the sample sizes of the positive and 
negative classes. The normalization of each fold of the outer layer 
involved the use of a z score, feature selection, and hyperparameter 
tuning of the model via the training data. Feature selection was con-
ducted using the F score method. The F score is defined as follows: 
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(
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where xi, xi
(+), and xi

(− ) are the averages of the kth features of the whole, 
positive, and negative datasets, respectively; xk,i

(+) is the ith feature of 
the kth positive instance; and xk,i

(− ) is the ith feature of the kth negative 
instance. The numerator represents the distinction between the positive 
and negative groups, while the denominator reflects the distinction 
within each group. A higher F score suggests a greater discriminative 
capability of the feature.

For mean FC and degree FC, the top 10 features were retained; for the 
functional connectivity matrix, the top 60 features were retained. When 
combining optimal features with clinical characteristics, due to the in-
clusion of several clinical features (age, gender, education, body mass 
index, MMSE score, diabetes, hypertension, and left ventricular ejection 
fraction), which have been previously associated with POD risk 
[4,16,29], the number of retained features in the original degree model 
was adjusted from 10 to 20. Hyperparameter selection was carried out 
using inner-layer cross-validation, which in this case was also stratified 
by 10-fold cross-validation. The support vector machine (SVM) and lo-
gistic regression models underwent hyperparameter optimization for 
parameter C, with a range of [2–5,25], encompassing 50 uniformly 
distributed values on a logarithmic scale. For the random forest algo-
rithm, hyperparameter optimization was conducted for n_estimators, 
ranging from 50 to 200 with increments of 10. The optimization- 
prioritized accuracy was used as the standard. Following the comple-
tion of the inner-layer cross-validation optimization, the optimal 
hyperparameters were used to train the training set of the outer-layer 
cross-validation. Subsequently, standardization and feature selection 
were applied to the test set of the outer-layer cross-validation, and 
predictions were made using the model. In the feature selection process 
within the nested cross-validation framework, special attention was 
given to features that were consistently selected in every fold of the 
outer loop. These features are typically considered robust and predictive 
across varying subsets of the data. To effectively communicate the re-
sults of this feature selection process, we proceeded with the 

Fig. 1. The process of nested cross-validation of machine learning models.

M.-Y. Zhou et al.                                                                                                                                                                                                                                

Descargado para Daniela Zúñiga Agüero (danyzuag@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en marzo 14, 
2025. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.



Journal of Clinical Anesthesia 102 (2025) 111771

4

visualization and detailed reporting of the identified features.
Finally, the results from all the instances of the outer-layer cross- 

validation in the machine learning process were aggregated for the 
computation of machine learning evaluation metrics. The labels were 
permuted 5000 times, and the process was repeated to obtain empirical 
p values for each evaluation metric. A p value less than 0.05 was 
considered to indicate statistical significance.

3. Results

3.1. Characteristics of the study population

In total, 103 patients with sufficient quality preoperative fMRI scans 
and postoperative delirium assessments were included. Twenty-nine 
patients (28.2 %) developed delirium within the first seven post-
operative days. No significant differences were observed in the basic 
demographic or clinical characteristics between the no-delirium group 
and the delirium group (Table 1).

3.2. Discriminative brain regions based on features of functional 
connectivity

Using models trained on the degree of FC for POD versus no-POD 
classification, the most discriminative regions, which included the 
anterior cingulate, med cerebellum, temporal cortex, mid insula, dorsal 
frontal cortex, and sup frontal cortex, were demonstrated as key features 
in each of the three models. It depicts the weight or importance of the 
degree of FC for the 6 nodes (Table S1, Fig. S1). Discriminative brain 
regions based on features of the mean FC and connectivity matrix in the 
LR and SVM models are shown (Figs. S2 and S3, Tables S2 and S3). As 
noted earlier, the RF model based on the degree of FC along with clinical 
variables achieved the best performance, and the discriminative brain 
regions, such as the ACC and dFC, based on this model were similar to 
those described above (Fig. 2, Table S4).

3.3. Performance of predictive models for delirium

The predictive performance results for POD based on the three 
models and three FC features are summarized (Table S5). The accuracies 
of the three machine learning models were 0.811 (RF), 0.682 (LR) and 
0.712 (SVM) using mean FC. The accuracies of the three machine 
learning models were 0.864 (RF), 0.811 (LR) and 0.811 (SVM) according 

to the degree of FC. The accuracies of the three machine learning models 
were 0.818 (RF), 0.803 (LR) and 0.803 (SVM) using a connectivity 
matrix. In addition to the accuracy, the RF model trained using the de-
gree of FC also achieved the highest precision, specificity, F1 score and 
area under the curve (Fig. 3A, B, C).

Considering the contribution of clinical characteristics to previous 
POD prediction models, we compared the prediction performance of the 
RF model based only on clinical variables, including age, gender, edu-
cation, body mass index, MMSE score, diabetes, hypertension and left 
ventricular ejection fraction, and the RF model based on the degree of FC 
and clinical variables. The performance of the degree of functional 
connectivity (FC) alone outperformed that of clinical variables alone on 
every indicator of the random forest (RF) model. The performance of the 
RF model based on the degree of FC and clinical variables was better 
(accuracy: 0.879; AUC: 0.928) than using these two types of data alone 
(Fig. 3D, Table 2). We also used 11 features (Table S4) selected by the RF 
model, based on the degree of functional connectivity and clinical var-
iables, to build a risk score for the prediction of POD. A total score of 6 or 
higher indicated delirium with an accuracy of 0.886 (Table S6).

4. Discussion

In the present study, we found that data-driven machine learning 
models could be used to reliably predict POD using features derived 
from preoperative resting-state fMRI. The RF model based on the degree 
of FC and clinical variables achieved the highest accuracy and AUC. The 
most discriminative brain regions for predicting delirium encompassed 
the anterior cingulate, dorsal frontal cortex, precuneus/posterior 
cingulate, angular gyrus, med cerebellum, and temporal lobe, most of 
which are critical nodes in the frontoparietal network (FPN), the default 
mode network (DMN) and the cingulo-opercular network (CON).

We applied three machine learning models (RF, LR, and SVM) to 
classify POD, and each model was trained on three whole-brain FC 
measures: the mean FC, degree of FC and connectivity matrix. The best 
predictive model for discriminating POD patients from non-POD pa-
tients was the RF model based on the degree of FC, with an accuracy of 
86.4 % and an AUC of 0.924. Prior to this work, other prediction models 
for POD were usually based on clinical characteristics, such as age, sex, 
education, diabetes status, hypertension status, and type of surgery [29]. 
The reported AUCs ranged from 0.54 to 0.90 in prediction models of 
POD based on clinical characteristics [29]. Here, we identified the great 
advantages of fMRI data for machine learning predictive models.

Although resting-state fMRI BOLD signals have strong stability for 
disease diagnosis [30], it is also important to choose suitable metrics 
from fMRI data. A previous study showed that preoperative global 
connectivity strength was not predictive of POD development in elderly 
people undergoing different types of surgery [31]. In the present study, 
compared with those of the mean FC and connectivity matrix, the three 
machine learning models based on the degree of FC achieved optimal 
performance. This may be because the degree of FC is more represen-
tative of each node’s role in the higher-level FC topology of the brain 
[32,33]. Considering that fMRI provides a large amount of 4-dimen-
sional data, model selection is also important. We employed three ma-
chine learning methods on the training dataset to fit the parameters and 
construct the respective predictive models. Compared with logistic 
regression and support vector machines, a random forest model based on 
the mean FC, degree of FC and connectivity matrix achieved optimal 
performance. This was expected because random forests generally pro-
vide high predictive accuracy, especially when dealing with complex 
and high-dimensional data [34]. Overall, the machine learning 
approach includes the entire process, from extracting the most relevant 
features of the functional brain connectome to model cross-validation, 
and can provide reliable predictions regarding POD.

Notably, the value of using clinical characteristics to predict POD 
cannot be ignored, although clinical characteristics are highly variable. 
A previous study showed that training models on combined fMRI and 

Table 1 
Patient demographics and clinical and surgical characteristics.

Characteristics POD (N =
29)

Non-POD (N =
74)

P 
value

Age, mean (SD), y 68.0 (5.1) 65.7 (6.0) 0.07
Education, median (IQR), y 9.1 (8–10) 9.9 (8–11.75) 0.08
Female, n (%) 20 (69.0) 40 (54.1) 0.17
BMI, mean (SD), kg/m2 24.8 (1.0) 25.1 (1.5) 0.41
Diabetes, n (%) 6 (20.7) 6 (8.1) 0.07
Hypertension, n (%) 6 (20.7) 9 (13.8) 0.27
MMSE, median (IQR), point 26.2 (25–27) 26.0 (25–27) 0.58
LVEF, mean (SD), % 53.4 (3.7) 54.7 (3.7) 0.11
ASA class, n (%)

2 5 11 0.76
3 24 63

Duration of procedure, mean (SD), 
min

199.1 (23.5) 197.4 (27.9) 0.77

Duration of pump CPB, mean (SD), 
min

104.1 (14.1) 104.2 (17.9) 0.99

Aortic cross clamp time, mean (SD), 
min

75.0 (9.4) 74.1 (10.3) 0.67

Abbreviations: BMI, body mass index; CPB, cardiopulmonary bypass; SD, stan-
dard deviation; IQR, interquartile range; LVEF, left ventricular ejection fraction; 
MMSE, Mini-Mental State Examination, min minute; POD, postoperative 
delirium; y, year.
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clinical features can improve patient compliance prediction perfor-
mance [26]. We found that the performance of the RF model based on 
the degree of FC and clinical characteristics was slightly better than that 
based only on the degree of FC in terms of accuracy, sensitivity, F1 Score 
and AUC, but relatively poor in precision and specificity. These results 
indicate that clinical characteristics have both value and variability in 
the prediction of POD.

The aims of machine learning modelling tend to not only focus on the 
model’s prediction ability but also may help to elucidate mechanisms 
underlying susceptibility to POD in the context of brain functional net-
works. The current study used machine learning methods to determine 
how each brain region contributes to identify patients at high risk for 
POD based on feature weights or importance. We have found that 
several important nodes are located in the frontoparietal network and 
default mode network. Consistent with prior research, these networks 
have been recognized as essential components underpinning human 
cognition [35–37]. Our previous research revealed that the functional 
connectivity of nodes between the frontoparietal network and default 
mode network decreased after surgery but was indeed enhanced before 
surgery [17]. An EEG-based study had similar findings: increased frontal 
alpha band connectivity before delirium [7]. These changes are thought 
to act as a functional compensatory mechanism to maintain cognitive 
function. Yet the characteristic changes in functional connectivity before 
surgery were not very substantial, and it seemed difficult to determine 
vulnerability to POD solely by functional network characteristics [38]. 
However, our study showed that machine learning models, such as the 
cingulo-opercular network, can optimize this process and identify pre-
viously unreported network nodes for POD. The cingulo-opercular 
network is critical for action and physiological control, arousal, alert-
ness, errors, and pain [39–41], and its functions overlap strongly with 
the clinical manifestations of delirium. Overall, these findings suggest 
that the default mode network, the executive control network, and the 
cingulo-opercular network may be involved in susceptibility to delirium.

There were several limitations in the current study. First, all partic-
ipants underwent valve replacement surgery with cardiopulmonary 
bypass, leading to a possible lack of generalizability to other pop-
ulations. Considering the high incidence of POD after cardiac surgery 

and the pathophysiological differences among different operations, our 
focus on cardiac surgery patients guarantees the validity of the predic-
tion model but may also limit its application. Second, the clinical vari-
ables included in this study are limited. Including additional clinical 
variables related to POD, such as geriatric depression scale scores, 
alcohol use, and sleep disorders, could further enhance the model’s 
performance. In addition, models are built on a finite number of data 
points in a single medical centre. In future studies, we will pool data 
from different medical centres to increase the number of training sam-
ples and repeat the validation of the prediction model in an independent 
sample. Finally, it is important to recognize that fMRI scanning is time- 
consuming and expensive compared to other imaging modalities, which 
may limit the model’s clinical application. The use of structural MRI 
data or the development of novel scanning techniques, such as ultrafast 
brain MRI [42], may help address the time and cost constraints in future 
research.

5. Conclusions

In the current study, we found that employing a machine learning 
approach with preoperative resting-state fMRI data and clinical vari-
ables provides high classification accuracy for POD in cardiac surgery 
patients and captures neuroimaging features of the brain functional 
connectome in POD patients. This research provided a potential method 
for identifying cardiac surgery patients undergoing cardiopulmonary 
bypass who are at high risk of POD and may facilitate the early imple-
mentation of preventive measures.
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Fig. 2. Discriminative brain regions from the random forest (RF) model based on the degree of functional connectivity (FC) and clinical variables. The size of the 
node represents the average weight of each node. Abbreviations: ACC, anterior cingulate cortex; dFC, dorsal frontal cortex.
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Fig. 3. Performances of machine learning models for predicting POD. (A) The ROC curves of three models based on mean FC, including a random forest (RF), a 
logistic regression (LR) and a linear support vector machine (SVM). (B) The ROC curves of the three models based on the degree of FC. (C) The ROC curves of the 
three models based on the connectivity matrix. (D) The ROC curves of the RF model based on the degree of FC and clinical variables. For each ROC curve, the AUC is 
indicated in the respective legend.

Table 2 
Performance of the random forest model based on the clinical variables and degree of FC.

Measures Accuracy Precision Sensitivity Specificity F1.score AUC

Clinical variables 0.803 0.794 0.818 0.788 0.806 0.903
Degree of FC 0.864 0.887 0.833 0.894 0.859 0.924
Clinical variables & degree of FC 0.879 0.857 0.909 0.848 0.882 0.928

Abbreviations: AUC, area under the curve; FC, functional connectivity.
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