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ABSTRACT
Cardiorespiratory fitness (CRF) exists on a spectrum and is driven by a
constellation of factors, including genetic and environmental differ-
ences. This results in wide interindividual variation in baseline CRF and
the ability to improve CRF with regular endurance exercise training. As
opposed to monogenic conditions, CRF is described as a complex
genetic trait as it is believed to be influenced by multiple common
genetic variants in addition to exogenous factors. Importantly, CRF is
an independent predictor of morbidity and mortality, and so under-
standing the impact of genetic variation on CRF may provide insights
into both human athletic performance and personalized risk assess-
ment and prevention. Despite rapidly advancing technology, progress
in this field has been restricted by small sample sizes and the limited
number of genetic studies using the “gold standard” objective measure
of peak oxygen consumption (VO2peak) for CRF assessment. In recent
years, there has been increasing interest in the heritability of
numerous parameters of cardiac structure and function and how this
may relate to both normal cardiac physiology and disease pathology.
Regular endurance training can result in exercise-induced cardiac
remodelling, which manifests as balanced dilation of cardiac cham-
bers and is associated with superior CRF. This results in a complex
relationship between CRF, cardiac size, and exercise, and whether
shared genetic pathways may influence this remains unknown. In this
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R�ESUM�E
La capacit�e cardiorespiratoire pr�esente une grande variabilit�e qui
d�ecoule d’un ensemble de facteurs, tant g�en�etiques qu’envir-
onnementaux. Il existe donc, d’une personne à l’autre, de grandes
diff�erences quant à la capacit�e cardiorespiratoire de base et aux gains
obtenus par un entraînement physique en endurance sur une base
r�egulière. Contrairement aux maladies monog�eniques, la capacit�e
cardiorespiratoire est d�ecrite comme un trait g�en�etique complexe,
puisqu’elle semble influenc�ee par de multiples variants g�en�etiques
fr�equents en plus de facteurs exogènes. Surtout, la capacit�e cardior-
espiratoire est un facteur pr�edictif ind�ependant de la morbidit�e et de la
mortalit�e, de sorte qu’une compr�ehension de l’effet des variations
g�en�etiques peut renseigner tant sur les performances athl�etiques que
sur les mesures personnalis�ees permettant d’�evaluer et de pr�evenir les
risques. Malgr�e la rapidit�e des progrès technologiques, les avanc�ees
dans ce domaine sont limit�ees par la petite taille des �echantillons et le
petit nombre d’�etudes g�en�etiques utilisant la mesure objective
« �etalon » de la consommation maximale d’oxygène (VO2 max) pour
�evaluer la capacit�e cardiorespiratoire. Depuis quelques ann�ees,
l’int�erêt est de plus en plus port�e sur l’h�eritabilit�e de nombreux para-
mètres de la structure et de la fonction cardiaques et sur la façon dont
ils peuvent être li�es à la physiologie cardiaque normale et à diverses
maladies. L’entraînement physique en endurance sur une base
Cardiorespiratory fitness (CRF) is a continuum influenced by
genetic variation, environmental and behavioural differences
(such as exercise training), and the integration of multiple
body systems. Peak oxygen consumption (VO2peak) quan-
tifies CRF and is most accurately determined by cardiopul-
monary exercise testing (CPET).1 Although CRF may be seen
scular Society.
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review we highlight recent and relevant studies into the genomic
predictors of CRF with a unique emphasis on how this may relate to
cardiac remodelling and human adaptation to endurance exercise.

r�egulière peut mener à un remodelage cardiaque qui se manifeste par
une dilatation �equilibr�ee des cavit�es cardiaques et qui est associ�e à
une am�elioration de la capacit�e cardiorespiratoire. Ce ph�enomène
traduit une relation complexe entre la capacit�e cardiorespiratoire, le
volume du cœur et l’exercice, mais on connaît mal le rôle que pour-
raient jouer les voies g�en�etiques communes. Dans cette analyse, nous
traitons d’�etudes r�ecentes et pertinentes portant sur les facteurs
pr�edictifs g�enomiques de la capacit�e cardiorespiratoire en mettant
l’accent sur le lien avec le remodelage cardiaque et l’adaptation
humaine à l’exercice en endurance.

Rowe et al. 365
Genetics, Fitness, and Cardiac Remodelling
as a marker of human athletic performance, it is often over-
looked as an invaluable predictor of premature loss of func-
tional independence, morbidity, and mortality.2-5 As a result,
the genetic contribution to baseline CRF and training
response has been of increasing interest over the past 4 de-
cades; however, few genetic studies incorporating objective
assessments with VO2peak have been performed.

There is a curvilinear dose-response relationship between
CRF and mortality, meaning that even the smallest
improvement in exercise capacity for an unfit individual can
have a prognostic impact.1,6,7 However, exercise training
studies have consistently shown that there is significant vari-
ability in VO2peak improvement with exercise training—
promoting the concept of possible “super-responders” and
“nonresponders” to exercise (Fig. 1).8-11 Much of the human
individual variation can be explained by complex traits, like
CRF, which demonstrate large interindividual differences.
Although the heritability of CRF is estimated at w 50%,12

the genetic determinants of CRF are incompletely under-
stood. Understanding the role of DNA sequence variation in
defining individual CRF phenotypes will not only provide
insight into the physiologic mechanisms of adaptation to ex-
ercise and human performance, but, more importantly, will
allow for personalized risk prediction and exercise therapy.

CRF reflects the integration of multiple body systems to
allow for adequate oxygen transport to skeletal muscle where
extraction and use of oxygen occurs. Each body system and
step in the oxygen pathway has the potential to be influenced
by genetic and/or epigenetic differences (Fig. 2). As both
central and peripheral factors contribute to CRF, there is
interindividual variability in the mechanisms that may drive
exercise limitation.13,14 Oxygen delivery is determined by
cardiac output (CO), in conjunction with noncardiac pa-
rameters such as alveolar ventilation-perfusion matching and
capillary density, and it is often considered the main limiting
factor to VO2peak.

15-18 As such, the ability to augment CO
with exercise is a critical determinant of CRF. Regular exercise
training can lead to exercise-induced cardiac remodelling with
balanced dilation of all 4 cardiac chambers, resulting in
increased stroke volume and CO reserve.19,20 Consequently,
there is a strong positive association between exercise, cardiac
size, and CRF, which has been outlined by the authors
previously.21-24 Left ventricular (LV) volume is the strongest
independent cardiac imaging predictor of CRF5 and there is
accumulating evidence of genetic heritability of a range of LV
structural traits, including LV volumetric measures, and how
these relate to clinical outcomes, such as cardiomyopathy and
heart failure. As such, shared genetics between cardiac
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structure and CRF may be a key mechanism by which the
genetic basis for CRF is mediated, but this is yet to be
investigated. In this review we explore the current knowledge
of genomic predictors of CRF with a novel focus on cardiac
structure, remodelling, and adaptation to exercise. Through
summarizing relevant studies and highlighting key research
involving hypothesis-free testing, we draw attention to the
heritability of both heart size and fitness.
DNA and the Basics of Human Variation

Genetics and genomics

Pioneered by Mendel in the 19th century, the study of
genes and gene expression has evolved considerably over time
in the setting of rapid technological advances. The genetic
code, or “blueprint,” of an individual is underpinned by the
DNA sequence of 23 pairs of chromosomes (22 autosomal
pairs and 2 sex chromosomes). This genetic material is found
in every nucleated cell, with additional genes encoded in
mitochondrial DNA. A single chromosome is composed of 2
complementary strands of DNA made from 4 DNA bases
(adenine [A], thymine [T], cytosine [C], guanine [G]). A gene
is determined by the order and number of DNA bases along
an interval of DNA that is then transcribed into RNA.
Although “genetics” often focusses on the function and in-
heritance of genes, “genomics” encompasses the entirety of an
individual’s genes and their combined interaction with the
environment to influence complex traits and development.25

The human genome comprises > 3 billion base pairs, with
only 2% estimated to encode the w 20,000 known protein-
coding genes.26,27 A single gene is composed of coding regions
(exons), noncoding regions (introns), and regulatory sequences.
Importantly, each gene can encode more than 1 protein through
mechanisms such as alternative splicing, and noncoding se-
quences act as major regulators of gene expression. Epigenetic
modifications also impact gene expression without changing the
DNA sequence. Each chromosome is packaged very tightly as
nucleosomes around histone proteins with modifications to the
conformation of this unit resulting in altered transcription.28

Modifications, such as DNA methylation, can be reversible,
and are affected by genetic and environmental factors, including
physical activity and exercise training.29,30

Fitness as a complex trait

Monogenic diseases are typically characterized by Mende-
lian inheritance patterns, and result from single rare genetic
y of Health and Social Security de ClinicalKey.es por Elsevier en marzo 13, 
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Figure 1. Variation in VO2peak response to exercise training. Studies of exercise training demonstrate significant interindividual and familial
variability in VO2peak improvement. The majority of individuals appear to have some level of improvement in VO2peak with endurance training
whereas a smaller proportion may have no improvement (nonresponders) or a much greater improvement (super-responder). Created with
BioRender.com.

Figure 2. Genetic regulation of cardiorespiratory fitness (CRF). A summary of genetic and epigenetic mechanisms that may influence systems in the
human body required for CRF and athletic performance. Created with BioRender.com.
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variants that are sufficient to cause disease. In contrast,
complex (or quantitative) genetic traits result from different
combinations of common genetic variants that affect disease
susceptibility, host factors such as age and sex, and acquired
factors.31

Early attempts to understand the genetics of CRF used
knowledge of exercise biology and pathways to select candi-
date genes for rare and common variant analyses. Genes with
evidence of association with fitness phenotypes are synthesized
in Bray et al.’s work on human gene mapping and fitness
phenotypes, but are not within the scope of this review.32

Over 200 candidate genes and markers have been identified.
However, an association between these gene “discoveries” and
CRF has not been replicated, although studies have been
consistently underpowered.32 Even the most frequently re-
ported genes associated with fitness phenotypes, such as the
ACE gene and its polymorphisms, have conflicting evidence
and draw attention to our incomplete understanding of the
complexity of fitness traits.32

Single-nucleotide polymorphisms (SNPs) reflect germline
substitution at a single DNA base. Each individual’s genome
is thought to contain approximately 5 million SNPs compared
with the human reference genome.33 Any one variant may
only confer a small effect, but the cumulative effect of mul-
tiple genetic variants may result in a large effect on the trait.
Recent technological advancement has led to the increased
accessibility and use of genome-wide association studies
(GWASs), which now allow for hundreds of thousands of
defined variants to be screened for and analyzed in an unbi-
ased manner to find genetic associations with a trait.34

GWASs use microarray technology to hybridize an in-
dividual’s DNA against an array of short DNA sequences and
are commonly used to compare cases and controls using
hundreds of thousands or millions of SNPs. As a result of the
volume of SNPs assessed, quality control is critical, with strict
significance criteria (threshold for genome-wide significance of
P � 5 � 10�8) underpinning this.35

The discriminative ability of any single significant GWAS
locus is limited, however, due to a large overlap between cases
and controls. To address this issue, GWAS data have more
recently been refined by the derivation of polygenic risk
scores, which take multiple GWAS loci into account.
Currently, close to 4000 polygenic scores have been estab-
lished for 619 traits from over 500 publications.36 Polygenic
risk scores (PRSs) have the potential to improve cardiovascular
disease or trait risk prediction, but their clinical utility for
individual patient management has yet to be proven.37,38

Despite the high heritability of VO2peak, recent GWAS re-
sults have yielded inconsistent results. The key association
studies analyzing CRF and cardiac remodelling are discussed
in detail in this review; however, there has yet to be successful
construction of a PRS that predicts CRF and there have been
a limited number of studies that detected SNPs reaching
genome-wide significance (Table 1). With the clinical
importance of CRF increasingly recognized, this topic requires
greater attention in future research.

Estimating heritability

Heritability measures the proportion of phenotypic varia-
tion explained by genetic variation.39 Traditionally, family,
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twin, and adoption studies have been used to quantify the
genetic contribution to a trait.40 In the current era, studies
involving large cohorts of unrelated genotyped individuals
predominate. Different statistical methods and software have
been developed to provide accurate estimation in this context
and these are reviewed in detail elsewhere.39,41 For GWASs,
SNP heritability refers to the proportion of phenotypic vari-
ation attributed to the measured SNPs. As an example, the
heritability of left ventricular end-diastolic volume (LVEDV)
from recent GWASs has been estimated at w 40%.42,43 This
means that the genotyped SNPs explained almost half of the
variance in LVEDV in the studies.
Genetic Variation and CRF: Genes, Environment,
or Both?

The untrained individual: Genes associated with
baseline VO2peak

Early animal and family studies undertaken close to 25
years ago provide the foundation for our knowledge of how
our underlying genetic signature may impact baseline fitness.
Selective breeding for exercise endurance in rats initially
estimated that genetic factors may account for 39% of the
variation in endurance performance.44 After 15 generations of
breeding of low- and high-capacity rats, the high-capacity rats
had a 50% greater VO2peak than the low-capacity rats45—
this was attributed to a w 48% increase in stroke volume and
enhanced oxygen delivery (Fig. 3). Similarly, the heritability
estimate of CRF in the sedentary human has been established
from family and twin studies. This is best characterized by the
comprehensive Health, Risk Factors, Exercise Training and
Genetics (HERITAGE) Family Study,12 in which 86 families
(429 individuals) underwent cycle ergometer VO2peak tests.
After adjusting for age, sex, and body mass, the variance in
VO2peak was significantly greater between families than
within families. The maximal heritability was at least 50%;
however, a small but significant spousal correlation demon-
strated that environment also influenced this result (ie, family
members shared acquired behavioural traits associated with
exercise training). These early results are supported by a recent
meta-analysis of 15 studies providing heritability estimates of
VO2peak indicating that genetic variation accounted for 44%
to 68% of VO2peak variability.46

There have been few large genomic studies focussing on
baseline VO2peak, despite the strong evidence outlined in
animal and family studies. Small sample sizes have impaired
the ability to detect statistically significant genetic variants
given the stringent P value required for GWASs, and few have
directly assessed VO2peak with CPET. Using data from the
Nord-Trøndelag Health (HUNT) study, Bye et al. performed
the most comprehensive study involving close to 3470 in-
dividuals with CPET, and > 120,000 SNPs.47 They identi-
fied 41 SNPs associated with VO2peak at a moderate
significance level (P < 5 � 10�4), with only 6 SNPs repli-
cated in a validation cohort. A genetic score was created and
individuals were graded from 1 to 7, with higher values rep-
resenting more favourable SNPs for higher VO2peak. Those
with the lowest genetic score had VO2peak measures esti-
mated at 22.3 mL/kg/min as compared with 32.7 mL/kg/min
for participants with a score of 7. Furthermore, higher scores
y of Health and Social Security de ClinicalKey.es por Elsevier en marzo 13, 
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Table 1. Overview of studies discussed in this review identifying GWAS-significant SNP associations (P < 5 � 10�8) relating to CMR-derived left
ventricular volumes and CRF

Lead author and year Population Trait Associated genes

Aung et al., 2019 UKBB LVEDV TTN, BAG3, SH2B3
Aung et al., 2019 UKBB LVESV TTN, MTSS1, BAG3
Pirruccello et al., 2020 UKBB LVEDV PLEKHM2, AKR1A1, ZNF638, SP3, TTN, TMEM43, MECOM, HLA-B,

HLA-DQA2, VEGFA, PLN, NOS3, MTSS1, BAG3, LLPH, SH2B3,
PTPN11, ALPK3, PKD1, MYO1C, ATP5SL, RSPH6A

Pirruccello et al., 2020 UKBB LVESV RPL22, PLEKHM2, AKR1A1, TTN, TMEM43, EPHB1, FNDC3B, HLA-
DQB1, CDKN1A, PLN, FLNC, MTSS1, AGO2, BAG3, RRAS2, CSRP3,
SSPN, SH2B3, PTPN11, PXN, ALPK3, LMF1, PKD1, MYO1C, MAPT,
HLF, PRKCA, NEDD4L, ILF3, ATP5SL, RSPH6A, DERL3

Hanscombe et al., 2021 UKBB CRF LOC643355, CCDC141, SCN10A ERBB2IP, PAX2, NUP93, MGC32805,
GJA1, LOC644172, KIAA1755

Male: SCN10A, PAX2, AK7, MGC32805
Klevjer et al., 2022 HUNT3 Fitness Study VO2peak CDYL, LOC105371536

Male: DNAH14, LOC105375599
Female: TOE1, GCFC2, ACOXL, LRRC31, PCDH7, CFAP299, GPAT3,

CDYL, CLDN3, EXOSC4, GPAA1, MAF1, APBA1, TRPM3, KLF9-DT,
MTND2P8, LOC105376097, LOC101927450, LINC01507,
LOC105376103, LOC107987084, ENSG00000226798,
LOC107987085, LOC107987084, RASEF, UBE2V1P10, COL4A2,
MYH10, ONECUT3, IPCEF1

CMR, cardiac magnetic resonance; CRF, cardiorespiratory fitness; GWAS, genome-wide association study; HUNT, Nord-Trøndelag Health Study; LVEDV,
left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; SNP, single-nucleotide polymorphism; UKBB, UK Biobank.
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were linked with lower prevalence of cardiovascular risk fac-
tors. In silico analyses and genotype-phenotype databases were
used to explore the possible function of the identified SNPs
and indicated that 2 SNPs may have a physiologic effect on
features of cardiac structure or remodelling, including cardiac
growth factors and cardiac mass (rs3803357 located in the
BAHD1 gene, and rs3757354 located near MYLIP [sex-
specific]).

Two further studies identified genetic variants associated
with baseline CRF; however, both used indirect measures of
VO2peak derived from a submaximal bicycle test completed
in UK Biobank.48,49 Klevjer et al. completed an association
study with a larger cohort of the HUNT study (4525 par-
ticipants), 14 million SNPs, and the UK Biobank as the
validation cohort.48 Of the SNPs identified in the HUNT
study, 2 were replicated in the UK Biobank, and both were in
the female population only. Interestingly, one of these SNPs
(rs551942830) was located in a region encoding a regulatory
subunit of PI3Ky, which has been implicated in cardiac
remodelling and response to biomechanical stress in animal
models.50,51 Hanscombe et al.49 found 12 significant SNPs
for the derived VO2peak measure (P < 5 � 10�8), with
significant correlations shown between genetic variation of
CRF and additional traits, such as physical activity and body
mass index. The identification of SNPs with potential phys-
iologic roles relating to cardiac growth and development
provides a plausible connection between the genetic variation
of CRF and cardiac remodelling. To support this emerging
concept, larger studies with genetic data, cardiac imaging, as
well as “gold standard” VO2peak assessment are a necessity.

The athlete: Genes associated with athletic endurance
performance

The elite endurance athlete may be a valuable prototype for
examining gene-environment relationships, because, it may be
argued, they have trained intensively, thereby exposing their
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genetic potential. In comparison, a sedentary individual may
have the “genetics” of an Olympic athlete, but if they never
start exercising their genetic potential will remain unknown.
In the last decade, multiple GWASs for elite athletic perfor-
mance have been undertaken with varied and inconsistent
results.52-55 These predominantly focussed on sport-specific
phenotypes, with very few assessing associations with
VO2peak. Ahmetov et al.52 performed a GWAS of VO2peak
using > 1 million SNPs in 80 international-level endurance
athletes and validated the results in a case-control manner.
Three SNPs showed associations with VO2peak and were
associated with endurance athlete status. In combination,
these 3 SNPs explained 24.6% and 48.8% of the variation in
VO2peak of male and female endurance athletes, respectively.
Even more so than in nonathlete research, small sample sizes
are commonly seen in athletic cohorts, particularly with regard
to female athletes, thus limiting the ability to reach genome-
wide significance. In addition, there are study cohorts
currently investigating exercise genomics. However, to truly
understand the physiology and adaptations seen in elite
endurance athletes, comprehensive phenotyping is required.
Do “Nonresponders” to Exercise Exist?
The concept of possible “nonresponders” to exercise stems

from the variable increase in VO2peak seen in structured
exercise training studies of nonathletes, ranging from 0%
improvement up to almost 60% with the same dose of exer-
cise (Fig. 1).8 Part of this variation can be attributed to the
need for adequate training stimulus for each individual, but
emerging evidence continues to support the idea of a genetic
contribution.56 After adjusting for age and sex, the heritability
of VO2peak response to training is thought to be close to 50%
in sedentary individuals.10 Intriguingly, baseline VO2peak has
not been identified as a significant predictor of VO2peak
trainability. This is a critically important point in the deri-
vation of genetic predictors because it implies that different
y of Health and Social Security de ClinicalKey.es por Elsevier en marzo 13, 
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Figure 3. Change in fitness with selective breeding based on endurance performance. Animal studies suggest that over successive generations of
selective breeding in rats with different levels of running capacity, the family lines diverge and result in higher levels of fitness in some, and lower
levels in others. Created with BioRender.com.
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genetic profiles may be associated with VO2peak in the un-
trained and trained state.

Fitness trainability has arguably greater clinical value than
baseline CRF in this current era of personalized medicine and
the increasing application of exercise prescription in health
care. It is important to identify whether an individual has low
CRF, but predicting whether this is likely to improve with a
certain dose of exercise may prove beneficial for risk stratifi-
cation and primary prevention. From close to 100 genes
identified as possibly influencing VO2peak trainability, only 2
genetic variants have been replicated in 2 or more studies, and
studies have failed to identify variants that reach the stringent
cutoff for genome-wide significance.57 Despite this, genetic
prediction scores have been generated and indicate that
different exercise “responder” levels do exist in the general
population. In the first association study of exercising training
response, 473 sedentary adults from the HERITAGE study
completed a 20-week exercise program (customized for each
participant based on baseline heart rate and VO2peak assess-
ments). Bouchard et al. identified 21 SNPs associated with
improvements in VO2peak with a significance of P <1.5 �
10�4, but sufficient to generate a prediction score for high and
low responders to exercise training.58 The strongest associa-
tion was with the SNP located in the ACSL1 gene (rs655282)
involved in lipid metabolism, as well as possible involvement
in myocardial adaptation to chronic pathologic pressure
overload.59 Overall, participants with higher prediction scores
had a 2.7-fold greater VO2peak training response than those
with lower prediction scores.

In recent years, SNPs related to high-intensity interval
training have been investigated as differences in response to
continuous training and interval training have been
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emphasized. Yoo et al. studied 79 healthy participants who
completed a 9-week high-intensity interval training program,
with approximately 25% of subjects showing zero improve-
ment in VO2peak.

9 Seven SNPs were selected, which
accounted for 26% of the variance in VO2peak response, and
were able to differentiate participants into subgroups of
nonresponders and medium or high responders with a pre-
diction accuracy of 86%. As a result of improved and more
accessible technology, we are accumulating increasing evi-
dence that irrespective of an adequate training dose, there is
interindividual variability in VO2peak improvement and this
may be genetically driven. Although the use of moderate
significance cutoffs in genetic research has allowed the creation
of prediction scores, identifying a statistically robust PRS to
predict such measures will be key to incorporating this
knowledge into clinical practice in the form of personalized
exercise prescription. To our knowledge, there has yet to be a
PRS shown to predict CRF. As such, examining the genetics
of cardiac remodelling may provide insight into the genetic
basis of CRF.
Genetics of Cardiac Structure and Exercise-
induced Cardiac Remodelling

Exercise-induced cardiac remodelling is a form of physio-
logic remodelling resulting in predictable changes in cardiac
structure, often referred to as the “athlete’s heart.” Charac-
terized by a proportional increase in cardiac mass, wall
thickness, and chamber size in the setting of normal or su-
perior cardiac function with exercise, it represents a dynamic
reversible state influenced by exercise training.19,20 Much like
CRF, there is a spectrum of cardiac remodelling. In the elite
y of Health and Social Security de ClinicalKey.es por Elsevier en marzo 13, 
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endurance athlete, regular endurance training is associated
with chamber dilation, with resultant implications for
improved LV compliance and, consequently, increased stroke
volume (SV) and CO to meet the demands of exercise.21 In
contrast, significant reductions in VO2peak, LV mass, and
chamber size consistent with cardiac “atrophy” have been
observed with as little as 2-3 weeks of strict bedrest.60,61 These
findings suggest that sedentary behaviour could be related to
cardiac atrophy, or a lack of cardiac remodelling normally seen
with regular exercise. Recently, sedentary behaviour has been
linked with small LV chamber size, increased LV stiffness,
reduced cardiac reserve, and low CRF, suggesting significant
clinical implications.21,62-64

Contemporary studies have indicated that cardiac structure
and function are heritable.42,65-67 Similarly, maximal herita-
bility of SV and CO are estimated at 40% during submaximal
exercise, with training response heritability estimates of
approximately 30%.68 However, there are limited human
studies integrating cardiac physiology and cardiac imaging,
but this knowledge will be crucial to understanding how CRF
is genetically influenced.

Genetic variation and LV structure

Initial GWASs of cardiac structure and function incorpo-
rated linear measures of LV chamber size obtained with
transthoracic echocardiography.65,66,69 However, with
improving technology and accuracy, volumetric analysis with
cardiac magnetic resonance (CMR) imaging is currently
considered the gold standard.70,71 Recently, Aung et al. un-
dertook the largest and most comprehensive study with CMR,
providing unique insights into the genetics of LV structural
traits.42 Genome-wide studies for multiple LV traits were
conducted with 16,923 UK Biobank participants who had no
known history of heart failure or cardiomyopathy. The highest
SNP heritability was observed for LV volumetric measures
(LVEDV and left ventricular end-systolic volume [LVESV]),
with both measures estimated to have a heritability estimate of
39%. Fourteen genomic loci were identified, including 3 loci
for LVEDV, LVESV, and LV mass-to-volume ratio. The
TTN (titin) gene was identified as a strong candidate gene
given its association with dilated cardiomyopathy (DCM) and
its proximity to loci associated with 4 LV structural traits
(LVEDV, LVESV, LV ejection fraction [LVEF], and LV
mass).

Rare genetic variants are strongly associated with cardio-
myopathy phenotypes; however, common variants associated
with LV structural traits are now being investigated with a
particular interest in their role in penetrance for dilated and
hypertrophic cardiomyopathy phenotypes.43,72 Pirruccello
et al. evaluated over 36,000 UK Biobank participants to assess
the genetic association between CMR imaging phenotypes
and the risk of DCM.43 Similar to Aung et al., the estimated
heritability for LVEDV and LVESV was w 40%. After
identifying 22 loci associated with LVEDV, 14 with LVEDV
indexed to body surface area (LVESVi), and 32 loci for
LVESV (with a genome-wide significance threshold of P <
5 � 10�8), PRSs were generated and tested. The variants
occurred more commonly at loci near known
cardiomyopathy-causing genes than expected, and resultant
PRSs were significantly associated with incident DCM after
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adjusting for age and sex, with higher LVESVi PRS corre-
sponding with higher DCM risk. Although these studies
concentrated on the use of LV structural trait PRS in the
context of cardiomyopathy, the value of these scores for pre-
dicting other clinical or physiologic phenotypes has only
recently been revealed.

Genetic predisposition and athletic cardiac remodelling

The overlap between DCM and the “athlete’s heart” poses
significant challenges for the clinician and has prompted
recent investigation into the genetic contribution to the
extreme changes of athletic cardiac remodelling and how this
may overlap with DCM. The concept of athletic remodelling
emphasizes the need to assess LV structure in the context of
cardiac function and CRF. In heart failure with reduced EF,
LV dilation is considered a predictor of hospitalization and
mortality.73,74 In contrast, larger LV volume in the setting of
normal (or low normal) LVEF is a hallmark of the elite
endurance athlete and associated with greater CRF and sub-
sequent survival advantage.1,5,75,76 Recently, Claessen et al.
combined comprehensive imaging and genomic analysis to
investigate differences between elite endurance athletes with
preserved or reduced LVEF in a cohort of 281 athletes
without a history of cardiomyopathy or heart failure. For the
first time, they were able to demonstrate that the phenotypic
changes of exercise-induced cardiac remodelling in the athlete
are not explained purely by the effect of exercise alone.77 By
applying the validated PRS for LVESVi associated with DCM
from Pirruccello et al.,43 they identified that athletes with
LVESVi PRS in the top decile had an 11-fold increased
likelihood of reduced EF (LVEF < 50% or right ventricular
EF < 45%, or both) compared with those in the lowest
decile.77 Furthermore, athletes with reduced EF had a similar
mean LVESVi PRS when compared with patients with fa-
milial DCM, suggesting a similar background genetic pre-
disposition. This indicates a complex gene-exercise interaction
and may be an important step in confirming a link between
cardiac structure, function, exercise, and genetics. The ques-
tion of how these genetic pathways involved in LV structural
traits relate to VO2peak has yet to be investigated; however,
further studies extending this concept of PRS for cardiac
structure may provide novel insights into the genetic de-
terminants of both low and high CRF and their clinical
implications.

Genes and epigenetics associated with physical activity

Although CRF is a stronger and more reliable predictor of
mortality, physical activity (PA) remains an important metric
of health outcomes.78-80 Genetic factors contribute to the
variation in PA; however, there is significant heterogeneity in
the results, likely related to methods of data collection.81 The
heritability of PA is estimated at 20%, and up to 18% for
sedentary behaviours.82 Attempts have been made to investi-
gate and identify the shared genetic contribution with PA and
fitness, but these have been impacted by a lack of objectively
measured exercise capacity, such as VO2peak.

49 Importantly,
there is growing evidence to suggest that PA induces epige-
netic alterations that are associated with cardioprotective ef-
fects and cardiac remodelling. The complexities and impact of
exercise and epigenetic modifications relating to cardiovascular
y of Health and Social Security de ClinicalKey.es por Elsevier en marzo 13, 
ación. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.
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health and the noncardiac adaptations to exercise have been
reviewed in detail elsewhere, and are not within the scope of
this review.28,83 However, high levels of PA and exercise
training are associated with increased global DNA methyl-
ation in humans29,30 and altered expression of noncoding
microRNAs in animals, resulting in possible modifications of
pathways associated with LV hypertrophy and remodel-
ling.30,84 The effect of CRF on epigenetic modifications and
alterations is less well understood and further human mech-
anistic studies are required to understand the interplay be-
tween the epigenome, cardiac remodelling, and exercise.
Beyond the Cardiovascular System
In this review, we have summarized literature with a

unique focus on the interplay between genetics, LV structure,
and CRF. However, exercise genomics encompasses multiple
body systems that may be influenced by genetic factors and
contribute to CRF (Fig. 2). In addition to genetic variants
hypothesized to be involved in cardiac remodelling, genetic
factors have been identified relating to other phenotypes such
as lipid metabolism and skeletal muscle growth and oxygen
use.57,85 Benegiamo et al. found that genetic variation that
increases COX7A2L expression in skeletal muscle is associated
with improved CRF, likely through its influence on mito-
chondrial function.86 The favourable impact of genetic vari-
ation on iron homeostasis vital for oxygen-carrying capacity
and mitochondrial function has also been investigated in a
study of 170 elite athletes in France. Hermine et al. identified
that 80% of the athletes who won international competitions
possessed mutations in 1 HFE allele, with the frequency of
these variants twice as high in elite athletes compared with
controls.87 Further functional studies are required to ascertain
the mechanisms and pathways by which such variants influ-
ence CRF. In the future an integrated approach will be needed
to understand the heterogeneity and complexity of CRF.

Limitations and future directions

Technological advances have led to increased accessibility
to genetic testing and association studies, yet there are still
many barriers to incorporating this knowledge into clinical
practice. A core concern is the universal applicability of PRS
to diverse ancestry groups, given the White populations from
which these scores have traditionally been derived. As with
other genomic research, larger sample sizes are required to
identify novel variants and replicate results, and the incorpo-
ration of functional studies can assist in the interpretation of
the biological role of genetic variants. Specifically, for exercise
genomics, objective measures of VO2peak must be incorpo-
rated and effort needs to be given to recruitment and inclusion
of female participants and athletes.88,89 Last, this review has
focussed on the LV, but even less is known about the interplay
between the right ventricle, genetics, and exercise. More
research is needed to define how, and to what degree, genetics
relating to the right ventricle contributes to CRF and
arrhythmogenic cardiomyopathy.
Conclusions
Cardiorespiratory fitness is a complex trait that exists on a

spectrum driven by genetic, behavioural, and environmental
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influences. The genetic contribution to fitness and response to
exercise training is significant, and increasingly investigated
with rapidly improving technology. Cardiac structure and
function are also genetically influenced. In recent years, there
has been much emphasis placed on the genetics of human
athletic performance. However, recognition of the interplay
between genetics and exercise is arguably most important and
clinically relevant in the sedentary population, given that low
CRF is an independent predictor of poor health outcomes and
is increasingly prevalent in society. In view of the strong as-
sociation between cardiac chamber size and CRF, under-
standing the genetic basis for cardiac remodelling could
provide novel insights into the genomics of CRF, and may
contribute to risk stratification and prevention strategies in
vulnerable populations.
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