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Abstract: Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequen-
tially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet,
commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and
are innately palatable at concentrations that are advantageous to physiological homeostasis. The
importance of sodium homeostasis is reflected by sodium appetite, an “all-hands-on-deck” response
involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium
intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine
signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved
can lead to sodium overconsumption, which numerous studies have considered causal for the de-
velopment of diseases, such as hypertension. The purpose here is to consider the inverse—how
disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our
proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a
vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each
of these processes independently. Then, we highlight the points of overlap and integration of these
processes. We propose that the analogous neural circuitry involved in regulating sodium intake and
blood pressure, at least in part, underlies the reciprocal relationship between neural control of these
functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases
influence these circuitries to alter the consumption of sodium.

Keywords: sodium appetite; taste; blood pressure; stress; cardiometabolic disease

1. Introduction

Sodium (Na+), most abundantly consumed in the form of table salt (NaCl), is essential
for survival as it plays a pivotal role in numerous physiological processes, such as muscle
and nerve function, and the maintenance of body fluid and blood pressure homeostasis.
Changes in plasma sodium concentration, be they elevations or reductions, can negatively
impact health and therefore the intake of sodium is tightly regulated by orchestration of
the gustatory, neural, endocrine, cardiovascular, and renal systems. Along these lines,
terrestrial mammals have evolved physiological adaptations, such as the renin–angiotensin–
aldosterone system (RAAS) and sodium appetite that are fundamental to maintaining
sodium levels in times of deficit and other mechanisms, such as oxytocin, that maintain
these levels during surplus. An additional, often overlooked component to sodium balance
is one’s ability to taste salt (NaCl). The sensitivity of salt taste undergoes plasticity based on
physiological condition and during sodium depletion, for example, there is a hedonic shift
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that leads to enhanced palatability of higher, normally aversive, concentrations of NaCl [1,2].
This and the other adaptations that occur during sodium deficit drive the consumption of
higher concentrations and quantities of sodium to ultimately restore homeostasis.

While the consumption of adequate sodium is critically important to maintaining health,
and its underconsumption clearly causes physiological ailments, its overconsumption is
perhaps more widely-acknowledged as problematic. Sodium is easily attainable within
the human diet and we have developed a sodium preference and consequent tendency to
consume sodium even when we are replete. This leads to the frequent consumption of sodium
beyond physiological need, the adverse health implications of which are generally accepted.
For example, excess sodium intake can impact the body’s responses to physiological and
psychological stressors and its level is, in turn, positively correlated with blood pressure in
animals and humans [3–6]. On the other hand, the inverse relationship—how stress-related
and cardiometabolic pathophysiology impacts sodium intake—is elusive.

In this review, we consider the impact of stress and cardiometabolic diseases on sodium
intake and blood-pressure regulation. There are numerous points of overlap between the
neural circuitries (Figure 1) and endocrine factors that regulate sodium intake and those
that regulate blood pressure. First, we describe the mechanism(s) that regulate each of
these processes independently. Then, we highlight the points of overlap and integration of
these processes. We conclude with a discussion on how stress and cardiometabolic diseases
dysregulate these mechanism(s) and thereby increase both salt intake and blood pressure.
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Figure 1. Schematic highlighting peripheral inputs and brain regions involved in salt intake and/or
cardiovascular regulation. AMG, amygdala; AP, area postrema; BNST, bed nucleus of the stria termi-
nalis; CVLM, caudal ventrolateral medulla; HIP, hippocampus; IC, insular cortex; LC, locus coeruleus;
MnPO, median preoptic nucleus; NA, nucleus ambiguous; NTS, nucleus of the solitary tract; OVLT,
organum vasculosum of the lamina terminalis; PBN, parabrachial nucleus; PFC, prefrontal cortex; PIT,
pituitary; PVN, paraventricular nucleus of the hypothalamus; RVLM, rostral ventrolateral medulla;
SFO, subfornical organ; SON, supraoptic nucleus.
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2. The Drive to Consume Sodium and Salt Taste

Sodium is the most abundant electrolyte in extracellular fluid and, as such, plasma
volume and osmolality are dictated primarily by sodium concentration, the level of which
is maintained by balancing sodium intake with excretion. Changes in sodium balance can
be detrimental to physiology as it is necessary for numerous processes, such as neural
function, muscle contraction, and metabolism.

2.1. Sodium Appetite

Chronic sodium depletion leads to insufficient levels of sodium in the body (hypona-
tremia) resulting in dehydration of extracellular fluid and a decrease in total fluid volume
(hypovolemia) and osmolality. The challenge of consuming adequate sodium from one’s
diet is faced by many terrestrial animals who, as a result, have evolved physiological
adaptations to conserve and replete sodium levels under conditions of depletion. One such
adaptation is sodium appetite, which increases the drive to consume high concentrations of
sodium to reestablish homeostasis when depleted. Sodium levels are detected by the brain
and various peripheral organ systems, including the heart, vasculature, and kidneys, that
then regulate sodium intake accordingly. In a sodium-deplete state, signals from peripheral
organ systems, endocrine factors, and osmo-sensing brain regions work collectively to
stimulate sodium appetite and restore sodium to optimal levels for survival. Humans also
have a physiological need to maintain sodium balance, however industrialization has made
sodium easily attainable in the diet in the form of NaCl, or table salt, and because of this,
we rarely experience sodium appetite. Instead, humans in industrialized countries have
developed a salt preference in which we consume NaCl in amounts exceeding what is
physiologically necessary due to its high palatability.

2.2. Salt Preference and Taste

Salt preference is the drive to consume salt, in the form of NaCl, due to its high
palatability regardless of physiological need for sodium. Industrialization has further
exacerbated this preference as salt (NaCl) is added to various processed foods for palata-
bility, preservation, and processing purposes. Adults worldwide consume sodium in
excess—at levels nearly double the amount of what is recommended [7]. The negative
health implications of overconsuming sodium are well-documented and efforts to reduce
sodium intake to prevent or treat conditions related to sodium intake, such as hypertension,
have been largely unsuccessful [3,8–10]. Understanding salt preference can help guide
interventions aimed at reducing sodium intake. Salt taste, described in more detail in the
following section, is a critical driver of excess sodium intake as an individual’s preference
will dictate how pleasurable they find salt. fMRI studies revealed individual daily salt
intake and salt preference are significantly correlated with increased neural activity in
gustatory processing areas including the insular cortex, orbitofrontal cortex (OFC), and
parahippocampus [11,12].

It has been indicated that one’s diet can influence their taste responses and preferences [13].
While salt preference is likely shaped by innate components due to physiological need for
sodium, it is also acquired and can be impacted by dietary sodium exposure throughout the
lifespan. Rats exposed to high NaCl in prenatal and early postnatal development exhibit an
increased preference for NaCl in adulthood [14–17]. A similar relationship is observed in humans
regarding early dietary experience and sodium preference. Infants exposed to foods higher
in sodium displayed more acceptance for salty foods at six months and preschool age [18,19].
It has been proposed that such increases in sodium preference that result from early dietary
NaCl exposure may be due to changes in salt taste processing or changes in systems regulating
sodium balance [20]. These studies are suggestive of a direct link between dietary sodium and
salt taste preference; a relationship that is maintained in adulthood. Along these same lines,
adults asked to supplement sodium in their diet preferred higher concentrations of NaCl in
soup, with this increased preference lasting weeks after cessation of salt supplementation in
the diet [21]. The implication is that excess sodium consumption increases preference for salty
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foods and further exacerbates sodium overconsumption. Due to this direct relationship, it is
reasonable to expect that reducing dietary sodium would decrease preference for salty foods.
Healthy adults placed on long-term (5 months) low sodium diet preferred lower concentrations
of salt in food compared to their pre-diet preferences [22]. While the underlying mechanisms of
our salt preference remain debatable, there is no question that humans overconsume salt and
this is largely dependent on the palatability of salt.

The sense of taste is critical in identifying nutrients and toxins upon ingestion of
substances from the environment and plays a pivotal role in diet selection and health.
Sweet, umami, and salty tastes signal the presence of nutrients and are inherently appetitive,
while sour and bitter tastes signal the presence of potential toxins and are aversive. Further
highlighting the physiological importance of sodium, is the dedication of entire taste
modality to detecting it. Salt taste is not only necessary for the detection of sodium, but
it is also important in the regulation of sodium homeostasis. Over the last 20 years, the
transduction mechanisms behind sweet, bitter, sour, and umami tastes have become more
understood, while the mechanisms of salt taste remain enigmatic.

A breakthrough in our understanding of salt taste occurred in the 1980s, when DeSi-
mone and colleagues found that amiloride, a diuretic known to block epithelial sodium
channels (ENaCs) in other tissues, attenuated chorda tympani responses to lingual NaCl but
not potassium chloride (KCl) stimulation in rats [23,24]. This led them to deduce the taste
bud must include an amiloride-sensitive sodium transport pathway for salt taste. Shortly
after identifying the sodium selective amiloride-sensitive salt-taste transduction pathway,
another pathway for salt-taste transduction was identified. Whole nerve chorda tympani
recordings of NaCl taste responses in rats revealed nerve fibers fall in to two groups, one
being sodium selective and amiloride-sensitive and the second being cation non-selective
and amiloride-insensitive [25]. Although some evidence has suggested the involvement of
a variant of the TRP channel family for the amiloride-insensitive pathway, further studies
examining neural and behavioral responses in TRPV1 knockout mice [26,27] and neural
responses in the presence of TRPV1 antagonists in rats [28] have been contradictory.

These distinct gustatory afferent pathways for salt taste are not only characterized
by their amiloride-sensitivity but also by the concentration of NaCl that recruits each
pathway. The amiloride-sensitive pathway responds to low concentrations of sodium
(at or below isotonic) and is involved in appetitive behavioral responses to NaCl [29].
While the amiloride-insensitive pathway responds to high concentrations of sodium and is
involved in aversive behavioral responses to NaCl [30,31]. In the sodium-depleted state,
however, animals show strong preferences for hypertonic (0.3–0.5 M) NaCl and amiloride-
sensitive neurons are necessary for sodium appetite [32]. Thus, while the amiloride-
sensitive pathway is involved in appetitive behavioral responses to low concentrations,
sodium depletion results in decreased spike rates in amiloride-sensitive neurons, which
might influence the acceptance for normally aversive hypertonic NaCl solutions. This
appetitive-aversive balance by the gustatory system in salt taste is reflective of the need to
maintain sodium balance and shows the importance of the gustatory system in regulating
sodium intake.

There are three types of morphologically and physiologically distinct taste receptor
cells comprising taste buds. Type III cells are involved in sour taste, type II cells are involved
in sweet and umami taste, and type I cells, whose role in taste transduction is debated,
are suggested to be involved in salt taste [33,34]. From the taste bud, gustatory signals are
transmitted to the brain through vagal, glossopharyngeal, and facial nerve innervation of
the pharynx, posterior tongue, and anterior tongue, respectively. However, the majority of
gustatory signals are transmitted through the glossopharyngeal nerve and two branches
of the facial nerve, the chorda tympani and greater superficial petrosal. While all three
nerves respond to salt, the chorda tympani is most responsive and critical for normal salt
taste function [32,35–38]. The central neural circuitry that is involved in the sensation and
perception of salt taste has been reviewed elsewhere [39–41] and share many points of
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overlap with those mediating sodium appetite and cardiovascular homeostasis (discussed
below) (Figure 1).

3. Neural and Hormonal Control of Sodium Intake
3.1. Neural Circuitry Mediating Sodium Appetite

The brain receives and integrates signals pertaining directly to plasma osmolality, as
well as endocrine and neural input arising from peripheral organ systems and responds to
these collective stimuli by spurring or suppressing sodium appetite. The neural circuitry
that mediates these processes is multifaceted and has been described in detail in several
comprehensive reviews [42–45]. Key to this circuitry, is the ability to detect changes in
the internal milieu, which is accomplished, in part, by sensory circumventricular organs
(CVOs) around the third and fourth ventricle, including the subfornical organ (SFO), organum
vasculosum of the lamina terminalis (OVLT), and area postrema (AP) [46,47]. These areas
receive and integrate signals from the bloodstream and are highly interconnected with other
brain regions that are also involved in sodium appetite, such as the nucleus of the solitary
tract (NTS), parabrachial nucleus (PBN), locus coeruleus (LC), paraventricular nucleus of
the hypothalamus (PVN), supraoptic nucleus (SON), and bed nucleus of the stria terminalis
(BNST) [48–53] (Figure 1). In support of roles for the CVOs in sodium appetite, threats to
sodium balance differentially activate the CVOs, and their lesion profoundly influences salt
intake. For example, SFO lesion decreases salt intake in sodium-deplete rats, induced by acute
treatment of furosemide [54,55], while lesion of the AP increases salt intake in replete rats [56].

Sodium appetite is controlled, at least in part, by the detection of changes in sodium
concentration ([Na+]) by osmosensitive neurons within the brain [57–60]. These neurons are
located within the SFO, OVLT, median preoptic nucleus (MnPO), PVN, and SON [59–64].
Osmosentive neurons express various [Na+]-sensitive channels, such as TPRV1 (N-terminal
variant of “transient receptor potential vanilloid 1”), TRPV4 (“transient receptor potential
vanilloid 4”), and Nax (sodium sensor channel). Studies support expression of all three
[Na+]-sensitive channels in neurons of the SFO and OVLT [60], expression of TRPV1 and
TRPV4 in PVN and SON neurons [63,65,66], and Nax in MnPO neurons involved in salt
intake regulation [67]. In addition to direct osmosensation by the PVN and SON, they receive
projections from the SFO and OVLT involved in sodium-appetite regulation [68]. The PVN
and SON synthesize and secrete several neuropeptides (e.g., oxytocin) in response to changes
to plasma osmolality and volume. As will be discussed below, such neuropeptides, in turn,
also impact the neural circuitry that mediates sodium appetite.

Another key integrator of information from the periphery and regulator of sodium
appetite and intake in response to changes in the internal milieu is the NTS. Vagal sensory
afferents innervate visceral organs, including cardiovascular and gastrointestinal tissues
to detect stretch and/or osmolality [69–74], and terminate in the NTS to provide the
brain with information pertaining to the status of these peripheral systems. Lesion of
the commissural nucleus of the NTS increases sodium intake in sodium-deplete rats [75],
suggesting an inhibitory role of the area in sodium-appetite regulation; however, the
role of the NTS is likely more complex, as the NTS is a highly heterogenous brain area
containing excitatory and inhibitory neurons that differently regulate numerous vital
functions. The NTS serves as the first central point of relay for gustatory and visceral
sensory information, thus it is anatomically positioned to integrate these signals to regulate
salt intake accordingly. Evidence supports communication between the caudal (visceral)
NTS and rostral (gustatory) NTS [76], however the role these projections play in salt intake
remains unknown. As such, disease-states that disrupt gustatory or visceral inputs into the
NTS may alter the other and impact salt intake regulation.

The PBN, also located within the hindbrain, is involved in sodium-appetite regulation
and receives input from the NTS [77] and AP [48]. Single-unit recordings from the PBN
of sodium-deprived rats exhibit diminished neural responses to NaCl applied to the
tongue [78], similar to other gustatory regions (e.g., NTS), suggesting that the PBN is
involved in gustatory-mediated regulation of sodium appetite. The role of the PBN, more
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specifically the lateral PBN, in sodium appetite has been described in detail in [79]. Studies
in rats have also implicated the pre-LC, an area located just rostral to the LC in the hindbrain
that receives input from the AP, in sodium appetite [48]. Rats maintained on a low-sodium
diet for over one week exhibited increased c-Fos expression induced by sodium depletion
in neurons of the PBN and pre-LC [80]. In mice, neurons that are sensitive to sodium-
depletion appear to be expressed in the rostral LC as opposed to the pre-LC [81]. As visceral
sensory relay centers, the PBN and pre-LC send information pertaining to sodium balance
to various forebrain regions involved in integrating signals to regulate salt intake. Neurons
shown to be activated by sodium depletion in the PBN and pre-LC project to areas, such as
the PVN, BNST, and thalamus in rats [82]. Projections from the PBN to central nucleus of
the amygdala (CeA) have also been shown to play an important role in regulating sodium
appetite in rats [83–85].

In summary, the brain senses and receives information pertaining to changes in the
internal milieu. Changes in plasma osmolality are detected by osmosensitive neurons
within CVOs, the PVN, and SON. The NTS receives information pertaining to blood
pressure, volume, and osmolality through vagal afferents. These signals are integrated
throughout the brain to regulate salt intake accordingly.

3.2. Endocrine Mediators of Sodium Appetite

In addition to being directly influenced by plasma osmolality and volume, the neural
circuitry regulating sodium appetite also has intricate and reciprocal connections with
endocrine systems that allow for the maintenance of sodium balance. Renin, the initiator of
the RAAS, is released from kidney juxtaglomerular cells in response to increased sympa-
thetic nerve activity (SNA) to the kidney, epinephrine release from the adrenal medulla,
hypovolemia, or sodium depletion [86–88]. RAAS activation results in increased levels of
circulating ANGII (a peptide hormone) and aldosterone (a mineralocorticoid produced
within the adrenal gland), which serve as potent mediators of body fluid and blood pressure
homeostasis [89]. In states of sodium depletion, circulating levels of ANGII and aldos-
terone are increased and their synergistic role in sodium appetite is established [90–93].
Studies conducted by Richter revealed that adrenalectomized rats, which do not produce
adrenal hormones and as a result exhibit a sodium insufficiency due to decreased sodium
retention, demonstrate a robust sodium appetite [94]. Richter’s experiments introduced a
role for ANGII in sodium appetite, as adrenalectomy results in increased levels of circu-
lating ANGII [95], however, the mechanism by which ANGII stimulates sodium appetite
would not be understood for decades. Adrenalectomized rats treated with a low dose of
deoxycorticosterone (DOC), a precursor for aldosterone, demonstrate an attenuation in
sodium intake, most likely due to the restoration of sodium retention by aldosterone [96].
However, treatment with a higher dose of DOC in adrenalectomized and intact rats in-
creases sodium intake [96], suggesting high levels of aldosterone stimulate sodium appetite.
As such, ANGII was thought to stimulate sodium appetite indirectly through the release
of aldosterone; however, its direct actions were made clear once administered into the
brain. Central administration of ANGII increases water and salt intake [97]. Additionally,
central administration of ANGII receptor antagonists attenuates water and/or salt intake
induced by different challenges to fluid or electrolyte balance to stimulate thirst or sodium
appetite [98–100]. These studies support a role for central ANGII in sodium appetite.

Thus, it has been long understood that ANGII and aldosterone act centrally to stimulate
sodium appetite [54,100–104], but it was not until recently with the establishment of advanced
techniques that we could start to elucidate their central mechanisms. ANGII exerts its influence
by acting primarily at angiotensin type-1 (AT1R) and type-2 (AT2R) receptors, which are
thought to elicit opposing effects [105,106]. Consistent with this, sodium homeostasis and
blood-pressure regulation in mice deficient of AT1R exhibit decreased sodium retention and
blood pressure [107] while mice deficient of AT2R exhibit increased sodium retention and
blood pressure [108]. These receptors are localized to neurons in various brain regions involved
in sodium and cardiovascular homeostasis [109–112] and Figure 2 highlights the expression of
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these receptors throughout brain areas that are involved in these processes. Although AT2R(s)
are localized to numerous brain regions involved in sodium appetite, the role of this receptor
sub-type in the neural control of sodium homeostasis is not yet established [100,113]. On the
other hand, there is ample evidence that ANGII regulates sodium appetite by stimulating
AT1R within various brain regions [112]. Circulating ANGII acts on AT1R expressed in
circumventricular organs, primarily the OVLT and SFO. Fitts and Masson [114] demonstrated
that ANGII administered directly into the OVLT or SFO of rats stimulates water intake,
while OVLT administration also stimulates NaCl intake. To confirm a role for the OVLT in
ANGII-induced NaCl intake, rats were chronically treated orally with a low-dose of captopril,
an ACE inhibitor that does not readily cross the blood brain barrier, and stimulates water
and NaCl intake by increasing central ANGII. Rats were then administered captopril into
the OVLT or SFO, with administration into the OVLT decreasing NaCl intake relative to
administration into the SFO. This suggests different roles for AT1R activation within the OVLT
and SFO. Activation of SFO neurons by administration of clozapine N-oxide (CNO) targeting
designer receptors exclusively activated by designer drugs (DREADDS) stimulated sodium
appetite through activation of ANGII- and NaCl-responsive neurons [115]. This supports
the idea that the SFO senses changes in [Na+] to regulate sodium appetite. In addition to
hormonal actions, there is some evidence that ANGII acts as a neurotransmitter [116–120] and
is therefore capable of stimulating AT1R in areas within the blood–brain barrier. The SFO
has dense angiotensin-sensitive projections to the BNST [52,121] and PVN [117,118]. Optical
excitation of these projections increases salt intake in dehydrated-mice, while optical inhibition
decreases salt intake in sodium-deplete mice [52].

Another mechanism by which ANGII influences sodium homeostasis is by increasing cir-
culating aldosterone levels. To stimulate sodium appetite, aldosterone binds to mineralocorti-
coid receptors located within the central amygdala, septum, hippocampus, and NTS [122–124].
A critical component of aldosterone-sensitivity to the mineralocorticoid receptor is expression
of the enzyme 11-β-hydroxysteroid dehydrogenase type 2 (HSD2). HSD2 inactivates glucocor-
ticoids to prevent their binding to the mineralocorticoid receptor, thus allowing aldosterone to
bind. Within the last decade, a population of HSD2-expressing neurons in the NTS (NTSHSD2)
have been at the forefront of aldosterone-induced sodium-appetite regulation. NTSHSD2

neurons are activated by sodium appetite and inactivated upon ingestion of NaCl [125]. Mice
expressing excitatory or inhibitory DREADDS exclusively in NTS HSD2-expressing neurons
were stimulated with CNO and exhibited changes in salt intake. Excitation of NTSHSD2 neu-
rons drives sodium appetite, while inhibition mildly attenuates salt intake [126]. Surprisingly,
conditional knockout of NTSHSD2 also produces sodium appetite, suggesting that they are im-
portant for sensing changes in blood volume and sodium status to respond accordingly [127].
Interestingly, these neurons respond to sodium depletion with pacemaker-like activity and can
produce a rapid sodium appetite in conjunction with ANGII [93]. Collectively, these studies
indicate NTSHSD2 neurons are necessary and sufficient for sodium appetite.

On the other end of the spectrum, is oxytocin, which is perhaps most well-known for
its various roles in social behavior, reproduction, and childbirth [128]. As mentioned above,
oxytocin is released into the blood stream by way of projections from PVN and SON to the
posterior pituitary and a potent stimulus for this secretion is the sensation of hyperosmolality
in the bloodstream. Oxytocin then plays an important role in restoring sodium homeostasis,
in part, by acting at the kidney to promote natriuresis [128]. Of particular relevance here,
many studies have also suggested a role for oxytocin in the satiation of sodium appetite and
reduction in sodium intake [129–133]. In addition to secreting oxytocin into the bloodstream,
PVN oxytocinergic neurons are also capable of releasing oxytocin centrally via projections
within the brain—some of these central projections are important for oxytocin’s modulatory
role in sodium appetite. ANGII may serve as another stimulus for oxytocin release from the
PVN, as AT1R are robustly expressed within the PVN. In support of this, ANGII administered
into the ventricle neighboring the PVN increases plasma oxytocin in rats [134]. Additionally,
the PVN receives input from angiotensinergic SFO neurons [118]. Therefore, ANGII may bind
AT1R on PVN-neurons to stimulate the release of oxytocin to inhibit sodium appetite. These
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actions of ANGII in the PVN could serve as a mechanism to regulate the stimulatory effects of
ANGII on salt intake.
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salt intake and/or cardiovascular regulation of dual AT1aR-tdTomato/AT2R-eGFP reporter mice.
(A–J) Low magnification coronal sections through selected (A–F) forebrain and (G–J) hindbrain
regions of a male dual reporter mouse. AT1aR-tdTomato fluorescence is red; AT2R-eGFP fluorescence
is green. Approximate distance from bregma, in accordance with the mouse brain atlas (Franklin
and Paxinos, 2007), is noted in the lower left of each image. AP, area postrema; BNST, bed nucleus
of the stria terminalis; CeA, central amygdala; cNTS, caudal nucleus of the solitary tract (NTS);
CVLM, caudal ventrolateral medulla; DMNV, dorsal motor nucleus of the vagus; HIP, hippocampus;
IC, insular cortex; IL, infralimbic prefrontal cortex; iNTS, intermediate NTS; LC, locus coeruleus;
ME, median eminence; MnPO, median preoptic nucleus; MO, medial orbital prefrontal cortex; NA,
nucleus ambiguous; OVLT, organum vasculosum of the lamina terminalis; PBN, parabrachial nucleus;
PFC, prefrontal cortex; PIT, pituitary; PVN, paraventricular nucleus of the hypothalamus; PrL,
prelimbic prefrontal cortex; rNTS, rostral NTS; RVLM, rostral ventrolateral medulla; SFO, subfornical
organ; SON, supraoptic nucleus; ZI, zona incerta.
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Oxytocin’s physiological effects are exerted via the oxytocin receptor (Oxtr) which is
expressed in various peripheral organ systems and the brain [135]. What initially sparked
the idea that oxytocin is involved in sodium-appetite regulation were observations that
plasma oxytocin levels were low in sodium-deficient rats and their sodium appetite was
inhibited by treatments that stimulated oxytocin release [129,136]. This inverse relation-
ship between oxytocin levels and salt intake was observed in various models of sodium
appetite [129,136]. Mice genetically modified to lack the oxytocin receptor demonstrated
increased salt intake under water deprived conditions [137], but not ad libitum water access
conditions [138]. This implies that oxytocin is involved in regulating salt intake during
states of compensation for changes in volume and sodium balance. The actions of oxytocin
in sodium appetite were determined to be mediated by the brain. This is supported by
studies in which neither systemic administration of oxytocin nor blockade of peripheral
Oxtr reduced salt intake in rats rendered hypovolemic by way of subcutaneous injection of
polyethylene-glycol (PEG) [129]. Additionally, administration of an Oxtr antagonist into
the cerebral ventricles prevented inhibition of salt intake in PEG-induced hypovolemic rats
treated with systemic naloxone, an opioid antagonist, to stimulate oxytocin release [139]. A
population of Oxtr-expressing neurons within the PBN that receive oxytocinergic projec-
tions from the PVN has recently been implicated in sodium appetite. Inhibition of these
neurons through DREADDs increased salt intake in dehydrated, hyperosmotic, and ad
libitum water access conditions, while activation did not alter salt intake following sodium
depletion [133]. This suggests different populations of Oxtr-expressing neurons throughout
the brain may play distinct roles in salt appetite and fluid homeostasis.

Atrial natriuretic peptide (ANP) has also been shown to play an inhibitory role
in sodium appetite. ANP is primarily produced and released by the atria of the heart
in response to elevated blood volume or pressure [140]. Binding sites for ANP have
been identified within brain regions involved in cardiovascular and fluid homeostasis
regulation [141]. ANP administered into the third ventricle of sodium-deplete rats attenu-
ated salt intake [142,143]. Like oxytocin, increased ANP plasma levels are associated with
sodium appetite satiety [144].

Stress hormones, particularly glucocorticoids and catecholamines, have also been im-
plicated in regulating sodium appetite. Activation of the hypothalamic–pituitary–adrenal
(HPA) axis, described in Section 4.2, results in increased levels of circulating glucocorticoids,
which, in turn, potentiate the effects of aldosterone on sodium appetite [96,145–147]. On the
other hand, norepinephrine and phenylephrine, which has similar actions to epinephrine,
appear to play more of an inhibitory role in sodium appetite. Central administration of
norepinephrine or phenylephrine decreases salt intake in rats stimulated by DOC, chronic
intracerebroventricular renin, or sodium depletion [148–150]. Results from these studies
suggest that there are region and adrenergic receptor type specific effects of norepinephrine
and phenylephrine.

The mechanisms underlying sodium-appetite regulation are complex and becom-
ing more understood with advancing techniques. The behavior in sodium appetite is
simple—consume salt to restore a sodium-deficit—and has been observed in various
species [151,152]. Salt intake is tightly regulated to maintain sodium balance to meet
physiological needs. However, it is not so simple in humans as we rarely encounter a
sodium-deficit and consume sodium in excess of physiological needs.

3.3. Gustatory Mediation of Sodium Appetite

Sodium depletion shifts the appetitive-aversive balance of salt taste so that concentra-
tions of NaCl that are normally aversive are now considered appetitive. These alterations in
salt taste are critical for driving increased sodium intake observed in sodium appetite [2,153].
The mechanisms of normal salt-taste transduction are not well understood and, therefore,
mechanisms underlying this shift with sodium depletion are unclear as well. Evidence
supports changes in gustatory sensory coding and the hedonic value of sodium contribute
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to this shift in salt taste during sodium appetite and may occur at the level of the taste bud
through central gustatory areas [2,78,154,155].

Early on, it was proposed that taste receptor cells become more sensitive to NaCl
with sodium depletion (due to adrenalectomy), making it easier for them to discriminate
different concentrations of NaCl [156]. Taste receptor cells can receive hormonal regulation
to modulate taste as they express receptors for various hormones. Of relevance, others have
revealed that a subset of taste receptor cells, including type I cells, express the AT1R [157]
and Oxtr [158]. Consistent with this, we have also observed AT1R expression within taste
receptor cells of AT1aR-tdTomato/AT2R-GFP dual reporter mice (Figure 3). Collectively,
these findings indicate ANGII and oxytocin, in addition to impacting salt appetite as
described above, may also regulate sodium intake by acting on the taste bud to influence
salt taste.
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reporter mouse. (A) 20× image showing tdTomato and GFP are expressed throughout tongue tissue
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(scale bars = 20 uM). (C) 40× image depicting tdTomato and GFP expression near fungiform taste
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Electrophysiological recordings of gustatory nerves in rodents have provided in-sights
into processes involving neural mediation of salty taste in sodium appetite. Whole nerve
and single nerve fiber recordings from the chorda tympani conducted in rats maintained
on a sodium-deficient diet indicate responsiveness to NaCl decreases [159,160]. The single
nerve fiber recordings [159,160] determined that it was neurons that responded best to
NaCl that were attenuated. Within the NTS, NaCl-best neurons are also less responsive to
hypertonic NaCl, in agreement with [160], while sucrose-sensitive neuron responsiveness
increases [154,161]. Rapid induction of need-free sodium appetite in rats pre-treated
with DOCA and administered intracerebroventricular renin exhibit similar responses in
the NTS [162]. However, sodium appetite stimulated by low-dose furosemide increased
responsiveness to salt in NaCl-best neurons in the NTS of rats [163]. The inconsistency in
responsivity of NaCl-neurons within the NTS suggest different models of sodium appetite
(e.g., sodium-deficient diet versus furosemide), with different underlying mechanisms to
stimulate salt intake, may alter taste activity differently.

The shift in NaCl-sensitive and sucrose-sensitive neuron activity suggests increased
acceptance of typically aversive concentrations of NaCl and may underlie the change in
its hedonic value that is observed. However, this is not supported by behavioral studies
or studies using other methods to arouse sodium appetite. Furosemide-treated sodium-
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deplete rats with a conditioned taste aversion to sucrose do not exhibit an aversion to
NaCl, while sodium-deplete rats with a conditioned taste aversion to NaCl do not express
a sodium appetite [155]. This implies NaCl still tastes salty as the increased drive and
preference for NaCl in the sodium-deplete state did not circumvent the conditioned taste
aversion to NaCl. These inconsistencies demonstrate the mechanisms underlying the
shift in salt taste hedonic value observed with sodium appetite remain unclear. While
beyond the scope of this review, the shift in hedonic value toward consumption of typically
aversive concentrations of NaCl during sodium-appetite may be mediated by mesocorticol-
imibic circuitry, including the nucleus accumbens, ventral pallidum, ventral tegmentum,
and OFC [164].

Although the mechanisms mediating changes in salt taste during sodium depletion
are not well understood, the role for salt taste in regulating sodium appetite is clear. Intake
of hypertonic NaCl observed in sodium-deplete animals does not increase until changes
in salt taste occur. In driving NaCl intake toward restoration of sodium balance, salt taste
contributes to the satiation of sodium appetite. Investigations of taste and post-ingestional
factors in the satiety of sodium appetite indicate oral ingestion of NaCl more rapidly
induces satiation compared to stomach loading of NaCl [165,166]. The satiation of sodium
appetite by oral ingestion of NaCl is mediated by neural circuitry involved in regulating
sodium intake. The pre-locus coeruleus (pre-LC), located within the hindbrain, receives
projections from the NTS relaying information pertaining to the state of the internal milieu
(interoception). Pre-LC neurons involved in regulating sodium appetite are inhibited by
oral ingestion of NaCl and not gastric loading with NaCl, suggesting they are involved in
taste mediated satiety of sodium appetite [167]. The relationship between salt taste and
sodium appetite supports the notion that taste can be mediated by physiological state.

4. Neural and Hormonal Control of Blood-Pressure

The mechanisms and organ systems that are involved in salt intake contain several
points of overlap with the processes that are involved in blood-pressure regulation. Thus,
it is perhaps not surprising that mechanisms that are traditionally considered for their roles
in maintaining blood volume and pressure, also impact sodium appetite and possibly taste.
Blood pressure, which is dictated by cardiac output, peripheral vascular resistance and
blood volume, is regulated by mechanisms that involve neural, endocrine, cardiovascular
and renal systems and are intricately-related to those that mediate sodium intake and
are discussed above [168–173]. What was not discussed in detail above and is also of
particular importance for the regulation of blood pressure, is the autonomic nervous
system. The autonomic nervous system is comprised of parasympathetic and sympathetic
arms that, generally, act in opposition to one another to maintain physiological functions.
The parasympathetic nervous system primarily modulates heart rate and is most active at
rest, while the sympathetic nervous system controls both cardiac output and peripheral
vascular resistance and is activated during states of real or perceived stress. While both
parasympathetic and sympathetic limbs of the autonomic nervous system are active at
any given time, the balance between the opposing limbs shifts based on the internal
and external conditions and this balance is vital for determining blood pressure. The
endocrine factors discussed above then also mediate blood pressure homeostasis by way of
acting peripherally to influence vasoconstriction and fluid volume and centrally to impact
behavior and autonomic outflow.

4.1. Neural Circuitry Underlying Blood-Pressure Control

The neural circuitry that is involved in cardiovascular homeostasis has been reviewed
in detail elsewhere [171,174,175], and involves parallels with the circuitries that mediate
sodium appetite and taste (Figure 2). Similar to the regulation of sodium appetite, the
neural circuitries involved in controlling blood pressure depends on the ability to detect
changes in the internal milieu. This is accomplished, in part, by sensory CVOs also involved
in sodium appetite, including the SFO, OVLT, and AP, that are highly interconnected with



Nutrients 2023, 15, 535 12 of 33

other brain regions involved in cardiovascular regulation, such as the NTS, PBN, LC, PVN,
SON, and BNST [49–51,53,176]. Plasma osmolality not only impacts salt appetite but also
blood-pressure regulation. Blood pressure is regulated, in part, by the detection of changes
in [Na+] within the brain by osmosensitive neurons located near the anteroventral third
ventricle region (AV3V) [177–179], including the SFO, OVLT, and MnPO. As discussed
with sodium appetite, osmosensitive neurons express various [Na+]-sensitive channels,
including TPRV1, TRPV4, and Nax. Projections from the AV3V modulate blood pressure by
influencing autonomic and neuroendocrine activity [180–182]. The PVN, a major integrative
site mediating the interpretation of and responses to internal and external stressors, receives
inputs from AV3V neurons and plays a critical role in blood-pressure regulation through
control of neuroendocrine release and sympathetic activity [180,183–188]. As with sodium
appetite, neuropeptides (e.g., oxytocin and vasopressin) produced by the PVN and SON in
response to changes in plasma osmolality or blood volume can impact the neural circuitry
that mediates blood pressure.

Much like its role in impacting sodium intake and appetite, the NTS also plays a critical
role in integrating information from the periphery and relaying this information within the
brain to regulate blood pressure. Information from baroreceptors located within the carotid
sinus and aortic arch send signals to the NTS through the glossopharyngeal nerve and vagus
nerve, respectively [69,70]. Baroreceptors are mechanosensitive neurons [189] that sense
changes in vascular stretch and relay information regarding blood pressure and volume.
Inputs from arterial baroreceptive afferents are integrated by the NTS and then relayed to
regions involved in regulating blood pressure and volume. NTS hindbrain projections that
are particularly important for the control of the arterial baroreceptor reflex (baroreflex), a
rapid negative feedback loop that modulates autonomic control of blood pressure, are those
to the nucleus ambiguous (NA) and caudal ventrolateral medulla (CVLM) [190–192]. The
NA contains parasympathetic cardiac vagal motor neurons important in regulating heart
rate [193]. The CVLM influences sympathetic tone indirectly through inhibitory projections
to the rostral ventrolateral medulla (RVLM) [191]. Unlike the CVLM, the RVLM has direct
projections to sympathetic preganglionic neurons to control SNA [194–196]. Increased blood
pressure induces a reflexive decrease in heart rate and sympathetic outflow to lower blood
pressure, while a reduction in blood pressure induces opposite effects. Ventral to the NTS is
the dorsal motor nucleus of the vagus (DMNV), which receives inhibitory connections from
the NTS [197–200] and contains parasympathetic cardiac vagal motor neurons important in
regulating contractility of the heart [201–203]. Moreover, direct baroreceptor afferent input
has been observed in the DMNV and this area receives information from various brain
regions involved in blood-pressure regulation, including the NTS and PVN [204–206].

Projections from the NTS to the PBN are also important for integrating signals pertain-
ing to blood pressure and volume, fluid, and electrolyte homeostasis. The PBN integrates
these inputs and transmits information throughout the brain to mediate neuroendocrine
and autonomic activity to restore homeostasis [51,77,207–210]. The LC, adjacent to the
PBN, has also been implicated in blood-pressure control. Rats subjected to hemorrhage to
induce hypovolemia exhibited increased c-Fos expression in the posterior LC, while rats
subjected to extracellular volume expansion did not [211,212]. These results suggest the LC
may be involved in controlling mechanisms to compensate for volume loss. However, the
LC can also influence blood pressure through mechanisms that involve the sympathetic
nervous system [213].

One area receiving input from the PBN, and other areas, is the insular cortex which
serves as an integrative hub involved in interoception, sensory processing (e.g., gustatory
and cardiovascular), and autonomic control [214]. The IC has been implicated in blood-
pressure control [215] and regulating cardiovascular responses to acute stress [216,217].
The PVN also receives information pertaining to blood pressure and volume through
projections from the NTS and PBN [207,218–220]. Baroreceptor activity is important for
PVN neuroendocrine release (e.g., vasopressin) and sympathetic responses to changes
in blood pressure. Like the RVLM, the PVN contains direct projections to sympathetic
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pre-ganglionic neurons [221]. The PVN also modulates SNA through projections to the
RVLM [222]. PVN projections to sympathetic pre-ganglionic neurons and the RVLM
are inhibited by increases in blood pressure, further supporting the notion that these
projections receive information from baroreceptors [223]. The PVN is, in turn, also capable
of modulating the baroreflex through projections to the NTS [224]. Electrical stimulation of
PVN neurons attenuated the firing rate of NTS pressor neurons and inhibited the baroreflex.

Additionally, corticolimbic areas that are sensitive to stress and contribute to behav-
ioral responses to stress, including the mPFC, amygdala, and hippocampus, descend
upon regions involved in cardiovascular regulation to modulate blood pressure. Regions
of the BNST and hypothalamus, as well as the NTS and VLM, receive input from the
mPFC, amygdala, and hippocampus to modulate autonomic control [225,226]. Blood
pressure and heart rate increase in response to acute perceived stressors [227–231]. The
baroreflex is inhibited by corticolimbic descending projections to the NTS to prevent
a reflexive decrease in heart rate following a stressor-induced increase in blood pres-
sure [232,233]. The PVN also receives input from corticolimbic regions important for
modulating blood pressure in response to perceived stress. These circuitries are well
documented in the literature [225,234–239].

As with sodium appetite, the brain senses and receives information pertaining to
changes in the internal milieu to regulate blood pressure. Changes in plasma osmolality,
pressure, and volume are detected by osmoreceptors or baroreceptors. This information
is integrated by various brain regions and relayed accordingly to regulate autonomic and
behavioral responses. As will be discussed below, changes in blood pressure can alter salt
intake. Which is not surprising as the neural circuitry involved in regulating cardiovascular
homeostasis involves numerous points of overlap with the circuitries that mediate sodium
appetite and taste.

4.2. Endocrine Mediators of Blood-Pressure Control

The neural circuitry involved in blood-pressure regulation is comprised of pathways to
initiate compensatory mechanisms to maintain survival (e.g., baroreflex or “fight-or-flight”
response). As such, the neural circuitry regulating blood pressure also has intricate and
reciprocal connections with endocrine systems that similarly allow for the maintenance of
cardiovascular homeostasis in various situations. As previously described, renin release is
stimulated by increased SNA to the kidney, epinephrine release from the adrenal medulla,
hypovolemia, or sodium depletion [86–88]. Renin release results in increased levels of
circulating ANGII and aldosterone that then act in the brain and periphery to increase blood
pressure, as well as stimulate sodium appetite. Aldosterone’s influence on blood pressure is
most understood from a renal perspective, in that it stimulates water and sodium reabsorp-
tion by the kidney to increase blood volume and pressure. Aldosterone can impact blood
pressure centrally by acting on mineralocorticoid receptors within the brain to stimulate
salt intake, as seen in animal models utilizing DOC and DOCA, and alter sympathetic
activity [240–243]. As with the stimulation of sodium appetite, aldosterone, and ANGII act
together centrally to increase blood pressure. When injected directly into the brain, ANGII
increases blood pressure [244]. In the brain, ANGII exerts pressor effects by acting on AT1R
found in various regions involved in cardiovascular regulation [109–111,245]. ANGII can
modulate the baroreflex by acting on AT1Rs in the AP and NTS [246–248]. ANGII acts on
AT1Rs in other regions to modulate neural signaling, neuroendocrine release, and SNA to
alter blood pressure. Circulating ANGII can act on AT1Rs expressed in CVOs, including the
OVLT and SFO, resulting in increased blood pressure [187,249] and stimulation of sodium
appetite. ANGII stimulation of AT1R in the RVLM [250,251] and MnPO [252] increases
activity in neurons involved in blood-pressure control, as well as salt-sensing neurons in the
MnPO. The PVN has robust AT1R expression and receives angiotensin-sensitive projections
from various regions to mediate sympathetic and neuroendocrine activity in response to
ANGII [187,253–255]. For example, AT1R are expressed on PVN corticotropin releasing
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hormone (CRH) neurons that serve as a relay to and activate pre-autonomic neurons via
CRH release [188].

As mentioned, baroreceptor activity is important for neuroendocrine release in re-
sponse to changes in blood pressure. Decreases in blood pressure induce vasopressin release
from PVN and SON neurons that is largely dependent on signals from baroreceptors [256].
The central and peripheral actions of vasopressin in blood-pressure regulation are well doc-
umented [172,257]. Oxytocin has various actions, including inhibition of sodium appetite,
and has been implicated in blood-pressure regulation and these actions are reviewed in
detail in [258]. Another key mechanism of the PVN in regulating cardiovascular home-
ostasis to stressors is the HPA axis. HPA-axis activity is strongly related to activity in
limbic areas involved in emotional and behavioral responses including the hippocampus,
prefrontal cortex, and amygdala [234,259]. Activation of the HPA axis stimulates the re-
lease of CRH from PVN neurons [260]. CRH acts on the anterior pituitary to stimulate
the release of adrenocorticotropic hormone (ACTH) into the systemic circulation. ACTH
stimulates the adrenal cortex to synthesize and release glucocorticoids, cortisol in humans
and corticosterone in rodents. Similar to their potentiating effects of aldosterone in sodium
appetite, glucocorticoids potentiate the effects of catecholamines and vasoconstrictors on
the vasculature to increase blood pressure. Rats treated with oral dexamethasone displayed
potentiated pressor responses to norepinephrine [261]. DOC-treated rats exhibited greater
blood pressure responses to intravenous ANGII [262]. Studies performed in humans are
consistent with those in rats [263,264]. Additionally, HPA activation increases the release
of epinephrine from the adrenal medulla [265], which influences blood pressure through
a variety of mechanisms that involve activation of adrenergic receptors throughout the
body [266–268]. ANP is another hormone that is released that is dependent on changes in
blood volume and pressure and plays a role in sodium appetite and blood-pressure control.

Disruptions to homeostasis, real or perceived, stimulate the release of endocrine and
neuroendocrine hormones important to controlling blood pressure. Endocrine mechanisms
contribute to the maintenance of cardiovascular homeostasis by regulating physiological
(e.g., heart rate) and behavioral (e.g., salt intake) responses in various situations. Changes
in blood pressure, volume, and/or osmolality control the release of ANGII, aldosterone,
vasopressin, and oxytocin while stress-induced stimulation of the HPA-axis leads to the
production and release of glucocorticoids. Each of these hormones may act centrally or
peripherally to exert their effects and ultimately restore blood pressure.

5. Mechanisms Underlying Integration of Cardiovascular Homeostasis and Salt Intake

As alluded to throughout this review, the neural circuitry that is involved in salt intake
contains several points of overlap with the circuitry involved in blood-pressure regulation.
Thus, it is perhaps not surprising that mechanism(s) that are traditionally considered for
their role(s) in maintaining blood volume and pressure, also impact sodium appetite and
possibly taste. One such mechanism is baroreceptors.

Baroreceptor mediation of sodium appetite is supported by studies in which barorecep-
tors are surgically manipulated and salt intake is assessed. Atrial balloon studies involve
the surgical implantation of a balloon into the superior vena cava-right atrial junction.
Inflation of the balloon mechanically stimulates baroreceptors and simulates increased
blood pressure or volume to the brain. Sodium-deplete and DOC-treated rats demon-
strated decreased salt intake upon balloon inflation, with a rebound in intake following
deflation of the balloon [269]. Atrial balloon inflation shows a similar effect in rats treated
with furosemide and captopril to induce sodium appetite [270]. In this study, they also
determined that balloon inflation following induction of an acute sodium appetite altered
c-Fos expression in brain regions associated with sodium-appetite regulation. Specifically,
c-Fos was increased in the PBN and CVLM and decreased in the OVLT and SFO [270].

Sinoaortic denervation (SAD) studies, in which baroreceptor afferent input to the brain
is removed, also provide insight into baroreceptor regulation of sodium appetite. SAD
rats made sodium-deplete by furosemide exhibit decreased salt intake [271], and under
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normal physiological conditions, SAD rats also consumed significantly less salt than con-
trols [272]. Collectively, these studies support the idea that neural input from baroreceptors
are important for salt intake regulation and normal expression of sodium appetite.

There are various potential sites throughout the brain that may contribute to changes
in salt intake observed with baroreceptor manipulation. Salt taste and baroreceptor sensory
afferents enter the brain in the rostral and caudal NTS, respectively. Projections from the
caudal NTS to the rostral NTS may alter gustatory information at the first input from the
periphery [76]. Another early relay point for gustatory and cardiovascular sensory infor-
mation is the PBN, which also plays an important role in salt intake regulation. The PBN
may serve as a site of integration of gustatory and cardiovascular information to regulate
salt intake. Endocrine and neuroendocrine factors released in response to baroreceptor
stimulation act in some of the same brain regions to regulate blood pressure or salt intake,
such as the SFO and PVN. The exact underlying mechanism(s) behind cardiovascular status
influencing salt intake remain unclear, and more work needs to be completed to understand
how blood pressure status impacts salt intake.

6. Stress-Induced Dysregulation of Salt Intake

Thus far, we have described mechanisms that regulate sodium intake under normal
physiological conditions. Many of these mechanisms are altered upon exposure to stress,
external or internal. Stress is defined as a real or perceived threat to homeostasis and can
occur acutely, repeatedly, or chronically [273–276]. While stress is not a disease, per se,
the psychological and physiological effects of stress manifest to other diseases, including
cardiometabolic diseases (CMDs), such as obesity and hypertension [277–279]. Addition-
ally, environmental, and physio-logical challenges (e.g., overconsumption of salt, disease
pathophysiology, etc.) can be perceived as stressful as they threaten homeostasis. Stress-
related diseases, including CMDs, are highly prevalent and on the rise worldwide [280–282].
Experimental evidence implies that psychological stress, hypertension, and obesity are
associated with increased salt intake [283–286]. We will discuss salt intake in each condition
and highlight some of the potential mechanism(s) that become impaired to contribute to
increased intake.

6.1. Psychological Stress

You have probably found yourself reaching for a salty snack when feeling stressed and
there could be a reason for that. Many studies have investigated the effect of psychological
stress on salt intake in humans and small mammals, with most reporting increased intake.
An acute model of psychological stress in rodents is restraint, in which animals are placed
in a restrainer for a pre-defined duration of time. Relative to their baseline intakes, hamsters
exhibit increases in salt intake after restraint-stress [287]. Other studies have utilized chronic
models in rodents and rabbits to understand the effects of chronic stress on salt intake.
A chronic model of social stress in rodents involving the introduction of and long-term
cohabiting with an “intruder”. Ely et al. [288] applied this model to rats and measured daily
salt intakes. Male rats exhibited a significant stress-induced increase in daily salt intake.
Furthermore, exposure to stress early in life can also have long-lasting effects that impact
salt intake. Rats exposed to sodium depletion or maternal separation as pups demonstrated
increased salt intake in adulthood [289]. The implication is that early life stressors may
contribute to shaping sodium preference in adulthood.

Psychological stress is known to increase circulating glucocorticoids [290–293]. Chronic
administration (1 week) of ACTH systemically or CRH intracerebroventricularly simulates
this aspect of chronic stress and also increases daily salt intake in rabbits [294]. When
considering the interaction between glucocorticoids and salt intake it is worthwhile not-
ing that these steroid hormones are important ligands for the mineralocorticoid receptor,
which is expressed in and mediates sodium appetite by way of the NTS. Therefore, it
is reasonable to hypothesize that the NTS neurons that express the mineralocorticoid re-
ceptor may be involved in altered sodium intake during psychological stress; however,
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it is also important to reiterate that the presence of HSD2 on these neurons biases the
receptor away from glucocorticoids to favor aldosterone binding (see Section 3.2). With
this in mind, another relevant consideration is that psychological stress is associated within
autonomic imbalance and increased activity of the RAAS that may mediate the increased
sodium intake [91,93,295,296].

Evidence from human studies investigating stress and salt intake has been less con-
sistent. This may be due to methodology used and some of the caveats associated with
human research. Numerous studies utilizing acute stressors (performing a math task with
harassment, preparing a speech with expectation of performing, or attempting to solve
unsolvable anagrams) in humans show no change in self-reported salt intake [297–299].
However, exposure to acute stress reduced salt-taste sensitivity and thresholds [300,301].
Stressors used in the latter studies included public speaking, mental arithmetic, and a
cold pressor test or completion of a color-word interference test followed by a cold pressor
test. Testing of gustatory sensitivity and thresholds may provide more insight on acute
stress-induced changes in salt intake that self-report measures of salty food intakes. Few
studies have looked at the effect of chronic psychological stress on salt intake in humans.
One study investigated food choices in young adults in relation to reported feelings of
stress. Reported consumption of highly salty snack foods increased with stress [283].

Studies in mice and rats suggest salt intake may have a ‘stress-dampening’ effect, such
that acute increases in plasma sodium concentration due to increased salt intake induces
compensatory mechanisms that decreases reactivity to psychological stressors. In support
of this, animals administered hypertonic NaCl (2.0 M) prior to exposure to restraint-stress
exhibit decreased HPA activation as reflected by an attenuated surge in corticosterone
compared to animals administered isotonic NaCl. This implies acute increases in plasma
sodium concentration reduces responsivity to the stressor (restraint) [302,303]. Further,
acute administration of hypertonic NaCl increased neural activation in PVN oxytocinergic
neurons and decreased neural activation in PVN CRH neurons [304,305]. This suggests
the ‘stress-dampening’ effect of salt intake may be mediated by stimulation of oxytocin
and inhibition of CRH neurons in the PVN and may contribute to increased salt intake
observed with stress.

Psychological stress is a major risk factor for the development of hypertension and
obesity [306–311]. We propose that this risk may be mediated by increased salt intake
in response to stress. As we have already highlighted, stress hormones can induce salt
intake [146,147,294]. HPA-axis hyperactivity and excess glucocorticoids, and other stress
hormones, are also reported in obesity and hypertension [312–318]. Thus, it is possible that
dysregulation of stress mechanisms may contribute to increased salt intake observed in
obesity and hypertension.

6.2. Obesity

The worldwide prevalence of obesity, defined as abnormal or excessive fat accumu-
lation that may impair health, has nearly tripled in the last 50 years [281]. In addition to
psychological stress, other factors contribute to rising obesity levels, such as sedentary
lifestyle and diet. Like sodium appetite, obesity seems to alter salt palatability resulting in
increased consumption of salty foods. As such, the relationship between body mass index
(BMI) and taste perception has been investigated in humans and animals. Park et al. [286]
assessed taste in obese and lean adults using two different methods, electrogustometry
and chemical taste tests. Electrogustometry depends on delivery of electrical currents
to areas of the tongue to stimulate taste buds and recognition of the stimulation. Obese
individuals exhibited higher recognition thresholds to electrical stimulation on the anterior
and posterior tongue, while only those to the posterior tongue were significantly higher.
Chemical taste tests were performed by applying solutions representing the basic taste
qualities at various concentrations to the tongue and the minimum concentration at which
a taste was detected was defined as the threshold. Obese individuals had higher thresholds
across all taste qualities, while only the threshold for salt taste was significantly higher. In
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another study, taste was assessed using the “taste strips” test in which a paper saturated
with solutions representing the basic taste qualities at different concentrations is applied
to the tongue. The lowest concentration at which taste is detected served as the thresh-
old. Consistent with the previous study, they observed higher taste thresholds for salt in
obese individuals [319].

While these studies support an association with obesity and salt taste sensitivity, hu-
mans often consume salt at suprathreshold concentrations. To understand how obesity
impacts sodium consumption in humans, we must look at changes in taste to suprathresh-
old concentrations of salt. Suprathreshold assessment of salt taste involves presenting a
participant with solutions containing varying high concentrations of salt and asking them
to identify which they consider to be intolerably salty. Studies investigating suprathreshold
perception in obesity have been inconsistent. Li et al. [11] performed salt suprathreshold
tests and functional brain imaging in lean and obese individuals to determine changes with
obesity. Participants were asked to sip the taste solution and hold it in their mouth for
5 s. Suprathresholds for salt were increased in obese individuals suggesting that they find
higher concentrations of salt more palatable than lean individuals. PET/CT scans revealed
obese individuals had higher activity in the insular cortex, orbitofrontal cortex, and par-
rahippocampus following buccal administration of the taste solution (200 mmol/L NaCl).
As previously described, the gustatory cortex is located within the insular cortex. One
caveat of this study is that participants with hypertension or elevated blood pressure were
included, making it difficult to determine if these effects are due to obesity or hypertension.
While these studies suggest decreased sensitivity for salt taste based on suprathreshold
assessment, others have observed increased sensitivity. Hardikar et al. [320] performed
suprathreshold assessments in lean and obese individuals in which taste solutions were
administered to the anterior part of the tongue. Obese individuals tended to rate the same
concentration of a taste solution as significantly more intense than lean individuals. The
inconsistency between studies in investigating suprathreshold perception may be due to a
difference in methodology.

One contributing factor to altered salt taste observed in obesity may be the number
of taste buds. Mice with diet-induced obesity were found to have significantly fewer
taste buds than mice on a normal diet [321]. Changes in taste responses have also been
reported within the brain. As previously discussed, various brain regions exhibited higher
activity following buccal administration of a salt solution [11]. However, this study does not
provide insight into the simultaneous neural changes in the brain with salt taste stimulation.
EEG recordings were performed in lean and obese individuals and gustatory-event related
potentials were assessed in response to oral stimulation of a high or low concentration salt
solution, delivered through a computer-operated gustometer. Obese and lean individuals
demonstrated a similar processing of taste within the gustatory network, however activity
diminished sooner in obese individuals [322]. This shorter neural representation of taste
information could be linked to weaker taste sensitivity. Single-cell electrophysiological
recordings performed in the NTS of awake, behaving diet-induced obese and lean rats
are consistent with this. Obese rats demonstrated longer latencies, smaller magnitudes,
and shorter durations of taste evoked responses in NTS cells [323]. These changes in
salt taste responses are consistent with those observed in sodium-deplete rodents that
demonstrate decreased responsiveness to NaCl from the chorda tympani [159,160] and
within the NTS [154,161] and PBN [78].

Endocrine and neuroendocrine factors may also contribute to dysregulation of salt
intake in obesity. RAAS activity is elevated in obesity and contributes to elevated levels of
ANGII and aldosterone [324,325]. ANGII and aldosterone stimulate salt intake. Oxytocin,
which plays an inhibitory role in salt intake, is also altered in obesity [326]. Oxytocin release
and systemic oxytocin have been shown to be decreased in obesity [327,328].

With the prevalence of obesity on the rise, much work is dedicated to understanding
its physiological consequences. Taste changes in obesity have been reported by many, while
the evidence remains inconsistent regarding salt taste. Salt taste changes with obesity are
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particularly of interest due the relationship between salt intake and hypertension. Obesity
and hypertension often go hand in hand [329,330], however, many studies investigating
salt intake in obesity do not consider hypertension.

6.3. Hypertension

Chronic exposure to psychological stress and obesity are both often associated with
co-morbid hypertension, which is a major risk factor for cardiovascular disease, the leading
cause of death worldwide [280]. Due to the link between salt intake and hypertension,
the relationship between salt taste and hypertension has long been of interest. Early
comparisons of taste thresholds in normotensive and hypertensive individuals revealed
hypertensive individuals had a significant reduction in their ability to taste salt [331–333].
This led the authors to deduce hypertensive individuals consume more salt because they
cannot taste it as well. In support of this, a correlation between blood pressure and salt
taste detection thresholds has been observed. Salt-taste acuity and discrimination tests
were performed in normotensives. In salt-taste acuity tests, participants taste a series
of solution pairs and determine which is saltier, while in salt-taste discrimination tests
participants are presented with varying concentrations of salt solutions and asked to
sort them based on intensity. A significant association between systolic blood pressure
and sensitivity was observed, in that individuals with higher blood pressure had lower
detection thresholds [334].

It is important to note that there are different forms of hypertension with different
underlying causes and the studies discussed here focus on essential hypertension. Es-
sential (primary) hypertension occurs independent of another medical condition, such as
renovascular disease. In patients with essential hypertension, plasma renin activity may
vary. Salt taste assessments measuring intensity and hedonic value performed in low-renin
hypertensives, normal-renin hypertensives, and normotensives demonstrate such differ-
ences. Only low-renin hypertensives preferred salt solutions at various concentrations
compared to normotensives [335]. In contrast, spontaneously hypertensive rats (SHRs),
an animal model for essential hypertension with high-renin [336], also display alterations
in salt-taste responses. Pereira et al. [337] investigated hedonic responses in SHRs and
control rats by measuring orofacial responses to intraoral infusions of hypertonic saline
under euhydrated conditions. SHRs exhibited more hedonic responses to intraoral infusion
of saline and these responses were attenuated by intracranial administration of losartan,
an ANGII receptor blocker. This suggests salt-taste changes observed in this model of
hypertension are attributed to increased ANGII signaling in the brain.

The prevalence of hypertension [338], and CMDs [339], increases with age. Taste
perception is susceptible to decline with age [340,341] and changes in salt taste with age
have been observed in humans and rodents [342,343]. One study compared salt preference
in young (age = 30–50 years) and older (age = 60–80 years) normotensive and hypertensive
individuals in order to discriminate the influence of age and hypertension on salt preference
and intake. Hypertensive individuals, regardless of age, preferred and consumed more salt
than normotensives [285], suggesting hypertension more strongly influences salt taste and
preference than aging.

Mechanism(s) involved in regulating blood pressure and salt intake are impaired
with hypertension and may contribute to increased salt intake. Baroreflex impairment is
observed in hypertension, as well as obesity, and could be the result of altered afferent
signaling [344–348]. Impaired baroreceptor afferent input to the NTS may contribute to
increased salt intake. Endocrine and neuroendocrine signaling is also dysregulated with
hypertension. Increased RAAS activity in hypertension is well documented [349–351].
AT1R expression has been shown to be elevated in regions related to salt intake regulation
in rodents including the NTS, PVN, and SFO [352,353]. Additionally, increased numbers
of HSD2 neurons in the NTS has been observed in hypertensive rats [354]. Increased
levels of ANGII and aldosterone and more sites for their action in hypertension may
contribute to increased salt intake. Alternatively, oxytocin release, systemic oxytocin



Nutrients 2023, 15, 535 19 of 33

levels, and Oxtr expression in the PVN and NTS have been reported to be decreased in
hypertension [355–358]. With less oxytocin and fewer sites of action in hypertension, there
is less potential for inhibition of salt intake.

Understanding how hypertension increases salt intake is of obvious importance as salt
intake can exacerbate the condition and increase the risk for cardiovascular disease. Many
studies, in humans and animals, have reported elevated salt intake and changes in salt taste
in hypertension. Discerning these mechanism(s) may provide a potential therapeutic target
or increase the success of dietary salt reduction in treating hypertension.

7. Conclusions and Perspectives

The link between salt intake and cardiovascular dysfunction is widely acknowledged,
particularly in the light of the deleterious and hypertensive consequences of excess sodium
ingestion. The inverse relationship—how disease states alter salt intake—is given less credence.
In this review, we have highlighted how stress-related and cardiometabolic diseases, specifically
obesity and hypertension, alter salt preference resulting in increased salt intake, similar to the
shift with sodium appetite observed in other mammalian species subjected to sodium depletion.
Our proposition is that stress-related (particularly cardiometabolic) disease states also impact
the drive to consume sodium and sensation of sodium taste (Figure 4). The consequence is the
potential for a feed-forward mechanism that exacerbates these disease states.
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Figure 4. Potential mechanism of interaction between psychological and physiological stress with
salt intake. Psychological stress (red) involves top-down processing from cortical regions throughout
the brain to areas involved in autonomic control and salt-intake regulation, leading to disruption
of visceral organs and development of cardiometabolic disease. Physiological stress (blue) involves
bottom–up processing as inputs from the viscera enter the brainstem and are relayed throughout
the brain to areas involved in autonomic control, salt intake regulation, and stress responses. Salt
intake may be “stress dampening” and result in modulation of psychological and physiological
stress processing and alleviate discomfort experienced with a real or perceived threat to homeostasis.
Perceived stress (psychological or physiological) may alter gustatory processing, centrally and/or
peripherally, to modulate salt taste and increase salt intake.
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Potential mechanism(s) underlying alterations in salt intake observed in stress-related
disease, including CMDs, most likely stem from similarities in neural circuitry and en-
docrine factors mediating salt intake and blood-pressure regulation. Sensation of changes in
[Na+] by osmosensitive neurons or changes in blood pressure and volume by baroreceptor
afferents initiate neural pathways to regulate salt intake and blood pressure accordingly.
Once in the brain, these signals are relayed to many of the same areas (Figure 1) to regulate
salt intake and blood pressure. The NTS, PBN, and IC are major sensory hubs that may
serve as potential locations for integration of salt taste and intake and cardiovascular infor-
mation to regulate salt consumption and blood pressure and volume accordingly. The PVN
may also contribute to this integration through control of neuroendocrine peptides, such as
vasopressin and oxytocin, and ANGII binding. Oxytocin has various roles, including in
sodium appetite and cardiovascular control, and central actions of oxytocin inhibit sodium
appetite and alter blood pressure. ANGII’s actions on AT1R expressed on neurons within
the PVN and throughout the brain alter sodium appetite and cardiovascular responses.
Based on the expression of the AT1R and Oxtr throughout gustatory, sodium appetite, and
cardiovascular sensory organs and circuitry, it is reasonable to hypothesize that these two
peptides may contribute to integration of changes in blood volume, pressure, or osmolality
to regulate salt intake accordingly.

Understanding salt intake and cardiovascular sensory integration may provide insight
into the mechanism(s) underlying the relationship between salt intake and blood pressure,
particularly in the development and maintenance of hypertension. Upon consumption, salt
[NaCl] is detected by taste buds on the tongue and gustatory afferents relay this information
to the gustatory rNTS. This circuitry overlaps with that of baroreceptor afferents innervating
the aortic arch and carotid sinus that transmit this information to the cardiovascular cNTS
(Figure 1). ANGII and/or oxytocin may act on their receptors along these afferents to
coordinate gustatory and baroreceptor processes to regulate salt intake in response to
changes in blood pressure and volume. Future work should investigate this sensory
integration in control of salt intake and blood pressure, as it may provide insight into the
relationship between salt intake and disease. Enhancing our understanding of interoceptive
and gustatory systems as targets for peptides, such as ANGII and oxytocin, may provide
the potential of targeting these systems for the prevention or treatment of diseases linked
to overconsumption of salt.
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