
420e	 www.PRSJournal.com	

Adipose tissue (AT) is present in large quan-
tity and represents the ideal filler for cor-
recting and remodeling purposes. For two 

decades, extensive work has been done on adi-
pose-derived stem/stromal cells (ASCs) and their 
use in regenerative medicine.1,2 Those cells would 
be the key factor for fat graft survival because of 
their ability to differentiate and synthesize growth 
factors.3,4 However, ASCs are not the only cellu-
lar component involved in graft survival. This 
review aims to describe other parameters that can 
have an effect on graft survival, with a focus on 
macrophage polarization, vascularization promo-
tion, and extracellular matrix (ECM) remodel-
ing. We also depict the effect of aging on those 
phenomena.

ADIPOSE TISSUE AGING
The main function of subcutaneous AT 

is energy storage through lipids. It is a major 
endocrine organ5 with strong immunomodula-
tory properties,6–8 and also undergoes changes 
with age.9 Age induces facial subcutaneous AT 
deflation.10,11 AT volume decrease leads to a loss 
of projection, inducing excessive traction on 
the lower eyelid.12 Using magnetic resonance 
imaging, Wysong et al. observed an age-related 
decrease in AT thickness in infraorbital and tem-
poral zones and on the medial cheek.13 In con-
trast to these findings, Gosain et al. showed an 
increase in fat volume in the medial cheek on 
aged people.14 Age is negatively correlated with 
preadipocyte proliferation on subcutaneous but 
not omental depots. Furthermore, preadipocyte 
proliferation and differentiation capacities are 
down-regulated with age.15 There are also dif-
ferences between fat depots, as preadipocyte 
properties vary according to their localization.16 
Facial adipocytes have different morphology 
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according to their fat depot; for instance, the 
average adipocyte size of nasolabial fat is larger 
than deep medial cheek fat.17 In addition, several 
reports have shown that age reduces vascularity, 
angiogenic capacity, and vascular endothelial 
growth factor (VEGF) expression, and increases 
fibrosis in aged AT mice.18 Ultraviolet irradiation 
could also impairs AT by inhibition of preadipo-
cyte differentiation, mediated by inflammatory 
cytokines such as interleukin (IL)-1α, IL-6, and 
tumor necrosis factor-α.19,20

ADIPOSE-DERIVED STEM/STROMAL 
CELLS

Since the mid-1990s, autologous fat grafting 
has become a standard technique in plastic sur-
gery. Lipofilling is now admitted as an alternative 
to synthetic polymer fillers.21–23 AT is not only a 
simple filler for volumetric effects, but also com-
bines regenerative effects in skin on grafting.24,25 
AT is composed of adipocytes and stromal vascu-
lar fraction (SVF) cells, including immune cells 
(eg, macrophages and lymphocytes), endothelial 
cells and their progenitors, smooth muscle cells, 
pericytes, and mesenchymal stem/stromal cells 
called ASCs26–31 (Fig. 1). ASCs were described by 
Zuk et al. in early 2000s.32,33 They are multipo-
tent cells with high differentiation capacity27,34 
that have gained attention for therapeutic and 
cosmetic applications.3,35 They are used to treat 
and improve wound healing,36–39 scars,24,40–43 hair 
regeneration,44,45 and facial aging.46,47 Fat grafting 

improves skin quality, leading to a reduction 
of dermal epidermal junction flattening, with 
noticeable reconstruction of normal ridge pattern 
and dermal papillae.48,49 However, two systematic 
reviews focusing on therapeutic and aesthetic use 
of lipofilling for skin quality improvement, wound 
healing, and hair growth demonstrate that these 
findings may be somewhat limited because of no 
significant effect on healthy skin.50,51 The authors 
conclude that even if the clinical outcomes show 
improvement, there is no robust clinical study 
(with high level of evidence) that shows a signifi-
cant effect on skin quality.

ECM Modulation
As ASCs can modify surrounding cell behavior, 

they can remodel dermal ECM.42,46 ASCs promote 
dermal fibroblasts and epidermal keratinocyte 
proliferation and migration, not only by cell-to-
cell direct contact, but also by paracrine activation 
through secretory factors. ASCs can also enhance 
the secretion of ECM proteins such as collagens or 
fibronectin52–55 and act as modulators of ECM by 
collagen and matrix metalloproteinase (MMP)/
tissue inhibitors of MMP synthesis regulation.56–61 
Indeed, ASCs can modulate homeostasis of MMPs 
and their endogenous inhibitors (tissue inhibitors 
of MMPs).62–64 Those cells are known to induce a 
better collagen organization and a decrease of 
α-smooth muscle actin expression, markers of 
dermal fibrosis improvement.65–67 ASC can inhibit 
profibrotic factors such as transforming growth 

Fig. 1. Adipose tissue composition. EC, endothelial cells; EPC, endothelial progenitor cells.
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factor (TGF)-β1 or IL-668–70 and increase the anti-
fibrotic factor TGF-β3.43 The antifibrotic effect 
of ASCs is also mediated by their paracrine activ-
ity. Indeed, ASCs secrete basic fibroblast growth 
factor (b-FGF), also called FGF-2,71,72 hepatocyte 
growth factor (HGF),71–74 and IL-10,75 which are 
known to decrease TGF-β1 expression,76 stop 
fibroblast-to-myofibroblast differentiation,77,78 and 
induce myofibroblast apoptosis.61,79

Immunomodulatory Properties
Effect on Immune Cells
ASCs have strong immunomodulatory effects 

on both innate and adaptive immune systems.80 
These cells are able to partially suppress lym-
phocyte proliferation and inhibit B-lymphocyte 
proliferation and differentiation into plasmo-
cytic cells.81 Treatment with SVF cells or ASCs 
greatly attenuated the activities of T-helper 1 and 
T-helper 17 cells and their associated proinflam-
matory cytokines.82 Some studies have shown that 
ASC secretome is a pivotal player in immunomod-
ulatory or angiogenic properties.83–85 However, 
cell characteristics may vary between patients 
according to age, sex, body mass index (BMI), 
or metabolic state. As an example, ASCs derived 
from patients affected by type 2 diabetes showed 
increased expression of inflammatory markers 
and high reduction of their immunosuppressive 
activities.86

Focus on Macrophages
ASCs can modulate monocyte and macro-

phage behavior through soluble factors.87 Some 
authors suggested that ASCs could modulate 
inflammation through regulation of macro-
phage polarization. Indeed, ASC-conditioned 
media (CM) significantly reduced the produc-
tion of TNFα, nitric oxide, and prostaglandin E2 
and the activation of nuclear factor-κB by macro-
phages.87 Co-culture of M0 or M1 macrophages 
with ASCs or ASC-CM increases alternative M2 
macrophage marker expression such as CD206, 
CD163, or IL-10.82,88–92 This alternative activation 
is paired with a decrease of proinflammatory M1 
macrophage markers such as CD80, IL-1β, IL-6, 
or TNF-α. Some immunomodulatory roles of 
ASCs remain unclear, such as expression of toll-
like receptors,93,94 hematopoiesis support,95 and 
cytokine release at a basal or stimulated state.73 
New therapeutic strategies are considering use 
of ASC-CM or extracellular vesicles to modu-
late inflammation,92,96 as cells secrete inflamma-
tory cytokines such as granulocyte-macrophage 

colony-stimulating factor, macrophage colony-
stimulating factor, IL-6, IL-8, or TNF-α.55,72,73,97 
Macrophage polarization switches from M0 or M1 
to M2 could be mediated by those soluble factors. 
Indeed, exosomes from ASCs polarize macro-
phages toward M2 phenotypes through the trans-
activation of arginase-1 by exosome-carried active 
STAT3.98

Because of their ubiquitous presence and 
ability to secrete numerous cytokines, macro-
phages can interfere at each angiogenic step. 
Macrophages can modulate ECM by MMP synthe-
sis,99 synthesized factors that can modulate endo-
thelial cell proliferation and migration either in a 
proangiogenic (Ang2, b-FGF, TNF-α, VEGFC) or 
antiangiogenic (IL-10, TSP-1, VEGFAxxxb) path-
way.100 M2 macrophages are known to promote 
angiogenesis and tissue regeneration, whereas 
M1 macrophages are considered antiangiogenic, 
although these classifications are controversial. 
Jetten et al. indicated that M2 macrophages have 
higher potential to increase the number of endo-
thelial cells and tubular structures when com-
pared to M1 macrophages.101 In contrast, Spiller 
et al. have demonstrated that M1 macrophages 
secrete high levels of angiogenic stimulators, 
including VEGF, and M2 macrophages secrete 
high levels of PDGF-BB (a chemoattractant-stabi-
lizing pericytes), promote anastomosis of sprout-
ing endothelial cells, and secrete the highest 
levels of MMP9, an important protease involved 
in vascular remodeling.102

These data suggest that ASCs could affect 
immune cells, especially macrophages, leading 
to a proresolutive phenotype. This immuno-
modulation could improve tissue regeneration, 
as alternatively activated macrophages increase 
angiogenesis.

Role in Vascularization
Beneficial effects of ASCs on wound heal-

ing involved promotion of vascular regenera-
tion. ASCs can differentiate into endothelial 
vascular cells103–105 and promote the vascular net-
work when co-cultured with endothelial cells.106 
Furthermore, endothelial cells co-cultured with 
either ASCs or bone marrow–derived stromal 
cells induce stable vascular structures.107 However, 
ASC co-cultures developed more junctions and 
higher network density within the same time 
frame.107 ASCs bear many hallmarks of pericytes 
and provide vascular stability through functional 
interaction with endothelial cells.108 Fat grafts 
supplemented with ASCs have a higher capillary 
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density, indicating that ASCs could promote neo-
vascularization through expression of various 
growth factors, including VEGFA and insulin-like 
growth factor-1.109 Paracrine function is a key fac-
tor of ASC regenerative effects, and many authors 
have been interested in the ASC secretome.73,110 
Those cells are able to synthesize a high variety of 
factors such as leptin, VEGF, HGF, b-FGF, TGF-β, 
IL-8, platelet-derived growth factor (PDGF), PlGF, 
or SDF-1,71–74,97,111–116 involved at different steps of 
angiogenesis. ASCs can form capillary-like tubes, 
which are dependent on PDGF and the b-FGF sig-
naling pathway.117 ASCs increased endothelial cells 
growth and reduced endothelial cell apoptosis 
through VEGF, HGF, and TGF-β secretion.72 ASCs 
support endothelial tubulogenesis by VEGF-A and 
VEGF-D expression.113 FGF and VEGF are pro-
moters for ASC proliferation, migration, attach-
ment, and endothelial differentiation and have a 
co-stimulatory effect on ASC endotheliogenesis.118

Impact of Aging on ASCs
The regenerative potential of ASCs is based 

on their differentiation potential and paracrine 
effects.3,4,119 However, mesenchymal stem/stro-
mal cell functionality declines with age.120 Aging 
decreases osteogenic differentiation121,122 and 
ASC telomere length.114,123–125 The effect of aging 
on proliferation and adipogenic potential is still 
controversial.121,123 Some authors state that aging 
has no effect on ASC yield, viability, and prolifera-
tion,126,127 whereas others show that cellular prolif-
eration and migration decrease with age.121,122,128 
Another study shows no correlation between age 
and ASC yield, or with the capacity of preadipo-
cytes to undergo differentiation.129 Furthermore, 
ASC immunomodulatory potential is increased 
in infants compared to elderly, as they better sup-
press T-cell proliferation, down-regulate the secre-
tion of interferon-γ, and increase the percentage 
of T-regulatory cells.122 Another study shows that 
aged ASCs failed to induce CD3+CD4+ T-cell sup-
pression compared to young ASCs.130 Age also 
impairs angiogenic capacities of ASCs,18,131 as 
it decreases the ability of ASCs to differentiate 
toward endothelial cells and secretion of proan-
giogenic factors.131 Surprisingly, the literature is 
scarce concerning the effect of aging on ASC sec-
retome. Aging reduces VEGF and b-FGF mRNA 
expression from white AT and isolated cells18,123 
and protein expression of TGF-β1 and fibro-
nectin.132 Angiogenic factors (VEGF, PlGF, HGF, 
angiopoetin-1, and angiogenin) protein and 
mRNA expression from ASC-CM decrease with 
patient age, whereas no changes were observed in 

the levels of antiangiogenic factors thrombospon-
din-1 and endostatin.114,125 Although those stud-
ies have been performed on in vitro conditions, 
future research should explore their role in vivo.

FAT GRAFT RETENTION
For more than a century, surgeons had used 

AT as a filling product. In 1893, Neuber was the 
first to use fat to correct facial scar.133 In the 1980s, 
multiple surgeons described the use of fat grafts 
in the cosmetic field. Despite promising thera-
peutic applications of fat grafting, the long-term 
results are often disappointing because of variable 
and unpredictable partial absorption.134–136 Several 
studies have reported resorption rates of 20% to 
70% within 1 year, especially for large-volume fat 
grafting.136–140 In the mid-1990s, Coleman intro-
duced a new technique to decrease traumatic 
handling of fat during liposuction.141,142 Even if 
his technique remains the standard for fat graft-
ing, the numerous optimizations of each step of 
the procedure143,144 (eg, harvesting, processing, 
and injection) make comparisons between stud-
ies very difficult. However, many studies focus on 
survival rate of graft volume injected without tak-
ing into account the recipient-site volume. Khouri 
and Khouri suggested replacing percentage graft 
retention by more clinically relevant percentage 
augmentation: final volume augmented/initial 
recipient-site volume.145,146

Fat Graft Survival Theories
In 1923, Neuhof and Hirschfeld proposed 

the host replacement theory.147 In this theory, grafted 
fat cells die after transplantation and are partly 
replaced by infiltration either by host cells, which 
become fat cells, or by fibrous tissue.

In 1950, Peer contradicted this theory and 
proposed the cell survival theory,148,149 defined as 
follows: “Living human autogenous grafts tend 
to retain their specific structure, following free 
transplantation in unlike tissue, when the cells 
survive as living entities. When the cells fail to 
survive, the graft is replaced by fibrous tissue or 
mixed connective-tissue derivatives.” In his stud-
ies, Peer also demonstrated survival of the graft 
vascular system and anastomosis between host 
blood vessels and the vascular system of the graft, 
previously excluded.

Both graft survival and host replacement theo-
ries can explain partly fat graft survival process. 
In 2012, Eto et al. challenged the cell survival 
theory and found that adipocytes die easily under 
ischemic conditions, whereas ASCs or progenitor 
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cells could survive and were activated and contrib-
uted to AT repair later.150 The authors have pro-
posed the graft replacement theory, which defined 
the injected AT particle into three main zones. 
The most superficial zone is called the “surviving 
zone,” where both adipocytes and ASCs survive; 
the “regenerating zone,” where adipocytes die 
but ASCs survive and provide new adipocytes to 
replace the dead ones; and the “necrotic zone,” 
where adipocytes and ASCs die.

Parcel Size and Injected Volume
After Eto et al. highlighted the impact of fat 

microdroplets graft size,150 some teams described 
other essential parameters to improve fat graft 
survival (eg, oxygen diffusion). Khouri et al., have 
nicely modeled parameters involved in fat graft 
percentage augmentation.151 The study predicts 
that fat particles thinner than 0.16 cm in radius 
do not have a region of central necrosis, because 
oxygen supply is sufficient for all cells included 
in the particle. Otherwise, several surgeons have 
suggested that injecting too much fat into a small 
recipient site can increase interstitial fluid pres-
sure (IFP) enough to constrict capillaries, induc-
ing ischemia in the grafted tissues.152–154 The model 
described by Khouri et al. predicts that a given 
tissue compartment can accommodate approxi-
mately 60% of its weight in interstitial fluid before 
reaching a critical IFP (9 mmHg), beyond which 
any additional fluid causes a drastic IFP increase 
and capillary perfusion decrease.151 The injection 
step is crucial, as fat grafts have to be distributed 
in small droplets at varying depths in the soft tis-
sue to allow oxygen supply and avoid excessive 
IFP at the recipient site.

ASCs and Vascularization
As seen above, fat graft survival depends 

on surgical techniques but also on the AT biol-
ogy. Philips et al. demonstrated that there is a 
strong correlation between SVF percentage of 
CD34+ progenitors and human graft retention 
in mice.135 These CD34+ progenitors could be 
ASCs, and their concentration within the SVF 
may be one of the factors used to predict human 
fat graft percentage augmentation. Other stud-
ies have also demonstrated that ASC-enriched 
grafts improved fat graft survival through angio-
genesis stimulation,103,109,155–158 and that fat graft 
enriched in proangiogenic factors improved the 
graft viability by means of increased vasculariza-
tion.159,160 As high-density fat contained more 
vasculogenic progenitor cells and vascularity 

cytokines, this fat induces a better fat graft sur-
vival compared to low-density fat.161 These stud-
ies show that, through their proangiogenic 
capacities, ASCs could improve fat graft percent-
age augmentation.

Match between Harvest and Recipient Site
Although the literature suggests that AT is 

of mesoderm origin, one study demonstrates 
that adipocytes around the salivary gland come 
from neural crest of neuroectoderm.162 It has 
recently been reported that the individual fat 
depots exhibit distinct embryonic origins and 
express different HOX codes.163–165 Kouidhi et 
al. have shown the existence of an opposite gra-
dient from the upper to the lower body between 
expressions of HOXC10 and the neural crest 
marker PAX3, which highlights diverse embry-
onic origins.166,167 Those data are completed by 
another study that show a different HOX code 
between abdominal and facial preadipocytes.168 
Another study demonstrates different mouse AT 
embryonic origins according to the fat depot.169 
Kouidhi et al. have highlighted the match 
between embryonic origin from AT donor and 
receptor sites as a critical parameter for clinical 
outcomes,166,167 as a mismatch of embryonic ori-
gins between harvested and recipient AT could 
lead to an impairment of grafted ASCs for tis-
sue regeneration.170 Furthermore, some authors 
show that facial preadipocytes have a better 
adipogenic potential compared to abdominal 
ones.171 However, Kouidhi et al. have shown that 
ASCs extracted from either chin or knee have 
the same triglyceride concentration and lipo-
lytic activity but that chin ASCs have the poten-
tial to differentiate into brown-like adipocytes, 
whereas knee ASCs can only differentiate into 
white adipocytes.166

Considered together, those data highlight the 
difference in regenerative potential according to 
the harvest site. In contrast, studies on donor-site 
influence on graft survival remain conflicting.172 
However, those studies have investigated differ-
ences between knee, thigh, abdomen, or breast, 
but did not take into account facial AT.

Other Factors
Some authors mentioned that donor age 

could decrease fat graft survival in mice, accord-
ing to the recipient site.173,174 Interestingly, 
another study concludes that according to fat 
process, age has a negative or no effect on vol-
ume retention.136 Donor sex could matter in fat 
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graft survival, as fat graft volume retention was 
higher and reaches a stable state earlier in men 
than in women.175 Otherwise, even if low estro-
gen level induced favorable inflammation status 
and adipocyte hypertrophy (which improve fat 
graft retention), a continuing decreased estro-
gen level led to fat graft fibrosis.176 Inflammatory 
status, including macrophage and cytokine 
release, could also play a key role in graft per-
centage augmentation, even if this phenomenon 
is yet to be described.177 Phipps and colleagues 
have demonstrated that fat graft supplemen-
tation with M2 macrophages improve autolo-
gous fat graft volume retention with a higher 
vascular density, suggesting that M2 macro-
phages improve fat graft survival by promoting 
angiogenesis.178 Intriguingly, the prevalence of 
M2 macrophages has been correlated with a 
higher BMI and prevalence of M1 macrophages 
has been correlated with a lower BMI.179 The 
authors suggest that inflammatory response of 
lower BMI patients could inhibit angiogenesis 
and decrease blood flow of the graft, leading to 
a lower graft survival.

Fat graft survival is multiparametric and could 
rely on ASC number and potential, vasculariza-
tion potential, age, BMI, sex, or embryonic origin. 
Several studies mentioned also that all processes 
of fat grafting, including the harvesting site or 
cannula, processing step, or surgeon gesture for 
injection, could influence graft survival.143,172,180

CONCLUSIONS
Mesenchymal cells from hypodermis, ASCs, 

are key players in regeneration of surrounding 
tissues such as dermis or AT itself. Their regener-
ative potential is expressed through their multipo-
tency or paracrine effects.3,4 ASCs have numerous 
beneficial effects on ECM remodeling, immunity, 
and vascularization, summarized in Figure  2. As 
lipofilling is used for soft-tissue reconstruction, 
the oncologic safety of fat grafting is a hot topic. 
One study shows an increase of breast cancer cells 
when co-cultured with ASCs.181 However, another 
study analyzed the effect of ASCs and lipoaspirate 
on proliferation of human breast cancer cell lines 
and revealed there is no proliferation increase 

Fig. 2. Synthetic scheme of ASC mode of action on macrophage polarization, vascularization promotion, and ECM remodeling. 
Because of cell-to-cell contact and paracrine function, they are able to modulate macrophage switch, vascularization, and ECM 
remodeling. Co-culture of ASCs with macrophages increases alternative M2 macrophage marker expression and decreases proin-
flammatory M1 macrophage markers. ASC extracellular vesicles could also mediate this macrophage switch. Those macrophages 
are involved in vascularization through paracrine factors secreted. ASCs could differentiate into endothelial cells (EC) and bear 
pericyte hallmarks. They promote vascular network when co-cultured with endothelial cells and increase endothelial cell growth, 
proliferation, and migration; and decrease endothelial cell apoptosis by means of direct contact through soluble factors and 
extracellular vesicles. ASCs promote fibroblast and keratinocyte proliferation and migration, enhance ECM protein secretion, and 
induce a better collagen organization. They can also modulate MMP/tissue inhibitors of MMP (TIMP) balance and are able to inhibit 
profibrotic factors such as TGF-β1, inhibit fibroblast-to-myofibroblast differentiation, and induce myofibroblasts apoptosis. NO, 
nitric oxide; PGE2, prostaglandin E2; EPC, endothelial progenitor cells.
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of the cells.182 The authors even observed that 
lipoaspirate and ASCs inhibit the proliferation of 
breast cancer cells. Furthermore, a cohort study 
examining 300 affected breasts reconstructed with 
fat grafting (and 300 matched control patients) 
shows no significant differences in the locore-
gional recurrence rates between groups after 
5-year follow-up, suggesting that there is no evi-
dence that fat grafting is associated with increased 
rates for cancer relapse in patients with breast 
cancer.183

Aging is a phenomenon that impairs all tis-
sues and is characterized by proliferative and dif-
ferentiation capacities decrease of cell types. ASC 
regenerative potential has been demonstrated 
in many fields, including cutaneous aging.46,47 
Beneficial ASC effects on fibroblasts and adipo-
cytes and their ECM could be impaired with age. 
However, despite these promising results with 
ASCs, several questions remain. The impact of 
age on ASC yield, proliferative capacity, or multi-
potent potential still needs to be elucidated,123,126 
as does the effect of aging on ASC paracrine 

function. Indeed, there is no study to date con-
cerning aging impact on complete secretome 
quality and quantity. Some authors mentioned 
that age could act negatively on graft survival. 
However, other factors listed in Figure 3 need to 
be taken in account, such as embryonic origin or 
HOX code match between harvested and recipi-
ent site, particle size, or inflammatory state of AT. 
Vascularization speed of AT after injection is also 
a therapeutic path encountered. ASCs strongly 
interact with surrounding cells, especially with 
vascular cells such as endothelial cells or peri-
cytes, and immune cells such as macrophages. 
Cell-to-cell communication is mediated by solu-
ble factors. We still do not know how donor age 
influences ASC capacity to polarize macrophages. 
Moreover, the link between ASCs, macrophage 
polarization, and vascularization has not been 
well described yet. Further research should be 
undertaken to investigate the aging effect on fat 
depots from different anatomical sites, regarding 
regenerative potential and paracrine function. 
This work could lead to determination of factors 

Fig. 3. Factors involved in fat graft percentage augmentation.
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involved in graft percentage augmentation and 
open new therapeutic ways for fat grafting.
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