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Abstract 

Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused 
by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 
that undergoes parent-specific methylation changes at several differentially methylated re-
gions (DMRs). GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and 
several splice variants thereof. PHP type Ia (PHP1A) is caused by heterozygous inactivating 
mutations involving the maternal exons 1-13. Heterozygosity of these maternal GNAS muta-
tions cause PTH-resistant hypocalcemia and hyperphosphatemia because paternal Gsα ex-
pression is suppressed in certain organs thus leading to little or no Gsα protein in the proximal  
renal tubules and other tissues. Besides biochemical abnormalities, PHP1A patients show 
developmental abnormalities, referred to as Albright’s hereditary osteodystrophy (AHO). 
Some, but not all of these AHO features are encountered also in patients affected by PPHP, 
who carry paternal Gsα-specific mutations and typically show no laboratory abnormalities. 
Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions 
within GNAS or STX16, which are associated with loss of methylation at the A/B DMR alone or 
at all maternally methylated GNAS exons. Loss of methylation of exon A/B and the resulting 
biallelic expression of A/B transcript reduces Gsα expression thus leading to hormonal re-
sistance. Epigenetic changes at all differentially methylated GNAS regions are also observed 
in sporadic PHP1B, which is the most frequent PHP1B variant. However, this disease variant 
remains unresolved at the molecular level, except for rare cases with paternal uniparental 
isodisomy or heterodisomy of chromosome 20q (patUPD20q).

Key Words: pseudohypoparathyroidism, PTH, calcium, phosphate, cAMP, TSH, Gs-alpha, GNAS, STX16, epigenetics, 
parent-specific GNAS methylation.
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This review will focus on pseudohypoparathyroidism 
type Ia (PHP1A) and the different variants of 
pseudohypoparathyroidism type Ib (PHP1B) with some 
discussion of pseudopseudohypoparathyroidism (PPHP) 
and its variant progressive osseous heteroplasia (POH),  
namely disorders that are all caused by impaired agonist-
dependent 3′,5′-cyclic adenosine monophosphate (cAMP) 
formation (1-5). The genetic defects that cause different 
forms of acrodysostosis will not be discussed, although 
some are caused by mutations in genes such as PTHLH, 
PRKAR1A, PDE4D, PDE3A, or HDAC4, which  impair 
cAMP/protein kinase A signaling (6-11). Consequently, pa-
tients affected by acrodysostosis can have clinical, radio-
graphic and/or laboratory features reminiscent of PHP1A, 
PHP1B, or PPHP. The first genetic defects responsible 
for  PHP1A and PPHP, namely heterozygous mutations 
involving the GNAS exons encoding the alpha-subunit 
of the stimulatory G protein (Gsα), were discovered more 
than 30 years ago. Much later  the first genetic causes of 
PHP1B were identified, but most variants remain un-
defined at the molecular level. In fact, besides a rare form 
of sporadic PHP1B (sporPHP1B), only autosomal dom-
inant PHP1B (AD-PHP1B) subtypes have been defined at 
the genetic and epigenetic level. SporPHP1B is the most 
frequent form of the disorder and although GNAS methy-
lation changes are routinely assessed to establish the diag-
nosis of this PHP1B variant, the underlying genetic defects 
remain to be defined for most cases. In conjunction with 
the biochemical and epigenetic characterization of several 
genetically altered mouse strains, the molecular defects 
and GNAS methylation changes leading to the different 
PHP1B variants have enhanced the understanding of the 
underlying  disease mechanisms that most likely involve 
abnormalities during oocyte development. These insights 
from mice with distinct mutations and from patients af-
fected by PHP1B will also have implications for explaining 
the different abnormalities encountered in PHP1A and 
PPHP. This review will summarize the known genetic and 
epigenetic defects that cause the different forms of PHP 
and the insights gained into the intricate regulation at 
the GNAS locus that encodes Gsα and several additional 
transcripts.

First Description of a Novel Syndrome

The term pseudohypoparathyroidism (PHP) was first intro-
duced in 1942 by Albright et al. to describe several patients 
who presented with hypocalcemia and hyperphosphatemia 
in association with obesity, short stature, short metacar-
pals and metatarsals, as well as neurocognitive impair-
ment,  namely  clinical findings that are now referred to 
as Albright’s hereditary osteodystrophy (AHO) (12). The 

affected individuals showed no phosphaturic response to 
parathyroid extracts and the authors therefore concluded 
that the abnormal regulation of mineral ion homeostasis 
was due to renal resistance to parathyroid hormone (PTH) 
rather than PTH deficiency. These first descriptions of PHP 
patients laid the ground work for defining over the next 
several decades a more complete spectrum of the clinical 
and laboratory abnormalities associated with this rare and 
variable disorder.

First Insights: Impaired PTH-stimulated cAMP 
Generation in Pseudohypoparathyroidism

Shortly after the discovery that epinephrin and glucagon 
stimulate the generation of cAMP in liver homogenates (13), 
Aurbach and colleagues revealed that PTH increases the 
formation of this second messenger in plasma membranes 
from kidney and bone tissue (14-16). These authors had 
also shown that injection of PTH preparations into animals 
increases the urinary excretion of cAMP, and, with some 
delay, the urinary excretion of phosphate (17). They sub-
sequently determined that PTH treatment rapidly increases 
urinary cAMP excretion in healthy humans and in patients 
with postsurgical hypoparathyroidism, but not in patients 
affected by PHP (18). These studies suggested a partial or 
total lack of PTH-sensitive adenyl cyclase in the kidney of 
PHP patients and furthermore linked lack of the renal PTH-
stimulated cAMP response to the blunted phosphaturic re-
sponse noticed earlier by Albright et al. (12).

G-protein Deficiency Due to Heterozygous 
Gsα Mutations Causes PHP

In 1980, Farfel et al. (19) as well as Levine et al. (20) in-
vestigated extracts of erythrocyte membranes from patients 
who are now known to be affected by PHP1A, namely pa-
tients with characteristic AHO features, hypocalcemia, and 
impaired urinary excretion of cAMP and phosphate in re-
sponse to exogenous PTH. Both groups of investigators 
revealed an approximately 50% reduction in the activity 
of a guanine nucleotide-binding protein (G-protein), later 
shown to be Gsα that couples various G protein–coupled 
receptors (GPCRs) to adenylate cyclase and hence the for-
mation of cAMP (1, 2). Because of the combination of PTH-
resistant hypocalcemia and hyperphosphatemia, impaired 
PTH-stimulated urinary cAMP and phosphate excretion, 
AHO features, and reduced Gsα activity, this disorder is 
now referred to as PHP1A. Surprisingly, cell membranes 
from patients affected by PPHP (21) exhibited a similar re-
duction in G-protein activity as cells from patients affected 
by PHP1A, despite normal calcium and phosphate levels 
(see below).
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After the molecular cloning of cDNAs encoding human 
Gsα (22) and defining the structure of its gene (GNAS) 
(23), nucleotide sequence analyses of genomic DNA 
from several PHP1A and PPHP patients revealed the first 
disease-causing mutations involving those GNAS exons 
that encode Gsα (24, 25). These GNAS mutations are het-
erozygous thus explaining, for both groups of patients, the 
approximately 50% reduction of Gsα protein and activity, 
which was observed in readily accessible cells of the pa-
tients but is expected to occur in all tissues (1, 2). GNAS 
mutations had provided essential first insights into the 
genetic defects underlying PHP1A. However, it remained 
uncertain as to why heterozygous Gsα mutations should 
lead to disease at all, until Davies and Hughes (26) docu-
mented that GNAS mutations involving exons 1-13 lead 
to AHO in combination with PTH-resistant hypocalcemia 
if inherited from a female, while inheritance of such mu-
tations from a male leads only to AHO features, but not 
to hormonal resistance, that is PPHP. By now numerous 
Gsα mutations have been identified as causes of the dif-
ferent PHP variants (27); these are located on the maternal 
GNAS allele in patients affected by PHP1A and on the pa-
ternal GNAS allele in patients affected by PPHP (for data-
bases listing the known mutations see www.hgmd.cf.ac.uk/
ac/all.php or www.lovd.nl/GNAS).

A PHP Variant Without Apparent G-protein 
Deficiency

Besides reduced G-protein activity in PHP1A, Farfel et al. 
(19) reported normal activity levels for red blood cell mem-
branes obtained from patients affected by postsurgical 
hypoparathyroidism, who showed cAMP and phosphate 
excretion in response to PTH, and from patients affected 
by PHP type II (PHP2), who showed, in response to PTH, 
an increase in urinary cAMP, but not in urinary phosphate 
excretion (28). Importantly, the authors also reported find-
ings in a PHP variant in which patients present with hypo-
calcemia, elevated PTH levels, and impaired excretion of 
cAMP and phosphate in response to PTH, yet no AHO 
features. Samples from those patients exhibited normal 
G-protein activity, and therefore, this PHP variant has been 
referred to as PHP type Ib (PHP1B) (2).

The GNAS Complex Locus Gives Rise to 
Different Variants of Gsα and to Several 
Additional Transcripts

GNAS is a complex genetic locus that gives rise to sev-
eral different transcripts (3) (Table 1). The best known 
and most widely studied GNAS-encoded  protein is Gsα, 
which comes in 4 different variants that are derived from 

the same primary transcript initiated at exon 1. The long 
version of Gsα is encoded by exons 1-13, while the short 
version lacks the portion encoded by exon 3 and additional 
complexity is generated by the presence or absence of an 
extra CAG codon between  the nucleotide sequences de-
rived from exons E3 and E4 (22, 23). These transcripts 
were shown to be expressed at different levels in some tis-
sues and although there is little evidence for functional dif-
ferences between the 4 Gsα proteins (29, 30), a mutation in 
exon 3 that truncates the long, but not the short version of 
Gsα, causes PHP1A (31).

Besides the 4 Gsα variants, 3 additional mRNAs are 
derived from distinct first exons and their promoters that 
splice onto GNAS exons 2-13. These alternative transcripts 
are A/B, extra-large form of Gsα (XLαs), and neuroendo-
crine secretory protein 55  (NESP55). The A/B transcript 
was initially thought to be nontranslated because exons 
A/B and 2 comprise no initiator methionine. However, 
through the use of an ATG in exon 3, the A/B transcript 
was subsequently shown to give rise to an amino-terminally 
truncated Gsα that reduces activity of the full-length G pro-
tein (32). The XLαs transcript encodes an extra-large Gsα 
variant comprising a unique protein sequence derived from 
exon XL followed by the portion of Gsα that is encoded by 
exons 2-13 (33). The NESP55 transcript encodes a neuro-
endocrine secretory protein with a molecular weight of 
55  kDa; because of a termination codon within the first 
exon for  this transcript, the nucleotide sequence derived 
from GNAS exons 2-13 are part of the 3′-noncoding re-
gion (34). In addition to these alternatively spliced sense 
mRNAs, an antisense transcript (AS) is derived from a fifth 
promoter on the opposite DNA strand (35). Furthermore, 
use of an alternative transcriptional start site within the XL 
exon can lead to a distinct mRNA and a protein termed 
XXLαs. Moreover, both XLαs and XXLαs transcripts con-
tain a second open frame leading to gene products named 
ALEX or ALEXX. The ALEX protein has been shown to 
interact directly with XLαs (36).

Maternal Gsα Expression is Required for 
Normal Hormonal Responsiveness in 
Several Tissues

In 1969, as outlined above, Chase and colleagues showed 
that PPHP patients treated with PTH have a robust increase 
in urinary cAMP excretion that was indistinguishable 
from that in healthy controls and in patients affected by 
postsurgical hypoparathyroidism (18). Such patients were 
later shown to be carriers of heterozygous, loss-of-function 
Gsα mutations on the paternal GNAS allele, while patients 
affected by PHP1A carry such mutations on their maternal 
GNAS allele (Fig. 1). Heterozygosity for these mutations 
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thus explained the equivalent reduction in G-protein ac-
tivity observed for plasma membranes prepared from red 
blood cells or skin fibroblasts of patients affected by either 
PHP1A or PPHP. Importantly, these data indicated that 
Gsα expression from the maternal GNAS allele is essen-
tial for mediating PTH-induced urinary cAMP excretion, 
which is stimulated by the actions of PTH in the proximal 
renal tubules. These findings are consistent with the conclu-
sion that this portion of the kidney relies on Gsα derived 
from the maternal GNAS allele. Subsequently, it was fur-
thermore shown that Gsα is derived predominantly from 
the maternal allele in thyroid, gonads, pituitary, portions 
of the central nervous system, and brown adipose tissue. In 
these tissues, paternal Gsα expression is silenced through 
an as yet undefined mechanisms (37-43).

Silencing of paternal Gsα expression develops grad-
ually, at least in the proximal renal tubules. Illustrating this, 
a PHP1A patient with a maternal GNAS mutation was 
shown to have a normal increase in PTH-stimulated urinary 
cAMP excretion at the age of 7 months, but then a markedly 
blunted response at the age of 3.9 years (44). Similarly, a pa-
tient with PHP1B revealed normal plasma PTH concentra-
tions until the age of 2 years, when levels were shown to be 
elevated as evidence for acquired resistance to the hormone 
(45). Furthermore, studies in mice with maternal deletion of 
Gnas exon 1 revealed that paternal Gsα protein/mRNA ex-
pression in the proximal renal tubules declines over the first 
2 months of life thus resulting gradually in PTH resistance 
and increased circulating PTH levels (46). Taken together, 
these findings indicate that Gsα expression in the renal prox-
imal tubular cells is biallelic early in life, but the paternal 
contribution to total Gsα protein levels subsequently de-
clines thereby explaining the delayed development of PTH 
resistance in the absence of maternally derived Gsα.

GNAS Undergoes Parent-specific Epigenetic 
Changes at Several Differentially Methylated 
Regions 

GNAS is one of only few genetic loci that undergo parent-
specific changes in DNA methylation to limit protein ex-
pression to only one parental allele (33, 35, 47). The DMRs 
involving the promoters of exons AS, XL, and A/B are 
methylated only on the maternal GNAS allele; consequently, 
transcription from these promoters occurs only from the non-
methylated paternal allele. The NESP promoter is methy-
lated on the paternal allele and thus its mRNA is transcribed 
only maternally. In contrast, the Gsα promoter at exon 1 
does not undergo parent-specific methylation. Nonetheless, 
its transcription is not always biallelic.

Human GNAS is located on the long arm of chromo-
some 20, while mouse Gnas is located on chromosome 2 Ta
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(23, 48). In both species, the 4 DMRs undergo indistin-
guishable methylation changes and the corresponding pro-
moters give rise to the same series of sense and antisense 
transcripts (33, 35, 49). Conclusions based on findings in 
mice with genetic alterations in Gnas, and in humans af-
fected by PHP variants that are caused by different GNAS 
mutations have provided complementary insights into the 
underlying mechanisms by which Gsα expression is regu-
lated in normal health and dysregulated in disease.

Pseudohypoparathyroidism Type Ia 

PTH-resistant hypocalcemia and hyperphosphatemia are 
the most prominent features of PHP1A, but patients af-
fected by this disorder can also develop resistance towards 
several additional hormones, including thyrotropin, calci-
tonin, and growth hormone–releasing hormone (2, 50, 51) 
and possibly melanocortin (52). Besides the AHO features, 
several additional clinical abnormalities are likely to be as-
sociated with a lack of maternal Gsα, including hearing 
loss, decreased olfaction, sleep apnea, and asthma-like 
symptoms, thus implicating abnormal signaling at several 
additional GPCRs (4, 53). While several reports had pro-
vided no evidence for an obvious relationship between 
genotype and phenotype for PHP1A patients (27, 54-56), 
recent findings have indicated that PHP1A patients with 
deleterious truncating mutations show significantly more 

subcutaneous calcifications than patients with missense 
mutations. In contrast, foreshortened metacarpals/-tarsals 
were more frequently encountered with missense muta-
tions, while obesity, short stature, and neurocognitive de-
fects did not vary for patients with the different kinds of 
GNAS mutations (57).

Because of the parent-specificity of GNAS mutations 
and the involvement of different agonists acting through 
various distinct GPCRs, it is likely that a recently proposed 
new nomenclature for PHP and related diseases needs to 
be revised further because it focuses primarily on defects 
caused by impaired PTH- and PTHrP-dependent signaling, 
and does not take into account resistance towards other 
agonists  and the parental allele carrying the GNAS mu-
tation (58). However, the outlined guidelines have shown 
considerable promise by relying on few major clinical 
signs to suspect the diagnosis before proceeding with add-
itional clinical and genetic assessment (59). Furthermore, 
the previously established nomenclature has equally severe 
limitations as the new one as it implies that endocrine ab-
normalities are restricted to PTH resistance and the term 
osteodystrophy refers to multiple abnormalities that af-
fect not only the skeleton, but also neurocognition, weight 
regulation, and other developmental defects. Thus a further 
modified classification should be developed that focuses on 
impaired cAMP signaling rather than resistance to indi-
vidual hormones.

Figure 1. Organization of the GNAS locus. The GNAS complex gives rise to several imprinted sense and antisense transcripts. Gsα, the most abun-
dant product derived from this locus, is encoded by exons 1-13. This transcript is mostly biallelically expressed, except for few tissues like renal prox-
imal tubule, thyroid, pituitary, brown adipose tissue, gonads, and various nuclei in the brain where paternal Gsα expression is partially or completely 
silenced through yet undefined mechanisms. The GNAS locus gives rise to 4 other transcripts, including the antisense transcript (AS), the NESP 
transcript encoding the neuroendocrine secretory protein 55 (NESP55), as well as the transcript encoding an extra-large form of Gsα, named XLαs, 
and the A/B transcript (1A in mice) that may give rise to an amino-terminally truncated Gsα. Promoters for XL, A/B and AS transcripts are methylated 
on the maternal allele and thus transcribed exclusively from the paternal allele. The NESP promoter is paternally methylated and active exclusively 
on the maternal allele. The NESP, XLαs, and A/B transcripts are derived from unique first exons that splice onto GNAS exon 2-13. Immediately centro-
meric of the XL promoter lies the promoter for the antisense transcript AS. Mutations involving any of the thirteen GNAS exons encoding Gsα are 
associated with AHO (Albright’ hereditary osteodystrophy) with or without hormone resistance based on which parental allele is affected, namely 
pseudohypoparathyroidism 1A (PHP1A), if a mutation is present on the maternal allele (horizontal red bracket), or pseudopseudohypoparathyroidism 
(PPHP) and progressive osseus heteroplasia (POH), if a mutation is present on the paternal allele (horizontal blue bracket). Maternal and paternal 
GNAS-derived mRNAs are shown above and below the gene structure. Boxes indicate exons and splicing patterns are represented by broken/angled 
lines. Bent arrows indicate promoter start sites and direction of transcription. *Sites of differentially methylated regions (DMRs) on the maternal (XL, 
A/B, and AS) and the paternal (NESP) promoters.
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Pseudopseudohypoparathyroidism 

PPHP was also described first by Albright et al., when this 
group of investigators presented a patient with typical 
AHO features, yet without evidence for hormonal resist-
ance and thus normal levels of serum calcium and phos-
phate (21). PPHP patients are now known to have some 
AHO features, such as short metacarpals and metatar-
sals, short stature, and round face, but usually without 
neurocognitive abnormalities and without obesity (4, 60-
62), and only rare cases present  with evidence for mild 
hormonal resistance (63). Furthermore, at birth individuals 
who are later diagnosed with PPHP are typically small for 
gestational age, particularly when paternal GNAS muta-
tions affect exons 2-13, which suggests that paternal XLαs 
may have an important role during fetal development (64, 
65). This conclusion is supported by findings in mice with 
targeted ablation of the XL exon, as these animals exhibit 
poor postnatal growth and survival (66). In addition, pa-
tients with maternal uniparental disomy of chromosome 
20q (matUPD20q), who lack XLαs expression because the 
2 maternal XL DMRs are both methylated, present with 
pre- and postnatal growth failure, hyperactivity, severe 
feeding difficulties, and short stature (67-69).

In addition to intrauterine and postnatal growth re-
tardation and the subsequent development of several AHO 
features, some patients with paternal GNAS mutations de-
velop POH. This more severe variant of PPHP is frequently 
caused by mutations involving the paternal GNAS exons 
2-13, less often by exon 1 mutations. This also raises the 
question whether POH is related primarily to deficiency of 
paternal XLαs protein, rather than deficiency of paternal 
Gsα (5, 27, 70-72).

Different variants of pseudohypoparathyroidism 
type Ib 

PHP1B occurs either as an autosomal dominant disorder 
or as a sporadic disease (AD-PHP1B and sporPHP1B, re-
spectively). As in PHP1A, PTH resistance in renal proximal 
tubules and thus hypocalcemia and hyperphosphatemia 
despite elevated plasma PTH levels are the most obvious 
laboratory abnormalities in PHP1B. However, some  re-
sistance to thyrotropin is frequently noticed (4, 40, 73-
76). PHP1B patients can also present with mild AHO 
features (4, 77-80) or even show bone abnormalities that 
are indistinguishable from those encountered in PHP1A 
or PPHP (81, 82). Analyses of erythrocyte membranes 
from PHP1B patients typically reveal normal Gsα bio-
activity, which is different from the findings in PHP1A 
and PPHP; however, few PHP1B patients, particularly 
those with AHO features, show reduced Gsα activity, 
indicating that a threshold for Gsα activity could be 

required for the development of some of these clinical 
aspects (83).

Patients affected by PHP1B display  accelerated fetal 
growth resulting at birth in significantly higher weights 
and increased lengths, while patients affected by PHP1A 
are slightly smaller than average (62, 84). The increase in 
birth weight is particularly pronounced for patients with 
AD-PHP1B due to the 3-kb STX16 deletion that results in 
loss of methylation at the exon A/B DMR, if these chil-
dren are born to healthy female carriers of the genetic de-
fect. Their birth weights differ from those of PPHP/POH 
patients with mutations involving GNAS exons E2-13 (65) 
by almost 4.5 standard deviation scores. This difference in 
birth parameters suggests a significant growth advantage 
due to loss of methylation at the exon A/B DMR (84).

Autosomal dominant forms of pseudohypoparathyroidism
A family in which several members had hypocalcemia and/
or elevated PTH levels, but without obvious skeletal and 
other abnormalities, had been described by Winter and 
Hughes (85). Furthermore, in the report by Farfel et al. sev-
eral members of a single family had presented with PTH-
resistant hypocalcemia, but without AHO features and with 
normal G-protein activity in extracts from red blood cell 
membranes (19). In both kindreds, the disease followed an 
autosomal dominant mode of inheritance. Using genomic 
DNA from several subsequently identified  families with 
autosomal dominant PHP1B (AD-PHP1B), the genetic de-
fect was mapped to a region on chromosome 20q13.3 that 
is located centromeric of GNAS (86, 87). This led to the 
discovery of a recurrent 3-kb deletion in STX16, the gene 
encoding syntaxin 16, which is the most frequent cause 
of this PHP1B variant (3, 4, 88). Additional genetic muta-
tions responsible for AD-PHP1B have since been identified, 
including several other deletions as well as different dupli-
cations and an inversion; these disease-causing mutations 
are all located within a region on the long arm of chromo-
some 20 that extends from STX16 to GNAS (Fig. 2).

The 3-kb deletion as well as other STX16 deletions, if 
located on the maternal allele, are associated with loss of 
methylation at the A/B DMR, but not at the AS and XL 
DMRs (45, 89, 90). Interestingly, deletion of the equivalent 
deletion in mice does not lead to loss of methylation at Gnas 
(91), which raises the possibility that the cis-acting elem-
ents regulating methylation at A/B and at the corresponding 
mouse 1A DMR are spatially distinct in humans and mice. 
Methylation changes restricted to the A/B DMR were fur-
thermore documented for a maternal deletion extending 
from the NESP exon and its promoter to a region telomeric 
of AS exon 5 (92). This 18.9-kb deletion completely elim-
inates the NESP exon suggesting that the transcript/pro-
tein derived from this promoter is required for establishing 
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methylation at the exon A/B DMR (see below). Of note, the 
AS exons are not affected by this deletion, which is consistent 
with normal methylation at the AS and XL DMRs. Loss of 
methylation restricted to the A/B DMR can be caused also 
by different genetic duplications within GNAS (93-95). In 
addition, a large maternal inversion with the centromeric 
breakpoint located between exons XL and A/B leads to loss 
of methylation that is restricted to the A/B DMR (96).

In contrast to the STX16 deletions that cause methy-
lation changes restricted to the A/B DMR, maternal dele-
tions involving either exons AS3-4 alone, or exons NESP 
and AS3-4 (97-99) lead to loss of methylation at all 3 ma-
ternal DMRs, namely AS, XL, and A/B. Identical epigenetic 
changes are observed when a similar deletion is introduced 
into the mouse (100). Interestingly, deletion of exons AS3-4 
leads, when located on the paternal allele, to a partial loss 
of methylation at NESP and an incomplete gain of methy-
lation at exon A/B (99), thereby providing insights into the 
underlying mechanisms responsible for establishing GNAS 
methylation imprints (see below).

Sporadic PHP1B
Sporadic (spor)PHP1B patients present with laboratory ab-
normalities that are largely indistinguishable from those ob-
served in AD-PHP1B (73, 98, 101-105). These cases show 
a loss of methylation at the maternal GNAS exons AS, XL, 
and A/B, and, importantly, all sporPHP1B patients show a 
gain of methylation at the NESP DMR. In numerous spor-
adic PHP1B cases, the methylation changes within GNAS 
are incomplete, which is different from the uniform epi-
genetic changes encountered in the familial forms of the 
disease (73, 78, 98, 106, 107). Unlike autosomal dominant 
forms of PHP1B, the molecular causes of most sporPHP1B 

patients have yet to be identified, except for those patients 
who have uniparental disomy involving the long arm of 
chromosome 20 (patUPD20q) (108-112).

Hypotheses Regarding the Mechanisms 
Leading to Abnormal GNAS Methylation

The GNAS methylation abnormalities that lead to the dif-
ferent familial and sporadic PHP1B variants occur most 
likely during oogenesis. Studies in mice show that the 
genome of oogonia undergoes complete demethylation 
during early oogenesis and subsequently 3 sites, namely AS, 
Xl, and 1A, are remethylated before meiosis I (113). The epi-
genetic defects that underly the different inherited PHP1B 
variants characterized by loss of methylation at one or more 
of the maternal GNAS DMRs, namely AS, XL, and A/B, 
can thus be explained by disruption of the re-methylation 
events that occur during oocyte development.

The mouse  Nesp DMR, which is completely 
unmethylated in sperm, does not get  re-methylated until 
embryonic day 10.5 (114). It is therefore likely that methy-
lation of the paternal and the maternal NESP DMRs, as 
encountered in most sporPHP1B patients (73, 98, 101-
105), occurs postfertilization. One PHP1B family has been 
described in which 2 affected sisters show GNAS methy-
lation changes that are similar to those encountered in 
sporPHP1B, including a gain of methylation at the ma-
ternal NESP DMR. Interestingly, however, linkage to the 
STX16/GNAS region was excluded in this family (103). 
This makes it likely that the primary genetic defect  pre-
dicted for the affected members of this kindred, and pos-
sibly in at least some sporPHP1B cases, occurs outside of 
GNAS elsewhere in the genome.

Figure 2. Genetic causes of autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP1B). AD-PHP1B due to maternal deletions upstream 
of the Gsα-coding region that are associated with loss of methylation at one or more DMRs. Maternal deletions of STX16 or NESP (green or black 
brackets) lead to loss of methylation specifically at the A/B DMR. The same epigenetic GNAS changes can also be due to a large genomic inversion 
(orange) or due to different duplications (purple brackets) involving the maternal allele. Deletion of AS exons 3-4 on the paternal allele (light blue 
bracket) leads to a partial loss of methylation at the paternal NESP DMR and a partial gain of methylation at the paternal A/B DMR. Maternal dele-
tions that include AS exons 3-4 alone or in combination with exon NESP (red brackets) result in loss of methylation at all 3 maternal GNAS DMRs 
(A/B, XL, and AS). Boxes and connecting lines represent exons and introns, respectively. Arrows indicate direction of transcription. Brackets indicate 
deletions or duplications.
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The definition of several PHP1B cases that are associated 
with STX16 or GNAS deletions, as well as findings in genet-
ically modified mice provided important clues regarding the 
regulation of GNAS methylation. For example, a lack of 
paternal AS transcription caused by the introduction of a 
polyadenylation signal into AS exon 1 results in a lack of 
methylation at the paternal Nesp DMR and a concomitant 
gain of methylation at the paternal exon 1A (115, 116). 
Likewise, in one AD-PHP1B kindred, the deletion of exons 
AS3-4 on the paternal GNAS allele is associated with re-
duced methylation of the paternal NESP DMR and increased 
paternal A/B methylation. It therefore appears likely that a 
lack of full-length AS transcripts leads to active NESP tran-
scription and hence methylation of the paternal A/B DMR 
(99). Taken together, findings in genetically altered mice and 
in one AD-PHP1B family show that active AS transcription 
is essential for enabling methylation at the NESP DMR.

In addition, a truncated maternal Nesp transcript 
in mice is associated with loss of methylation at the 
maternal 1A DMR (115, 116). Likewise, deletion of 
exon NESP on the maternal allele and thus a complete 
absence of NESP transcription, is associated in the af-
fected members of an AD-PHP1B kindred with loss of 
methylation at exon A/B (92). These findings indicate 
that a maternal sense transcript derived from the NESP 
promoter is required for establishing methylation at the 
A/B DMR during oogenesis.

The importance of the GNAS locus for normal oocyte 
development is underlined by several recent findings. For ex-
ample, Gsα was shown to play an essential role during oo-
cyte maturation since Cre-mediated ablation of Gnas exon 1 
under the control of the oocyte-specific Zp3 promoter causes 
complete infertility (117). Furthermore, females affected by 
PHP1A or PPHP (118) preferentially transmit the mutant 
GNAS allele to the next generation. Similar transmission 
ratio distortion is observed for females who are carriers of 
STX16 or GNAS mutations that cause AD-PHP1B when 
located on the maternal allele (119). In addition, females 
affected by AD-PHP1B due to a maternal mutation have 
significantly fewer offspring than unaffected females, who 
carry these mutations on their paternal allele. It is, however, 
unclear whether premature resumption of meiosis due to im-
paired Gsα expression is responsible for these latter findings.

In conclusion, the GNAS locus on chromosome 20q13.3, 
which encodes Gsα and several different splice variants 
thereof, is subject to complex regulatory mechanisms that in-
clude parent-specific methylation of several exons/promoters 
and a tissue-/cell-specific reduction in paternal Gsα expres-
sion through as-yet incompletely understood mechanisms. 
Three distinct, yet related diseases are caused by mutations 
in this genetic locus. PHP1A is caused by maternal muta-
tions that directly impact the encoded Gsα protein, while 

PPHP results when the same or similar mutations are located 
on the paternal allele. The autosomal dominant forms of 
AD-PHP1B are caused by maternal deletions, duplications, 
or an  inversion involving GNAS or STX16, which lead to 
distinct methylation changes involving one or several dif-
ferent GNAS DMRs. With the exception of patients with 
patUPD20q, most sporadic PHP1B cases are unresolved.
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