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Abstract

Background and objective: Positron emission tomography (PET) with prostate-specific
membrane antigen (PSMA) in the diagnosis and primary staging of patients with pros-
tate cancer (PCa) has an established role, but recent summative evidence on its actual
diagnostic and staging value is still missing. We aimed to collect and analyze published
studies reporting the accuracy of PSMA PET for the diagnosis of clinically significant
prostate cancer (csPCa) and detection of distant metastases at primary staging before
definitive treatment.
Methods: We performed a systematic review of the literature, by searching the PubMed/
MEDLINE, Cochrane library’s CENTRAL, EMBASE, and Scopus databases, from inception
to April 2024. Two coprimary outcomes were assessed: first, to evaluate the sensitivity,
specificity, positive (PPV) and negative (NPV) predictive values of PSMA PET in detecting
intraprostatic csPCa on a per-patient level, and second, to assess the positivity rates of
metastatic disease in the primary staging, prior to definitive therapy. As a secondary out-
come, the diagnostic accuracy of PET PSMA for the detection of lymph nodal invasion
(LNI) was tested in a per-patient–level analysis of studies where pelvic lymph node dis-
section (PLND) was available as the reference standard. Positivity and detection rates
were pooled using random-effect models. Preplanned subgroup analyses tested the
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diagnostic accuracy of PET PSMA across different study cohorts. Variation in PPV and
NPV over csPCa and LNI prevalence was evaluated.
Key findings and limitations: In total, 12 and 99 studies, with a total of 1533 and 18 649
participants, respectively, were included in the quantitative synthesis for intraprostatic
diagnosis and staging. For intraprostatic disease, the sensitivity, specificity, PPV, and NPV
of PSMA PET for csPCa were 82% (95% confidence interval [CI] 73–90%), 67% (95% CI 46–
85%), 77% (95% CI 63–88%), and 73% (95% CI 56–87%), respectively. At a bivariate analy-
sis, the diagnostic accuracy of PSMA PET estimated through a summary receiver operat-
ing characteristic curve–derived area under the curve was 84%, increasing up to 88%
when combined with magnetic resonance imaging (MRI). On staging level, PSMA PET
results were positive outside the prostate in 23% of the patients, with substantial varia-
tion in positivity rates between high-risk (31%) and intermediate-risk (12%) subcohorts.
When using PLND as the reference standard (51 studies, 7713 patients), the sensitivity,
specificity, PPV, and NPV of PSMA PET were, respectively, 54%, 94%, 77%, and 86%. With
higher csPCa and LNI prevalence, a similar increase in PPV and a decrease in NPV were
observed.
Conclusions and clinical implications: The current updated systematic review and meta-
analysis provides updated evidence on the diagnostic and staging accuracy of PSMA PET
in PCa. We reported good accuracy of PSMA PET to discriminate csPCa, particularly when
added to MRI, but NPV alone is insufficient to omit a biopsy. Regarding staging, PSMA
PET cannot be used alone to determine the need for lymph node dissection (LND) and
should be combined with additional clinical information within predictive tools. As such,
further research should develop and validate models that incorporate PSMA PET to reli-
ably inform biopsy or LND.

� 2025 European Association of Urology. Published by Elsevier B.V. All rights are
reserved, including those for text and data mining, AI training, and similar technologies.
ADVANCING PRACTICE

What does this study add?
Over the past decade, prostate-specific membrane antigen (PSMA) positron emission tomography (PET) has revolution-
ized prostate cancer (PCa) staging, significantly enhancing the precision of a disease burden assessment. While guidelines
now recommend its use when available, its actual clinical value, particularly for staging and diagnosis, remains a topic of
ongoing debate. Based on this premise, our study aimed to provide comprehensive evidence supporting PSMA PET as a
diagnostic and staging tool for PCa, especially effective in identifying clinically significant PCa (csPCa) and metastatic
spread.

Clinical Relevance
This updated systematic review and meta-analysis reinforces existing evidence on the diagnostic and staging accuracy of
PSMA PET in men with suspected or confirmed prostate cancer. However, it is crucial to highlight that the collated find-
ings suggest PSMA PET alone is insufficient to rule out the need for biopsy in men with elevated PSA, to determine the
necessity of pelvic lymph node dissection in those with high-risk disease, or guide any other escalation or de-
escalation strategies across the disease spectrum. This underscores the importance of integrating clinical and other rele-
vant data for informed decision-making and implementation of personalized care pathways. Associate Editor: Gianluca
Giannarini, MD.

Patient Summary
In this systematic review and meta-analysis, we demonstrated that PSMA PET can assist in the detection of csPCa and
optimize primary staging, guiding the management of PCa patients who are candidates for definitive treatment.
1. Introduction

During the past decade, positron emission tomography
(PET) with prostate-specific membrane antigen (PSMA)
has played a pivotal role in the context of diagnosis and
mail.com) en National Library o
 se permiten otros usos sin autori
staging of prostate cancer (PCa). This was possible thanks
to the specificity of PSMA for PCa: as extensively reported
in literature, PSMA is a transmembrane protein that is sig-
nificantly overexpressed in PCa cells compared with normal
prostate tissue, making it an ideal molecular target for
f Health and Social Security de ClinicalKey.es por Elsevier en junio 19, 
zación. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.
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imaging [1,2]. PSMA PET imaging involves the use of radio-
labeled ligands, such as 68Ga-PSMA-11 or 18F-DCFPyL, that
bind to PSMA allowing for accurate detection of PCa cells
[3]. By harnessing the specificity of PSMA expression in
PCa, PSMA PET offers superior accuracy in identifying both
primary and metastatic lesions to conventional imaging
methods such as computed tomography (CT), magnetic res-
onance imaging (MRI), and bone scans [4,5].

For the diagnosis of intraprostatic PCa, the added value
of PSMA PET is still debated given its relatively new intro-
duction in this early disease stage. Prospective data showed
high sensitivity for the detection of suspicious lesions that
may otherwise be missed by traditional imaging techniques
[6]. Furthermore, PSMA PET can reliably identify the
intraprostatic location and extent of cancer, thus enhancing
guidance for biopsies and overall diagnostic accuracy. Given
these characteristics, it could potentially be implemented as
a viable alternative option to MRI or to improve overall
accuracy when combined with MRI [6,7], but strong sum-
mative evidence is still missing.

In the context of metastatic primary staging, PSMA PET
significantly improves the detection of both local and dis-
tant disease: unlike conventional imaging, which may not
detect micrometastases accurately, PSMA PET has a high
potential in identifying small lymph node involvement
and bone metastases, thus providing a more comprehensive
assessment of cancer spread [4,8]. This is crucial in the
determination of the appropriate therapeutic strategy, par-
ticularly in the context of patients who are candidates for
definitive treatment [9]. Given the increasing amount of
evidence supporting the role of PSMA PET, it is now incor-
porated into clinical practice guidelines for PCa staging [10].

Despite previous meta-analyses having already provided
a comprehensive overview of the role of PSMA in various
disease stages [11–14], recent novel evidence has further
enriched the clinical scenario in this field over the past
few years. However, an updated summative review
addressing the value of PSMA PET in diagnosis and staging
is still missing. In this review, we will discuss the current
applications of PSMA PET in the diagnosis and primary stag-
ing of PCa, highlighting the benefits and added value of this
imaging modality. Furthermore, we aimed at exploring the
variation of PSMA PET accuracy according to different risk
groups and disease prevalence.
2. Methods

2.1. Study identification and evaluation

A systematic review of the literature was conducted using
the Web of Science/MEDLINE, Cochrane library’s CENTRAL,
and EMBASE databases (Supplementary material). We
searched the databases from inception to April 25, 2024.
All the references of key reviews on PET PSMA were also
screened. The research terms used for the research were
as follows: ‘‘(prostate cancer OR prostate neoplasms OR
prostate malignancy) AND (positron emission tomography
OR PET) AND (prostate specific membrane antigen OR
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library
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PSMA)’’. This systematic review was reported in accordance
with the Preferred Reporting Items for Systematic Reviews
and Meta-analyses Protocols (PRISMA-P) guidelines [15],
and it was registered with the International Prospective
Registry of Systematic Reviews (PROSPERO registration
number CRD42024557079).

2.2. Initial screening, eligibility/inclusion criteria, and risk of
bias assessment

After the identification of all eligible studies, four indepen-
dent reviewers in pairs (D.C., L.Q., D.C.C., and A.T.) screened
all the titles and abstracts (or full text, for further clarifica-
tion) for inclusion in the study. The extracted data were col-
lected in Excel (Microsoft Corporation, Redmond, CA, USA).
Reports were considered relevant if these provided extrac-
table data on the PET PSMA scan in the diagnostic or staging
process before primary treatment settings. Case reports,
editorials, letters, review articles, and meeting abstracts
were excluded at the initial screening (Fig. 1). Only original
studies that responded to the study question were included
for a full-text evaluation and potential inclusion in the final
quantitative synthesis.

Regarding the assessment of intraprostatic diagnostic
performance of PSMA PET, we included studies evaluating
the utility of PSMA PET in the detection of csPCa in patients
with a suspicion of PCa (prior to a biopsy). For this purpose,
the mandatory inclusion criteria were as follows: (1) avail-
able overall number of patients receiving a preoperative
PSMA PET scan (with any tracer), (2) available detection
rates of PSMA PET guided biopsies, and (3) available sys-
tematic biopsy or prostatectomy pathological report as the
reference standard.

Regarding the metastatic staging performance of PSMA
PET, we included studies evaluating the utility of PSMA
PET in the detection of local or metastatic disease in
intermediate- or high-risk and advanced PCa for primary
staging (prior to definitive therapy). For this purpose, the
mandatory inclusion criteria were the following: (1) avail-
able overall number of patients receiving a preoperative
PSMA PET scan and (2) available detection rates for PSMA
PET scans. Additionally, at least one of the following two cri-
teria should have been fulfilled: (1) series including distri-
bution of positivity sites at PSMA PET and (2) series
assessing diagnostic accuracy of PSMA using histopathology
as reference (available overall number of patients receiving
pelvic lymph node dissection [PLND] at the time of radical
prostatectomy). A detailed report of the inclusion and
exclusion criteria is summarized in the Supplementary
material. Disagreements regarding eligibility were resolved
by discussion with an experienced investigator (E.M.) until
consensus was reached.

The methodological quality of the included studies was
graded using the modified Quality Assessment of Diagnostic
Accuracy Studies-2 (QUADAS-2) checklist [16]. Four investi-
gators (D.C., L.Q., D.C.C., and A.T.) in pairs independently
assessed the risk of bias for all studies. In case of disagree-
ments, a discussion with an additional experienced investi-
gator (E.M.) was carried out.
 of Health and Social Security de ClinicalKey.es por Elsevier en junio 19, 
rización. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.
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Fig. 1 – Flowchart of the screening process based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses criteria. AS = active surveillance;
PSMA = prostate-specific membrane antigen.
2.3. Outcome definition

Regarding the intraprostatic diagnostic performance of
PSMA PET in the prebiopsy setting, the primary outcome
of the analysis was to evaluate the diagnostic accuracy of
PSMA PET as guidance for a targeted biopsy for the detec-
tion of csPCa on a per-patient level. Specifically, we evalu-
ated the sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and diagnostic odds
ratio (DOR) of PSMA PET scans in patients undergoing a
PSMA PET targeted biopsy with a concomitant systematic
biopsy as the reference standard. If the data for both the
PSMA PET targeted biopsy and the PSMA PET combined
with the MRI targeted biopsy were available, these were
extracted separately, along with the definition of PSMA
PET/MRI positivity. Thereafter, PSMA PET/MRI included
either the use of an integrated PET/MRI scanner or post
hoc fusion of MRI and PSMA PET images.

Regarding the performance of PSMA PET as a metastatic
staging tool before primary radical treatment, the primary
outcome of the analysis was to assess the overall and risk-
stratified rates of positivity of PSMA PET outside of the pros-
tate in the context of primary staging of patients who were
candidates for definitive treatment. When histological data
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library o
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from lymph node dissection (LND) were available, the sen-
sitivity, specificity, PPV, NPV, and DOR of PSMA PET scans
for the detection of lymph nodal invasion (LNI) were also
assessed. Additional secondary outcomes and calculation
of specific outcomes are summarized in the Supplementary
material.

2.4. Data synthesis and statistical analyses

The evaluation of false and true positive and negative cases
needed for the calculation of diagnostic and staging accu-
racy was derived through the results of biopsy and LND as
compared with preoperative PSMA PET scan results, as
described above. The statistical methodology for meta-
analysis was described previously and is summarized in
the Supplementary material [13].

Preplanned subgroups analyses were performed in stud-
ies reporting staging accuracy stratified according to differ-
ent baseline risk groups if available (according to the
specific definition used in each manuscript). Here, the over-
all study cohorts were stratified as those with mixed risk,
high risk, intermediate risk, and not specified risk. Where
possible, subgroup analyses were also performed after
extracting subgroups of risk within each single study rely-
f Health and Social Security de ClinicalKey.es por Elsevier en junio 19, 
zación. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.
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ing on mixed cohorts of men with PCa. Additional subgroup
analyses were performed after stratification according to a
PSMA PET ligand (68Ga-PSMA vs 18F-PSMA). Univariable
metaregression analyses using random-effect models were
used to statistically test the differences in diagnostic accu-
racy between subgroups, and statistical significance was
evaluated with the analysis of variance test.

In case of the presence of a consistent risk of bias, sensi-
tivity analyses were performed after excluding studies with
a high risk of bias [17]. Similarly, where the presence of
heterogeneity was identified at metaregression or by the
assessment of s2, further sensitivity analyses were per-
formed after excluding the study cohorts that contributed
significantly to heterogeneity and by adding meta-
analyses with fixed-effect models to ensure the robustness
of our findings. Additional sensitivity analyses were per-
formed in studies that explicitly reported the use of the
Prostate Cancer Molecular Imaging Standardized Evaluation
(PROMISE) criteria for a PSMA PET assessment [18]. Fagan
plots were used to assess the impact of PSMA PET on
post-test probability by estimating how much the result
of the diagnostic test changes the probability that a patient
has csPCa or LNI [19]. Lastly, we tested the variation of PPV
and NPV over LNI prevalence in those studies where the LNI
prevalence could be estimated. Such variation was then rep-
resented graphically using a locally weighted scatterplot
smoothing (LOWESS) plot [20], and the Pearson correlation
coefficient was estimated.

Statistical significance for all analyses was defined as
two-sided p < 0.05. A statistical analysis was performed
with the R software (version 4.2.3; http://www.r-project.
org/).
3. Results

3.1. Study selection flowchart

Fig. 1 shows the flow of studies through the screening pro-
cess. Overall, 3878 papers were screened blindly by four
reviewers working in pairs (D.C., L.Q., A.T., and D.C.C.), with
277 of these records being included for further evaluation
based on the predefined eligibility criteria. At this point,
final evaluation for the inclusion in the quantitative synthe-
sis was carried out by two reviewers (E.M. and M.P.). At the
end of the process, 12 and 99 studies were included for the
meta-analysis on the diagnostic and staging performance,
respectively (Supplementary Fig. 2 and 7).
3.2. Study quality and risk of bias

Supplementary Fig. 1 summarizes the quality criteria
assessed for each study using the QUADAS 2.0 tool. Overall,
16 (53%), 23 (76%), 17 (57%), and 19 (63%) studies had a low
risk of bias for the patient selection, index test, comparator
test, and flow and timing domains for diagnosis, respec-
tively. On the contrary, 62 (63%), 78 (79%), 53 (54%), and
63 (64%) studies had a low risk of bias for the patient selec-
tion, index test, comparator test, and flow and timing
domains for staging, respectively.
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library
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3.3. Evidence synthesis—intraprostatic diagnosis

3.3.1. Population characteristics
Table 1 summarizes the general and design characteristics
of the selected studies. The primary analysis included 12
papers for qualitative review and quantitative synthesis
[6,7,21–30]. At baseline, the final screened manuscripts
reported detection rates in biopsy-naïve patients (seven
studies), patients with a prior negative biopsy (two studies),
and mixed patient cohorts (three studies). Where possible,
data on different patient subcohorts (ie, biopsy naïve or
prior biopsy) were extracted from mixed cohorts. Overall,
according to the primary outcome (ie, detection of csPCa),
1533 patients underwent a targeted biopsy for positive
PSMA PET and were included in the pooled meta-analysis.

3.3.2. Overall diagnostic accuracy of PSMA PET for
intraprostatic csPCa
In a univariate pooled meta-analysis adjusted for random
effects, the pooled sensitivity of PSMA PET for the detection
of csPCa was 82% (95% confidence interval [CI] 76–90%) and
pooled specificity was 67% (95% CI 46–85%; Fig. 2 and Sup-
plementary Fig. 2). At a bivariate analysis, which simultane-
ously takes into account both sensitivity and specificity, the
diagnostic accuracy of PSMA PET estimated through a sum-
mary receiver operating characteristic curve (SROC)-
derived area under the curve (AUC) was 84% (bivariate sen-
sitivity 81% and specificity 70%; Supplementary Fig. 3).

In analyses testing for DOR, a meta-analysis using
random-effect models demonstrated a pooled odds ratio
(OR) of 12 (95% CI 2–51; Supplementary Fig. 4). In analyses
testing for the predictive value, pooled meta-analyses using
random-effect models demonstrated a PPV of 77% (95% CI
63–88%) and an NPV of 73% (95% CI 56–87%; Fig. 2 and Sup-
plementary Fig. 2).

3.3.3. Diagnostic accuracy of PSMA PET combined with MRI for
intraprostatic csPCa
Four studies including 466 patients explored the diagnostic
accuracy of PSMA PET in combination with MRI (Supple-
mentary Fig. 5). Here, in the pooled meta-analysis adjusted
for random effects, the sensitivity of the combination of
PSMA PET and MRI for the detection of csPCa was 91%
(95% CI 80–98%) and pooled specificity was 68% (95% CI
43–89%). At the bivariate analysis, the diagnostic accuracy
of PSMA PET estimated through an SROC-derived AUC was
88% (bivariate sensitivity 90% and specificity 69%; Supple-
mentary Fig. 3).

In analyses testing for DOR, a meta-analysis using
random-effect models demonstrated a pooled OR of 22
(95% CI 11–42; Supplementary Fig. 4). In analyses testing
for the predictive value, pooled meta-analyses using
random-effect models demonstrated a PPV of 78% (95% CI
62–91%) and an NPV of 86% (95% CI 70–96%; Supplementary
Fig. 5).

3.3.4. Subgroup analyses according to previous biopsy status
In subgroup analyses testing the impact of previous biopsy
status on diagnostic accuracy, data for quantitative compar-
ison were extracted from seven studies for biopsy-naïve
patients (1172 patients) and from two studies for patients
 of Health and Social Security de ClinicalKey.es por Elsevier en junio 19, 
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Fig. 2 – Summary of pooled meta-analyses testing the sensitivity, specificity, and positive and negative predictive values of PSMA PET and the combination of
PSMA PET + MRI for the detection of clinically significant prostate cancer. MRI = magnetic resonance imaging; NPV = negative predictive value; PET = positron
emission tomography; PPV = positive predictive value; PSMA = prostate-specific membrane antigen.
with at least one prior negative biopsy (128 patients). In
pooled meta-analyses with random-effect models, sensitiv-
ity, specificity, PPV, and NPV were, respectively, 84%, 83%,
85%, and 82% in the biopsy-naïve cohorts, and 77%, 22%,
43%, and 50% in the previous negative biopsy cohort (Sup-
plementary Fig. 6). No statistically significant differences
were recorded in terms of sensitivity, specificity, PPV, or
NPV at univariable metaregression.

3.3.5. Investigating and addressing heterogeneity
In subgroups analyses, s2 showed the presence of substan-
tial heterogeneity in the previous negative biopsy cohort
(s2 0.46, 0.47, and 1.22 for sensitivity, specificity, and NPV,
respectively; Supplementary Fig. 2). Therefore, sensitivity
analyses were performed including only the biopsy-naïve
cohort (seven studies): here, meta-analyses with fixed-
effect models showed sensitivity, specificity, PPV, and NPV
of 88%, 78%, 84%, and 83%, respectively, consistent with
the results of the analyses using random-effect models
(Supplementary Fig. 7). Residual heterogeneity was identi-
fied (s2 varying from <0.01 to 0.05) but could not be
addressed further due to limitation in data granularity.

3.3.6. Variation in PPV and NPV over PCa prevalence and post-
test probability of csPCa
All the included studies reported sufficient data to estimate
overall PCa prevalence, with a median prevalence of any
PCa of 55% (interquartile range [IQR]: 46–67%). The PPV
for csPCa significantly increased from 34% to 80% as the
PCa prevalence increased from 25% to 70% (r = 0.69,
p < 0.01). On the contrary, NPV decreased significantly from
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library
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98% to 87% as the PCa prevalence increased from 25% to 70%
(r = –0.26, p < 0.01; Supplementary Fig. 8). The post-test
effect in terms of csPCa likelihood is reported in Fig. 3 using
Fagan plots. Notably, positive PSMA PET increased the post-
test probability of having csPCa from 40% to 65% (positive
likelihood ratio [PLR] of PSMA PET = 2.5; PLR of PSMA PET
+ MRI = 2.8). By contrast, in studies exploring the concomi-
tant effect of PSMA PET and MRI, negative PSMA PET/MRI
could substantially reduce the probability of having csPCa
(from a mean probability of 64% to a post-test probability
of 19%; negative likelihood ratio [NLR] of PSMA PET =
0.26; NLR of PSMA PET + MRI = 0.13).

3.4. Evidence synthesis—primary staging

3.4.1. Patient characteristics
Supplementary Table 1 summarizes the general and design
characteristics of the selected studies. The primary analysis
included 99 papers for qualitative review and quantitative
synthesis [4,22,31–129]. At baseline, the final screened
manuscripts reported detection rates in high-risk patients
(18 studies), intermediate-risk patients (five study), and
mixed patient cohorts (72 studies). Only four studies did
not specify preoperative risk categories. Where possible,
data on different patient subcohorts (ie, those with a high
or an intermediate risk) were extracted frommixed cohorts.
The majority of the included studies (n = 83) were based on
patient cohorts receiving PSMA PET using 68-gallium as a
radionuclide ligand for PSMA. Overall, in the final cohort
of the included studies, 17 116 patients received preopera-
tive PSMA PET. Among these men, 7713 included in 51 stud-
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Fig. 3 – Fagan plots assessing the impact of (A) PSMA PET and (B) PSMA PET/MRI on post-test probability of csPCa in patients undergoing targeted prostate
biopsy. The left axis shows the pretest probability, the right axis shows the post-test probability, and the central axis shows the likelihood ratios. The blue line
traces the variation from pre- to post-test probability after intercepting the positive likelihood ratio (PLR; PLR PSMA PET = 2.5; PLR PSMA PET + MRI = 2.8),
while the red line traces the variation from pre- to post-test probability of csPCa after intercepting the negative likelihood ratio (NLR; NLR PSMA PET = 0.26;
NLR PSMA PET + MRI = 0.13). The pretest probability was calculated as the mean csPCa prevalence among the included studies. csPCa = clinically significant
prostate cancer; MRI = magnetic resonance imaging; PET = positron emission tomography; PSMA = prostate-specific membrane antigen.
ies underwent subsequent radical prostatectomy with PLND
and were included in the final primary quantitative synthe-
sis assessing diagnostic accuracy for LNI using a reference
standard (ie, PLND).

3.4.2. Rates, predictors, and location of PSMA PET
extraprostatic positivity
In the final cohort of studies included in a meta-analysis,
PSMA PET showed a positive uptake outside the prostate
in 24% (95% CI 0.21–0.27) of patients undergoing primary
staging before the primary treatment for PCa (Supplemen-
tary Fig. 9). Based on the overall cohort stratification, the
pooled estimate of PSMA PET positivity outside the prostate
in five studies including patients with intermediate-risk
disease was 15% (95% CI 6–27%), which was statistically sig-
nificantly lower at metaregression when compared with the
positivity rate in high-risk patients included in 18 studies
(31%, 95% CI 22–39%, p = 0.03; Supplementary Fig. 9). Sim-
ilarly, when comparing high- and intermediate-risk sub-
groups extracted from the main patient cohorts of the
studies, the pooled estimate of positivity from 22 studies
including intermediate-risk patients was lower than that
extracted from 35 studies including high-risk patents only
(12% vs 35%, p < 0.01; Supplementary Fig. 10). Interestingly,
two studies including a low-risk cohort showed no PSMA
PET uptake outside the prostate, while a single study
including a cohort of very-high-risk patients demonstrated
a positivity rate of 74%. In a sensitivity analysis including
only studies with a low risk of bias (n = 59), positivity rates
of PSMA PET uptake outside the prostate were consistent
with those of the primary analysis (24%, 95% CI 20–28%;
Supplementary Fig. 11).
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Ninety-two studies involving 4476 patients were avail-
able for an evaluation of PSMA PET positivity in regional
lymph nodes and 67 studies for various distant anatomical
sites. The pooled estimate of positivity in the pelvic lymph
nodal region was 21% under the random-effect assumption,
with proportions being very low in sites outside the pelvis
(Supplementary Fig. 12). Specifically, the estimates of posi-
tivity were 4% in extrapelvic lymph nodes, 7% in bone, and
1% in distant viscera. Pooled estimates were observed to
be generally different among risk subgroups: the proportion
of PSMA PET positivity observed in pelvic lymph nodes in
high-risk patients was significantly higher than that in their
intermediate-risk counterparts (25% vs 10%, p < 0.001).
Notably, PSMA PET positivity outside the pelvic area in
intermediate-risk patients was negligible (all <1%), while
the positivity rate in high-risk patients was 5% in both
extrapelvic lymph nodes and bone (Fig. 4 and Supplemen-
tary Fig. 13). In sensitivity analyses relying on studies using
the PROMISE criteria (eight studies), PSMA PET showed a
positive uptake outside the prostate in 32% (95% CI 0.22–
0.42) of patients receiving primary staging before the pri-
mary treatment for PCa (Supplementary Fig. 14). When
exploring the anatomical site of positivity, rates were gen-
erally higher among all sites when compared with the
results from the main meta-analysis (regional nodes 31%,
distant nodes 9%, and bone 12%; Supplementary Fig. 14).

3.4.3. Diagnostic accuracy of PSMA PET scans for local staging
(extracapsular extension and seminal vesicle invasion)
In the univariate pooled meta-analysis using random-effect
models (five studies), the pooled sensitivity of PSMA PET for
the detection of extracapsular extension was 71% (95% CI
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Fig. 4 – Subgroup analyses of the rate of positive uptake of PSMA PET in (A) intermediate-risk and (B) high-risk patients stratified according to anatomical
location. PET = positron emission tomography; PSMA = prostate-specific membrane antigen.
46–61%) and the pooled specificity was 84% (95% CI 67–
95%), while the PPV and NPV were 80% (95% CI 70–88%)
and 79% (95% CI 64–91%), respectively (Supplementary
Fig. 15). Regarding the detection of seminal vesicle invasion
(SVI) by PSMA PET (six studies), the pooled sensitivity was
71% (95% CI 46–61%) and the pooled specificity was 93%
(95% CI 88–96%). Similarly, the PPV and NPV were 73%
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(95% CI 62–83%) and 91% (95% CI 84–96%), respectively
(Supplementary Fig. 15).

3.4.4. Diagnostic accuracy of PSMA PET scans for LNI
In the univariate pooled meta-analysis using random-effect
models, the pooled sensitivity of PSMA PET for the detection
of LNI was 54% (95% CI 48–60%) and the pooled specificity
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rización. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.



E U R O P E A N U R O L O G Y 8 7 ( 2 0 2 5 ) 6 5 4 – 6 7 1 663
was 94% (95% CI 93–96%; Supplementary Fig. 16). At the
bivariate analysis, the diagnostic accuracy of PSMA PET esti-
mated through an SROC-derived AUC was 87% (95% CI 81–
87%; bivariate sensitivity 52% and specificity 93%; Supple-
mentary Fig. 17). In order to address the risk of biases, we
performed a subsequent sensitivity analysis that included
only studies with a low risk for bias, showing results consis-
tent with those of the primary analysis (n = 36; sensitivity
52% [95% CI 45–59%] and specificity 95% [95% CI 93–96%];
Supplementary Fig. 16).

In analyses testing for DOR, a meta-analysis using
random-effect models demonstrated a pooled OR of 16
(95% CI 12–20). In analyses testing for the predictive value,
pooled meta-analyses using random-effect models demon-
strated a PPV of 77% (95% CI 72–82%) and an NPV of 86%
(95% CI 84–88%; Supplementary Fig. 16). In a sensitivity
analysis including only studies with a low risk of bias
(n = 36), the PPV (78%, 95% CI 71–84%), NPV (86%, 95% CI
84–89%), and DOR (OR 14.7, 95% CI 10.4–20.9) were consis-
tent with those of the primary analysis (Supplementary
Fig. 18). Similarly, in sensitivity analyses testing the diag-
nostic accuracy for LNI among studies using the PROMISE
criteria (four studies), sensitivity (49%, 95% CI 25–73%),
specificity (93%, 95% CI 87–97%), PPV (70%, 95% CI 57–
82%), and NPV (82%, 95% CI 78–85%) were all substantially
in line with the results of the main analysis (Supplementary
Fig. 19).

3.4.5. Subgroup analyses according to overall risk group
cohorts
In subgroup analyses testing the impact of different risk
groups in the overall study cohorts, data for quantitative
comparison were extracted from nine studies for high-risk
patients (1387 patients), four studies for intermediate-risk
patients (199 patients), 37 studies for mixed cohorts
(6037 patients), and one study for unspecified risk cohorts
(90 patients). In pooled meta-analyses with random-
effects model, the sensitivity, specificity, PPV, and NPV for
LNI were, respectively, 57%, 96%, 86%, and 86% in the
high-risk cohorts; 57%, 94%, 61%, and 93% in the
intermediate-risk cohorts; 57%, 94%, 75%, and 85% in the
mixed risk cohorts; and 57%, 94%, 85%, and 80% in the
unspecified risk cohorts (Supplementary Fig. 20). Univari-
able metaregression demonstrated absence of statistically
significant differences (p = 0.8) in sensitivity and specificity
between the overall risk cohorts, while differences in PPV
and NPV were statistically significant (p < 0.01).

3.4.6. Subgroup analyses according to subgroups extracted
from the main patient cohorts
For subgroups analyses comparing high- and intermediate-
risk subgroups extracted from the main patient cohorts of
the studies, data for a quantitative comparison were
extracted from 14 studies exploring high-risk cohorts
(1116 patients) and from seven studies testing the accuracy
of PSMA in intermediate-risk cohorts (332 patients; Fig. 5
and Supplementary Fig. 21). In pooled meta-analyses with
random-effect models, the sensitivity, specificity, PPV, and
NPV for LNI were, respectively, 52%, 95%, 83%, and 82% in
the high-risk cohorts, and 52%, 95%, 57%, and 91% in the
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intermediate-risk cohorts. Univariable metaregression con-
firmed the absence of statistically significant differences
(p = 0.9) in sensitivity and specificity between the high-
and intermediate-risk cohorts, while significant differences
were recorded in PPV and NPV (p < 0.01).

3.4.7. Subgroups analyses according to PSMA PET ligand
In subgroup analyses testing the impact of PSMA PET ligand
type, data for a quantitative comparison were extracted
from 74 (10149 patients) and 20 (6240 patients) studies
using 68Ga- and 18F-PSMA PET, respectively. The overall
positivity rate was comparable among the two cohorts, with
no relevant differences even after stratification according to
anatomical sites (Supplementary Fig. 22 and 23). In pooled
meta-analyses with random-effect models testing for accu-
racy in detecting LNI (49 studies), the sensitivity, specificity,
PPV, and NPV for LNI were, respectively, 57%, 95%, 80%, and
87% in the 68Ga-PSMA PET cohort, and 42%, 94%, 85%, and
80% in the 18F-PSMA PET cohort (Supplementary Fig. 24).
Univariable metaregression demonstrated a statistically
significant difference (p = 0.03) in sensitivity in favor of
68Ga-PSMA (57% vs 42%), while no significant differences
were recorded for specificity, PPV, and NPV (all p > 0.05).

3.4.8. Investigating and addressing heterogeneity
Univariable metaregression showed significant difference in
sensitivity based on the ligand used (sensitivity in favor of
68Ga-PSMA: 57% vs 42%, p = 0.03; Supplementary Fig. 24);
therefore, sensitivity analyses were performed including
only studies using 68Ga-PSMA (39 studies): here, meta-
analyses with fixed-effect models showed sensitivity, speci-
ficity, PPV, and NPV of 54%, 95%, 78%, and 87%, respectively,
consistent with the results of the analyses using random-
effect model (Supplementary Fig. 25). Residual heterogene-
ity was identified (s2 varying from <0.01 to 0.03) but could
not be addressed further due to limitation in data
granularity.

3.4.9. Variation of PPV and NPV over LNI prevalence and post-
test probability of LNI
The overall median prevalence of LNI across the included
studies was 20% (IQR: 11–34%, range: 2–82%), while it
was 12% in studies relying on intermediate-risk cohorts
and 24% in studies of high-risk cohorts. The PPV increased
significantly from 56% to 88% as the LNI prevalence
increased from 5% to 40% (r = 0.69, p = 0.02). On the con-
trary, NPV decreased significantly from 95% to 79% as the
prevalence of LNI increased from 5% to 40% (r = –0.43,
p = 0.03; Supplementary Fig. 26). The post-test effect in
terms of LNI likelihood was reported in Fig. 6 using Fagan
plots. Notably, in high-risk patients, positive PSMA PET
increased the post-test probability of having LNI signifi-
cantly from 24% to 77% (PLR of PSMA PET = 9.5). By contrast,
in intermediate-risk patients, negative PSMA PET halves the
risk of LNI (NLR of PSMA PET = 0.45).

4. Discussion

This systematic review was aimed at updating and corrob-
orating evidence from previous works, providing initial evi-
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Fig. 5 – Summary of pooled meta-analyses testing the sensitivity, specificity, and positive and negative predictive values of PET PSMA for the detection of LNI
stratified according to risk groups. LNI = lymph nodal invasion; NPV = negative predictive value; PET = positron emission tomography; PPV = positive
predictive value; PSMA = prostate-specific membrane antigen.

Fig. 6 – Fagan plots assessing the impact of PSMA PET on the post-test probability of LNI in patients with (A) intermediate-risk and (B) high-risk prostate
cancer undergoing radical prostatectomy with pelvic lymph node dissection. The left axis shows the pretest probability, the right axis shows the post-test
probability, and the central axis shows the likelihood ratios. The blue line traces the variation from pre- to post-test probability of LNI after intercepting the
positive likelihood ratio of 9.5, while the red line traces the variation from pre- to post-test probability of LNI after intercepting the negative likelihood ratio
of 0.45. The pretest probability was calculated as the mean LNI prevalence among the included studies stratified according to risk group. LNI = lymph nodal
invasion; PET = positron emission tomography; PSMA = prostate-specific membrane antigen.
dence about the role of PSMA PET in diagnosis and staging
of PCa [11,13,14]. In the current review, given the increasing
interest and utilization of PSMA PET in multiple disease
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stages and particularly in earlier stages, the initial data col-
lection included a significant number of records (3878) of
patients undergoing initial screening, followed by a more
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targeted evaluation that culminated in 12 studies being
included for an intraprostatic diagnostic assessment and
100 for metastatic staging analyses. The rigorous methodol-
ogy implemented, including multiple reviewers working
independently and adhering to the predefined criteria,
enhanced the reliability and robustness of the findings. As
a result of this thorough process, several results of interest
were recorded and deserve accurate discussion.

First, PSMA PET demonstrates good accuracy for diag-
nosing intraprostatic csPCa, with the meta-analysis show-
ing pooled sensitivity and specificity of 82% and 67%,
respectively. The high sensitivity (82%) indicates that PSMA
PET is particularly effective at identifying true positives,
making it a useful tool for detecting csPCa in patients in
whom traditional imaging or biopsies have failed. These
results are in line with previous systematic reviews and
meta-analyses [11], thus reinforcing the option of using
PSMA PET as a viable alternative to MRI for biopsy target-
ing. Moreover, the combination of PSMA PET and MRI
appears to enhance the diagnostic performance further,
with sensitivity improving to 91% and specificity remaining
comparable at 68%. The pooled OR of 22 suggests a notably
improved diagnostic value when both modalities are used
together. This synergistic effect may arise from the comple-
mentary strengths of PSMA PET in molecular imaging and
MRI in high-resolution anatomical imaging. As a conse-
quence, the combined use of PSMA PET and MRI could also
reduce unnecessary biopsies, thus corroborating most
recent efforts to omit a biopsy in specific prediction con-
stellations building upon PSMA PET [6,130]. The variation
in NPV and PPV based on cancer prevalence (ie, as PCa
prevalence increased, PPV increased while NPV decreased)
suggests that the utility of PSMA PET might be enhanced
or constrained depending on the population it is applied
to. This finding aligns with the results from a post-test
probability analysis, where PSMA PET results altered the
likelihood of csPCa significantly: for example, PSMA PET
can assist in the decision-making process in cases with bor-
derline indication for a biopsy, such as when elevated
prostate-specific antigen (PSA) levels are not corroborated
by consistent MRI findings (eg, Prostate Imaging Reporting
and Data System score 3), thanks to its robust NLR of
=0.26. However, a negative result alone is insufficient to
definitively rule out the need for a biopsy in patients at risk,
particularly when post-test probabilities remain above the
commonly used risk thresholds. NPV is influenced by sev-
eral factors, including the prevalence of csPCa and study
heterogeneity. Therefore, integration of PSMA PET results
with MRI findings and additional clinical parameters is
essential to establish more reliable criteria for avoiding
unnecessary biopsies.

Regarding metastatic staging, the meta-analysis high-
lights the ability of PSMA PET to detect metastatic disease
outside the prostate, with notable variation based on
patient risk stratification. Here, high-risk patients demon-
strated a PSMA PET positivity rate of 31%, compared with
just 15% in intermediate-risk patients. When looking at
the anatomical location of metastasis, the pooled estimate
of pelvic lymph node positivity in high-risk patients was
25%, while intermediate-risk patients had a much lower
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positivity rate of 10% for pelvic nodes. Similarly, the risk
of metastasis beyond the pelvic area was negligible in
intermediate-risk patients (<1%), while high-risk patients
showed a 5% positivity rate in extrapelvic nodes and bone.
This difference reinforces the idea that PSMA PET is most
valuable in high-risk cohorts, where the likelihood of
metastasis is higher and the need for accurate staging is
more important in the setting of a potential multimodal
treatment plan. In this context, future studies aimed at
developing an optimal definition of oligometastatic disease
are warranted to clarify which patients might benefit from
upfront or early salvage multimodal treatments [131–
134]. The significantly lower positivity rates in
intermediate-risk patients also raise questions about
whether PSMA PET should be used routinely for staging in
this group, or whether it should be reserved for patients
with other indications of high-risk disease.

When considering pathology as the reference standard,
PSMA PET demonstrated very high specificity, making it a
valuable integrative tool for ruling out lymph nodal metas-
tasis or presence of SVI when combined with additional
clinical information. However, the relatively lower sensitiv-
ity suggests that it may miss some positive cases, particu-
larly in the presence of micrometastatic disease [135].
However, whether these micrometastases missed at PSMA
PET might significantly impact the patient prognosis is still
unknown [136]. Of note, in subgroup analyses, the use of
68Ga-PSMA seemed to be associated with higher sensitivity
than the use of 18F-PSMA (57% vs 42%). We also confirmed
that the performance of PSMA PET is influenced by baseline
LNI prevalence, where PPV increased significantly with a
higher prevalence, while NPV decreased. This data might
still support the utility of preoperative nomograms deter-
mining the preoperative risk of LNI, which might be partic-
ularly important in patients with unfavorable intermediate-
risk features [137]. In fact, while we could not perform a
specific subanalysis for unfavorable intermediate risk,
reporting of the variation of the predictive value of PSMA
PET according to baseline risk could provide the closest
approximation to the goal of exploring different subsets of
risk profiles. In this context, our analysis represents a key
addition to the available evidence and to a key debate
where consensus is still lacking [138].

From a clinical perspective, the main implications for
clinical practice from our meta-analyses can be summarized
as follows: (1) PSMA PET is a valuable tool for the detection
of csPCa and should be considered as a viable alternative to
MRI or in combination with MRI to enhance diagnostic
accuracy; nonetheless, its NPV alone is insufficient to omit
a biopsy, requiring integration with MRI and clinical param-
eters; (2) staging PSMA PET provides important information
for treatment planning, especially in high-risk patients with
higher positivity rates; these patients may benefit from
upfront or early salvage multimodal treatment, warranting
further research into targeted therapies such as stereotactic
ablative radiotherapy; (3) when considering to perform
LND, PSMA PET provides useful information to confirm or
revise the surgical plan, but integration with additional
patient data (such as PSA, and Gleason grade or stage) is still
recommended.
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Taken together, our findings highlight the important role
of PSMA PET in diagnosis and primary staging. As largely
discussed in the literature, several additional challenges still
need to be considered when aiming for a broad implemen-
tation of PSMA PET in this disease setting; these include and
are not limited to cost effectiveness, equipment and tracer
availability, the true clinical benefit compared with the cur-
rent gold standard in the diagnostic pathway (ie, MRI), and
the potential for combining this test with novel biomarkers
[139]. For instance, recent and ongoing studies evaluating
the accuracy of PSMA PET and its impact on outcomes, such
as the PRIMARY 2 study [140] or the follow-up analyses
form the proPSMA study [141], might provide further guid-
ance regarding indications and clinical implications. How-
ever, well-designed and targeted prospective studies are
still required to address existing knowledge gaps. Last but
not least, a closer evaluation of the use of standardized
reporting systems will also be a crucial point of research
and discussion [8]. For instance, only a limited proportion
of studies included in the current review relied exclusively
on the PROMISE tumor, node, metastasis (TNM) criteria
for a PSMA PET assessment [18,142]. By providing a struc-
tured approach to defining disease stages, the PROMISE
TNM criteria minimize interobserver variability, ensure
comparability across studies, and facilitate more reliable
clinical decision-making. Therefore, we believe that a rou-
tine implementation of these criteria might further improve
the accuracy of a preoperative assessment.

Despite the clinical relevance of our findings, a few lim-
itations of our study need to be mentioned. First, the use of
different combinations of radioligands and anatomical
imaging modalities (ie, CT or MRI) might represent a resid-
ual confounder that is not accounted for in the current anal-
ysis. Second, our analysis does not provide a specific focus
on the impact of the quality chain for a PSMA PET assess-
ment (ie, imagine quality, readout quality, data processing,
and image registration), which may determine further vari-
ability in the diagnostic and staging accuracy. Third, despite
investigating and addressing heterogeneity based on the
available data, we reported residual heterogeneity between
studies likely due to differences in sampling techniques,
populations, protocols, and experience of clinicians. Fur-
thermore, different definitions of csPCa and positivity at
PSMA PET might also have contributed to residual hetero-
geneity among studies. For csPCa, thresholds such as Glea-
son grade 3 + 4 or tumor core length are applied
variably, complicating comparisons across studies. Simi-
larly, there is no consensus on the cutoffs of the maximum
standardized uptake value for PSMA PET positivity, which
may influence sensitivity and specificity significantly. Stan-
dardization of these definitions across future studies is crit-
ical to improving the generalizability and clinical
applicability of PSMA PET results. As a consequence, the
clinical value of PSMA PET should be interpreted in the con-
text of potential marginal residual heterogeneity, which
remained unexplored due to limited data granularity: for
instance, the estimated post-test probabilities may vary
based on different clinical scenarios and settings, and the
values reported in the current study represent only an aver-
age. Therefore, we reinforce the need to integrate PSMA PET
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with additional individual information to determine clinical
recommendation. This said, meta-analytic estimates of the
current study can still be considered a robust assessment
of the available evidence given the structured approach to
investigate and address heterogeneity. Lastly, a detailed
histopathological evaluation, including cellular PSMA
expression and the use of immunohistochemistry to iden-
tify micrometastatic disease, was reported rarely in the
reviewed studies. This gap may partially explain the limited
sensitivity of PSMA PET for the detection of micrometas-
tases. Future studies should incorporate comprehensive
pathological workup, correlating imaging findings with
histopathological data to refine PSMA PET diagnostic
thresholds.

5. Conclusions

The current systematic review and meta-analysis provides
updated evidence on the diagnostic and staging accuracy
of PSMA PET in PCa. We reported good accuracy of PSMA
PET, particularly when combined with MRI, to distinguish
csPCa, but NPV alone is insufficient to omit a biopsy.
Regarding staging, PSMA PET cannot be used alone to deter-
mine the need for LND; thus, a combination of PSMA PET
with additional patient information, such as PSA, stage, or
grade, is recommended. Notably, these findings primarily
apply to biopsy-naïve patients and men staged with PSMA
PET using 68Ga-based ligands, given the lower yet persis-
tent study heterogeneity compared with the overall cohort.
Taken together, further research should develop and vali-
date models that incorporate PSMA PET to reliably inform
biopsy or LND.
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