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BACKGROUND: Mortality prediction models have been developed for patients in the ICU, but
infrequently are targeted for specific conditions. Because ARDS is characterized by high
morbidity and mortality, ARDS-specific models for outcome prediction could be valuable for
informing patients and relatives, for clinical decision-making, for targeted interventions, and
for research.

RESEARCH QUESTION: What are the available prediction models for moderate to severe ARDS
and what is their capacity to predict mortality?

STUDY DESIGN AND METHODS: In this systematic review and meta-analysis, we searched for
eligible studies in PubMed MEDLINE, Embase, PsycINFO, Web of Science, Scopus,
CINAHL, Cochrane Library, and Google Scholar databases up to March 11, 2024. We
included studies that developed or validated multivariable prediction models for mortality in
moderate to severe ARDS, applied within 24 hours after ICU admission. Calibration,
discrimination, and clinical usefulness were summarized across models. The pooled area
under the receiving operating characteristic curve (AUC) was calculated with random effects
models both overall and in subgroups of models and study type (development or validation).
Heterogeneity was evaluated using the I* statistic.

RESULTS: Of the 7455 screened articles, 14 were included, evaluating 20 unique models.
Discrimination was reported for all models, whereas calibration was reported in 16 models. The
pooled AUC was 0.782 (95% CI, 0.748-0.817) with an I* of 99.5% (P < .0001). In subgroup
analysis, the pooled AUC for the Sequential Organ Failure Assessment (SOFA) score was 0.802
(95% CI, 0.719-0.885), the age, plateau, and Pao, to Fio, ratio score was 0.724 (95% CI, 0.643-
0.805), the Acute Physiology and Chronic Health Evaluation (APACHE) II score was 0.667
(95% CI, 0.613-0.721), and all other scores were 0.813 (95% CI, 0.774-0.852; P = .0001 for
subgroup differences). The pooled AUC was higher for derivation vs validation studies (0.816
[95% CI, 0.760-0.872] vs 0.767 [95% CI, 0.725-0.809]; P = .17 for subgroup differences).

INTERPRETATION: Substantial variability in discrimination exists across the included models,
with calibration frequently unreported. Although models developed specifically for this patient
population demonstrate superior performance, general disease severity models like APACHE
and SOFA are validated more extensively. Presently, no extensively validated prediction model
exists showing good discrimination and calibration for moderate to severe ARDS.
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Take-Home Points

Study Question: What are the available prediction
models for moderate to severe ARDS and what is
their capacity to predict mortality?

Results: Of the 7,455 screened articles, 14 were
included, evaluating 20 unique models. Discrimina-
tion was reported for all models, whereas calibration
was reported in 16 models. The pooled area under
the receiving operating characteristic curve (AUC)
was 0.782 (95% CI, 0.748-0.817) with an I* of
99.5% (P < .0001). In subgroup analysis, the pooled
AUC for the Sequential Organ Failure Assessment
(SOFA) score was 0.802 (95% CI, 0.719-0.885); the
AUC for the age, plateau, and Pao, to Fio, ratio score
was 0.724 (95% CI, 0.643-0.805); the AUC for the
Acute Physiology and Chronic Health Evaluation
(APACHE) II score was 0.667 (95% CI, 0.613-0.721);
and the AUC all other scores was 0.813 (95% CI,
0.774-0.852; P = .0001 for subgroup differences). The
pooled AUC was higher for derivation vs validation
studies (0.816; 95% CI, 0.760-0.872] vs 0.767
[95% CI, 0.725-0.809]; P = .17 for subgroup
differences).

Interpretation: Our findings show that substantial
variability
included models, with calibration frequently unre-
ported. Although models developed specifically for
this patient population demonstrate superior per-

in discrimination exists across the

formance, general disease severity models like
APACHE and SOFA are validated more extensively.
Presently, no extensively validated prediction model
exists showing good discrimination and calibration
for moderate to severe ARDS.

In daily practice in the ICU, early detection of clinical
deterioration and adverse outcomes relies on
monitoring vital parameters, biomarkers, and clinical
scores. Numerous models have leveraged this

information with the aim of predicting outcomes to
support clinical decision-making and to inform patients
and relatives on prognosis.'* Alongside improvements
in clinical ICU management, accurate outcome
prediction models also are valuable in research. The
information from these models can be used to correct
for differences in treatment populations when using
causal inference in observational studies (eg,
heterogeneity of treatment effect’), or to account for
disease susceptibility when stratifying randomization in
a randomized controlled trial.

Currently, only the Acute Physiology and Chronic
Health Evaluation (APACHE) IV and Sequential Organ
Failure Assessment (SOFA) scores been have truly
implemented in ICU settings.” However, these models
have been developed for patients in the ICU in general
and are not tailored specifically to patients with ARDS.
ARDS is characterized by an acute onset of
inflammatory hypoxemic respiratory failure and has
various causes. It is a major cause of death in the ICU,””
and no improvement in mortality rate has occurred over
the past decades.”'’ Taken together, these models might
perform less accurately in this patient population.

Current outcome prediction efforts in ARDS have focused
primarily on identifying subgroups with differential
outcomes, mainly relying on respiratory parameters or
inflammatory biomarkers. The widely accepted Berlin
classification based on the Pao, to Fio, ratio is one example.
Nevertheless, this scoring system bears limited predictive
accuracy for mortality.'""?
identification of hyperinflammatory and
hypoinflammatory ARDS subphenotypes, revealing
significant differences in mortality rates and treatment
responses. ”'* Although these subgroup classifications are
helpful, individualized mortality prediction might be more
beneficial for patients. Such bedside-applicable models
could enable clinicians to personalize care and to deliver
more accurate prognostic information. To find accurate
prediction models that can be applied directly in the ICU,

Another example is the

ABBREVIATIONS: APACHE = Acute Physiology and Chronic Health
Evaluation; APPS = Age, Plateau, and Pao, to Fio, Ratio Score; AUC =
area under the receiving operating characteristic curve; POSTCARDS =
Predicting Outcome and Stratification of Severity in ARDS; ROB = risk
of bias; SOFA = Sequential Organ Failure Assessments

AFFILIATIONS: From the Department of Intensive Care (K. D., S. C. M.
S.D.A.M.P.J. G, H.E, and J. A. H.), the Department of Viroscience
(K. D. and E. C. M. v. G.), the Department of Immunology (V. A. S. H.
D.), the Division of Allergy & Clinical Immunology (V. A. S. H. D.),
Department of Internal Medicine (E. C. M. v. G.), Erasmus University
Medical Center, Rotterdam; the Department of Medical Microbiology
and Infection Prevention (H. v. W.), the Department of Infectious
Diseases (A. B.), Amsterdam University Medical Center, University of

2 Original Research

Amsterdam; the Department of Infectious Diseases (A. B.), Public
Health Service of Amsterdam; the HIV Monitoring Foundation (A. B.),
the Department of Intensive Care (H. E.), OLVG Amsterdam, Amster-
dam; and the Department of Anesthesiology and Intensive Care (A. J.
V.), Isala Clinics, Zwolle, The Netherlands.

CORRESPONDENCE TO: Katrijn Daenen, MD; email: k.daenen@
erasmusmc.nl

Copyright © 2025 The Authors. Published by Elsevier Inc under li-
cense from the American College of Chest Physicians. This is an open
access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

DOTI: https://doi.org/10.1016/j.chstcc.2025.100132

[ 3#2 CHEST Critical Care JUNE 2025 |

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en junio 19,
2025. Para uso personal exclusivamente. No se permiten otros usos sin autorizacion. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.


mailto:k.daenen@erasmusmc.nl
mailto:k.daenen@erasmusmc.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.chstcc.2025.100132

and given the critical role of ventilator parameters in these
models, we focused our systematic review on mechanically
ventilated patients with moderate to severe ARDS. To our
knowledge and to date, no overarching analysis of these
models has been conducted for this specific patient

population. The aim of this study was to review
systematically the performance of available prediction
models for mortality, as well as to estimate pooled
performance statistics for these models, in patients with
moderate to severe ARDS.

Study Design and Methods
Study Design

We conducted a systematic review and meta-analysis.
Methods and results were reported following the
Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines. The study protocol
was registered in the International Prospective Register
of Systematic Reviews under registration number
CRD42022342893.

Search Strategy

A comprehensive systematic literature search was
conducted with assistance of an experienced research
librarian using the databases MEDLINE via OVID,
EMBASE.com, Web of Science, SCOPUS, PsycINFO
via OVID, CINAHL via EBSCOhost, the Cochrane
Central Register of Controlled Trials and Google scholar
up to March 2024 (e-Appendix 1). The following search
terms, alone and in various combinations, were used:
acute respiratory distress syndrome, prediction/prognosis,
mortality/survival, and model/nomogram/algorithm/
regression. The recommendations proposed by Bramer
et al'” were followed for identifying prediction model
studies for systematic reviews.

Eligibility Criteria

Studies that developed or validated, or both, a multivari-
able prediction model for mortality in adult patients
(ie, aged = 18 years) with moderate to severe ARDS
in the ICU were included. The definition of moderate
or severe ARDS needed to align with either the Berlin
criteria or the American European Consensus Confer-
1% Both pulmonary and extrapulmo-
nary causes of ARDS were included.'” Studies solely
with patients receiving extracorporeal
oxygenation were excluded. Pediatric and animal
studies, as well as those not published in English, also
were excluded.

ence definition.

membrane

The outcomes of the prediction model were restricted to
hospital or ICU mortality (or survival, if stated as such).
Predictors needed to be collected within the first
24 hours after ICU admission. We classified studies as
those involving model development (ie, creating a
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prediction model that may or may not include internal
validation'®) or external validation of a model (ie, eval-
uating the performance of an existing model using co-
horts that were not used for model development'®'”).

Study Selection

Reference lists of eligible articles were screened to iden-
tify additional articles for inclusion. After the initial
search, the research librarian removed duplicates. Two
reviewers (K. D., H. v. W.) then independently screened
all studies by title and abstract and removed irrelevant
articles, resolving discrepancies through discussion.
The remaining studies were assessed for eligibility using
the full text by 2 reviewers (K. D., S. C. M. S.) indepen-
dently. Discrepancies in final inclusion were resolved
between reviewers, with a third reviewer consulted if
necessary. EndNote-20 (Clarivate) was used to manage
search results.

Data Extraction

From each study, we extracted data on items that were
recommended in the Checklist for Critical Appraisal
and Data Extraction for Systematic Reviews of Predic-
tion Modelling Studies checklist.”’ Data were collected
on the following performance measure(s) for each
model: overall performance, calibration, discrimination,
and clinical usefulness. Overall performance is described
as the distance between the predicted and the actual
outcomes, expressed through the Brier score, R statistic,
or overall correctness.'””" Calibration measures the con-
sistency between the predicted probability of having an
outcome, as modeled, compared with the observed prob-
ability of the outcome and typically can be evaluated
using calibration plots or the Hosmer-Lemeshow
test.”’ Discrimination was defined as the extent to which
a model can discriminate patients with and without the
outcome, generally expressed by the area under the
receiving operating characteristic curve (AUC).”" Clin-
the model’s impact on
decision-making at specific thresholds, considered with

ical usefulness evaluates
. . 22

some classification measures.” Less common measures,

such as the C-index, accuracy rate, Youden index, log-

rank test, and (positive or negative) predictive values

also were collected, when reported. For each statistic,
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the 95% CI, SDs, or SEs were collected. One author
(K. D.) extracted all data. Data then were verified on a
random sample of one-third of the studies by a second
author (S. C. M. S.). We contacted the corresponding
authors of the eligible studies if data were unclear.

Feasibility Assessment

Using prespecified criteria established by the authors, we
also assessed the feasibility of each model based on the
following characteristics to enhance actionability in the
clinical context: timing, resources, additional costs, and
personnel requirements. We defined timing as the time
points of data collection for predictors, whereas re-
sources involve the materials needed for data collection.
Additional costs indicate any expenses made besides
standard ICU care. These were recorded as either yes
or no, while further specifying the type of expenses
(eg, CT scan). Personnel requirements indicate which
health care professionals are necessary for collecting
the variables needed for the model.

Risk of Bias Assessment

The Prediction Model Risk of Bias Assessment Tool was
used to assess the risk of bias (ROB) of the included
studies.”” Assessment of the selected studies was per-
formed independently by 2 authors (K. D, J. A. H.),
and any conflicting results were resolved by a third
reviewer (S. C. M. S.).

Statistical Analysis

The AUC was the only consistently reported statistic;
hence, it was used in further meta-analysis. Individual
AUC and the SE of the AUC were used for each model.
If the SE was not reported, it was calculated directly
from the SD or was approximated using the 95% CI. If

no measure of variation was available, the model was
excluded from the meta-analysis.

The pooled AUC with 95% CI initially was calculated
using a fixed-effects model with the inverse variance
method. The rma function of the metafor package in
R software (R Foundation for Statistical Computing)
was used to estimate the model. Heterogeneity was
tested for using the I” statistic, with higher values repre-
senting increased heterogeneity between models, and the
null hypothesis of no between-study heterogeneity was
tested using the Q statistic. If significant heterogeneity
was present, the pooled AUC was calculated using a
random-effects model with restricted maximum likeli-
hood estimators for 7°. Subgroup analyses were carried
out on the prediction model (ie, APACHE II; Age,
Plateau, and Pao, to Fio, Ratio Score [APPS]; SOFA)
and the study type (ie, development or validation),
whereas differences in AUC were assessed using a test
for subgroup differences with the metagen function in
the meta packages. Given the small numbers of studies,
sources of heterogeneity were not evaluated using meta-
regression.

Further evaluation of whether certain combinations of
models were contributing to excessive heterogeneity
was performed using the graphical display of study
heterogeneity plot.”* A total of 10,000 combinations
were selected randomly to produce the graph using the
gosh() function in the metafor package. The influence
of outlying models then was assessed using the method
developed by Viechtbauer and Cheung” in the metafor
package. We also assessed for small study effects using
the Egger test of small study bias®® with P < .05 indi-
cating significant bias. Analyses were performed using
R version 4.2.3 software.

Results
Description of Studies

The initial literature search resulted in a total 7,455
articles. After removing duplicates and screening titles
and abstracts, 228 articles remained. After full-text
screening, 14 articles fulfilled eligibility criteria and
were included in this systematic review and meta-
analysis (Fig 1). Seven studies used retrospective data
and 7 studies used prospective data. Most studies

(n = 8) were conducted in Europe. Eight were single-
center studies and 6 were multicenter studies, with
most having a sample size of between 50 and

500 patients. Notably, 3 of the included studies
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reported an a priori sample size calculation,” *” and 2
of them were able to include a sample large enough for
adequate precision.”””® The American European
Consensus Conference criteria were used most
frequently to define ARDS (n = 7), whereas 2 studies
used both Berlin and American European Consensus
Conference criteria. Eleven of 14 studies included
patients with ARDS with divergent causes. All models
included mortality or survival as outcome measures,
assessed at either ICU discharge, day 28, or hospital
discharge. Nine articles were classified as development

-3 . . . .
2836 and 5 articles were classified as validation

studies
studies.””*' In total, these studies evaluated 20 unique

prediction models (Table 1).2841
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[ Identification of studies via databases and registers ]

for eligibility (n = 228)

|

Studies included in
review (n = 14)
Amount of unique models
included (n = 20)
Overall amount of models
tested (n = 31)

Eligibility

Records identified from:

EMBASE (n = 2,295);
_g MEDLINE (n = 1,904); Records removed before
® Web of Science Core L screening:
gg collection (n = 1,796); Duplicate records removed
] Cochrane Central Register of (n =5,361)
§ Controlled trials (n = 560);

Google Scholar (n = 200)

Records screened L Records excluded
(n=4,361) (n=4,133)
. Full text of articles excluded (n = 153):
Full text of articles assessed N o No full text available (n = 23)

* No Berlin or AECC definition of ARDS (n = 20)

* Not moderate and/or severe ARDS specific (n = 32)

* No model performance (n = 5)

e Qutcome measurement not ICU/hospital mortality/
length of intubation (n = 16)

¢ No development/validation/extension of a
prognostic model (n = 31)

® Predictors not obtained within 24 h after ICU
admission (n = 26)

! !

Development studies (n = 3)
Amount of models tested (n = 3)

Development and external
validation studies (n = 6)
Amount of models tested

External validation
studies (n = 5)
Amount of models

(n=10) tested (n = 18)

|

Internal validation studies (n = 3)
Amount of models (n = 8)

Figure 1 — Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram for selected studies. AECC = American-European
Consensus Conference; EMBASE = Excerpta Medica Database; MEDLINE = Medical Literature Analysis and Retrieval System Online.

Description of Models Included in the Studies

Development Studies: A total of 13 prediction models
were included.”**® The most common method used to
build the model was logistic regression, with 1 study using
machine learning techniques.’ The most frequently used
predictor was age (n = 10), followed by Pao, to Fio, ratio
(n = 6) and plateau pressure (n = 6) (Fig 2). Eight
development models underwent internal validation using
Monte Carlo simulation, bootstrapping, or n-fold cross-
validation.”™"**® Additionally, 7 development models
were tested in an external validation cohort, as reported in
the development study.”*****® Model performance
mainly was described using discrimination, with AUC
values ranging from 0.72 to 0.95 (Table 2). The highest

AUC values were observed with the ARDS score (0.95>%)

and the model by Swaroopa et al’? (0.94). Six models

reported calibration measures: the Hosmer-Lemeshow
goodness of fit (n = 5), the intercept of a calibration plot
(n = 1), or the slope of a calibration plot (n = 1).”"»***
The Predicting Outcome and Stratification of Severity in
ARDS (POSTCARDS) model exhibited strong
discrimination and calibration in both the development
and validation cohorts.”

Validation Studies: Eighteen models were externally
validated,”®*"*>*" of which the APACHE II
score”®? 1303839 yas validated most frequently (n = 6),
followed by the SOFA score (n = 3)*13738 and the

APPS (n = 2)*>%° (Table 3).2%°*5*! Model
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TABLE 1 | Overview of Included Studies

Uni- ARDS
center
No. Country or Sample Internal
of of Multi- Study Size Study Predicted Deaths, Development or Model, Method, Validation
Study Models Inclusion center Design (Calculation) Interval Criteria Cause Outcome % Validation Model or Technique Technique
Villar et al 2 Spain Multi- Retro- 220, 1999-2005 AECC All causes ICU 33.6 Development, Risk tertiles Monte
(2011)3° center spective adhered mortality internal and Carlo
cohort to power external simu-
calculation validation lation
test
Villar et al 3 Spain Multi- Pro- 1,200 2004-2017 AECC, All causes All-cause 37.4 Development, Logistic Boot-
(2019)%° center spective Berlin death in internal and regression strapp-
trial ICU external ing
validation
Villar et al 2 Spain Multi- Pro- 600, 2008-2015 AECC, All causes All-cause 44.3 Development Risk tertiles NR
(2016)%® center spective adhered Berlin death in and
observa- to power hospital external
tional calculation validation
Tire et al 5 Turkey Unicenter Pro- 206 1998-2002 Pao, to All causes ICU 52.4 Development Logistic NR
(2005)3* spective F1o, mortality and regression
observa- ratio < external
tional 150 validation
torr®
Swaroopa 1 India Unicenter Pro- 30 NR AECC NR 28-d 34.6 Development NR NR
etal spective mortality
(2016)*? observa-
tional
Sharma et al 1 India Unicenter Pro- 64, 2010-2012 AECC All causes 28-d 56.2 Development Multivariable NR
(2016)%° spective power mortality Cox
observa- calculation regression
tional n=65
Rocco et al 1 United Unicenter Retro- 111 1990-1998 AECC All causes In-hospital 52.3 Development Logistic NR
(2001)* States spective mortality regression
cohort
Puhr et al 2 Germany Unicenter Retro- 53° 2020-2021 Berlin COVID- In-hospital 43.4 External Multivariable NR
(2021)%7 spective 19 mortality validation Cox
cohort regression
Monchi et al 1 France Unicenter Retro- 259 1992-1995 AECC NR In-hospital 65 Development Stepwise NR
(1998)3* spective mortality and logistic
cohort external regression
validation
Lin et al 5 Taiwan Multi- Retro- 135 1996-2006 AECC Sepsis In-hospital 65 External Multiple NR
(2010)3® center spective mortality validation logistic
cohort regression
(Continued)
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TABLE 1 | (Continued)

Uni- ARDS
center
No. Country or Sample Internal
of of Multi- Study Size Study Predicted Deaths, Development or Model, Method, Validation
Study Models Inclusion center Design (Calculation) Interval Criteria Cause Outcome % Validation Model or Technique Technique
Hwang et al 2 Korea Unicenter Retro- 116 2015-2016 Berlin All causes In-hospital 72.4 External Validation NR
(2020)*° spective mortality validation APPS
cohort
Bos et al 2 The Multi- Pro- 439 2011-2013 AECC All causes All-cause 43 External Validation NR
(2016)%° Netherlands center spective in- validation APPS
observa- hospital-
tional mortality
Villar and 2 Spain Multi- Pro- 1,303 2008-2018 Berlin All causes All-cause 37.4 Development, XGboost, RF, 5-fold
Gonzalez- center spective ICu internal and logistic cross-
Martin observa- mortality external regression, valida-
(2023)°° tional validation SPIRES tion
Sanchez et al 2 Mexico Unicenter Retro- 115 2020-2021 Berlin COVID- 30-d 53 External Cox regre- NR
(2023)** spective 19 survival validation ssion
cohort

This table shows an overview of the extracted information of all 14 included studies in our systematic review. AECC = American European Consensus Conference; APPS = Age, Plateau, and Pao, to Fio, Ratio Score;
NR = not reported; RF = random forest; SPIRES = Stratification for Identification of Prognostic Categories in the ARDS Score; XGBoost = extreme gradient boosting.
aThis study did not mention the Berlin or AECC criteria, but was included because a Pao, to Fio, ratio of < 150 torr was used as inclusion criterion, which is equivalent to < 150 mm Hg.”®
bSensitivity analysis with 53 patients with moderate to severe ARDS.
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Overview of included predictors

No. of times predictor
was included
o
1

Predictors

| Il Development [l Validation |

Figure 2 — Bar graph showing overview of predictors. AaDO, = alveolar-arterial oxygen tension difference; APACHE = Acute Physiology and Chronic
Health Evaluation; APPS = age, plateau, and Pao, to Fio, ratio score; CAD4COVID = Computer-Aided Detection for Coronavirus Disease (software
tool developed to assist in diagnosing COVID-19 based on radiograph); fT3 = free triiodothyronine; LIS = lung injury score; MODS = multiple organ
dysfunction score; PpaO = pulmonary artery occlusion pressure; Pra = right atrial pressure; PV-aC02/Ca-vO2 = venoarterial carbon dioxide tension
difference to the arteriovenous oxygen content difference ratio; RIFLE = risk, injury, failure, loss of kidney function, and end-stage kidney disease; SAPS
= simplified acute physiology score; SOFA = sequential organ failure assessment.

performance was described most often using
discrimination and AUCs ranged from 0.55 to 0.88.
The highest AUC was achieved by the stratification for
identification of prognostic categories in the ARDS
score model.”” Measures of calibration were reported
for 10 externally validated models: the Hosmer-
Lemeshow goodness of fit (n = 9) and the intercept and

slope of a calibration plot (n = 1).*">?%

Model Feasibility

Most prediction models use variables collected over the
entire first 24 hours after ICU admission and rely on
commonly available clinical measurements or blood
samples (Table 4). Exceptions include the ARDS score,
which requires right heart catheterization,”* and the
model of Swaroopa et al,”* which uses specific biomarkers.
Overall, most variables can be collected during standard
care by ICU staff, without additional costs.

Pooled AUC for Discrimination

Of the 31 models reporting an AUC measure, the fixed-
effects model revealed an I* of 99.2% with significant

heterogeneity (P < .0001), and hence a random-effects
model was used. The pooled AUC was 0.782 (95% ClI,
0.748-0.817) with an I* of 99.5% (P < .0001) (Fig 3). In
subgroup analysis, the pooled AUC for the SOFA score
was 0.802 (95% CI, 0.719-0.885), the APPS score was
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0.724 (95% CI, 0.643-0.805), the APACHE 1II score
was 0.667 (95% CI, 0.613-0.721), and all other scores
were 0.813 (95% CI, 0.774-0.852; P = .0001 for subgroup
differences). The pooled AUC was higher for the
derivation vs validation studies (0.816 [95% CI,
0.760-0.872] vs 0.767 [95% CI, 0.725-0.809],
respectively; P = .17 for subgroup differences).

No study subsets gave rise to excessive heterogeneity,
according to the graphical display of study heterogeneity
plot (e-Fig 1). Also no studies appeared to influence the
pooled AUC. From the Egger’s test for small study bias,
smaller studies (ie, those with lower SE) exhibited
significantly lower AUCs (P = .0009) (e-Fig 2).

ROB Assessment Using the Prediction Model Risk of
Bias Assessment Tool

The ROB assessment using the Prediction Model Risk of
Bias Assessment Tool is visualized in Figure 4, with
detailed data available in e-Table 1. In the participant
and outcome domain, 1 study showed a high ROB,*
whereas no bias was observed in the predictors domain.
Seven studies showed a high ROB in both the analysis
domain and overall assessment, mostly because of issues
such as not handling missing data, lacking calibration
measures, and not accounting for overfitting and

s o 28,29,31-33,37,41
optimism.
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TABLE 2 | Overview Performance Development Models

Evaluation of Model Performance

Calibration, Discrimination Clinical Usefulness
Hosmer-
Lemeshow
Goodness of Kaplan- Youden
Predictors in Model Name Fit/Intercept/ Meier Index, Concordance
Study Final Model and Type Slope AuC Curve % Statistic Specificity Sensitivity | PLR | NLR PPV NPV
Villar et al Age, Pplat, Pao, Risk tertiles NR D, 0.73; V, NR NR NR NR NR NR NR NR NR
(2011)%° to Fio, ratio model 0.81
Villar et al Age, Pao, to Fio, Enrichment NR 0.74 NR NR NR NR NR NR NR NR NR
(2019)*° ratio model
Age, Pplat, Pao, Enrichment NR 0.81 NR NR NR NR NR NR NR NR NR
to Fio, ratio model
Age, Pplat, Pao, Enrichment NR 0.86 (0.84- NR NR NR NR NR NR NR NR NR
to Fio, ratio, OF model 0.88)
Villar et al Age, Pplat, Pao, APPS: 9-point NR D, 0.76 Present NR NR NR NR NR NR NR NR
(2016)%® to Fro, ratio score (0.70- P < .001
0.81); V,
0.80
(0.75-
0.85)
Ture et al Age, fT3 Logit model 9.86 0.723 NR 34.4 NR 58.0 76.4 NR NR NR NR
(2005)°* (0.052)
APACHE II score, Logit model 14.03 0.861 NR 54.2 NR 76.0 78.2 NR NR NR NR
sex (0.036)
SOFA score, age Logit model 20.91 0.891 NR 60.4 NR 84.0 76.4 NR NR NR NR
(0.033)
Swaroopa APACHE II, IL-6, NR NR 0.94 NR NR NR NR NR NR NR NR NR
etal IL-8
(2016)3?
Sharma et al OF, SAPS 1I Logistic NR NR Present NR NR NR NR NR NR NR NR
(2016)%° score, Ppeak regression
model
Rocco et al Age, MODS, LIS Logistic 0.76 NR NR NR NR 73.6 62.1 NR NR NR NR
(2001)% regression
model
(Continued)


https://chestcc.org

yolessay [eulbllo QT

‘61 orun( ud 1914987 Jod sa°Ka3[[EOIUI[) 9P AILINOAG [BIO0S PUE YI[BdH JO AIeIqIT [euoneN ud (wod rewdm)gzniewr ny) ojnguy eon eied opedieosoq

*SOPBAIISII SOYIAIIP SO[ SOPO], “dU] ITASS[H "$Z0ZO IYSHAdO)) ugroeZIIOINE UIS SOSN $01)0 udIuLIdd 98 ON "OJUSWEAISN[OX [euosIdd osn eIk ‘S70T

[ SC0C IANNC @4eD |BDI}IID 1STHD C#¢ ]

TABLE 2 | (Continued)

Evaluation of Model Performance

Calibration, Discrimination Clinical Usefulness
Hosmer-
Lemeshow
Goodness of Kaplan- Youden
Predictors in Model Name Fit/Intercept/ Meier Index, Concordance
Study Final Model and Type Slope AUC Curve % Statistic Specificity Sensitivity PLR | NLR PPV NPV
Monchi et al Cirrhosis, PRA > ARDS score D,0.84;V,0.72 D, 0.95; Vv, NR NR NR NR NR NR NR NR NR
(1998)%* Ppao, direct 0.92
lung injury,
MV, SAPS II
score, McCabe
score, Ol
Villar and Age, Pplat at 24 POSTCARDS V RF: intercept, | DRF, 0.87 NR NR V RF, 0.89 D RF, 0.80; D RF, 0.81; NR NR D RF, D RF,
Gonzélez- h, Pao, to Fio, model 0.18 (-0.12 (0.82- (0.85- XGB, XGB, 0.72; 0.88;
Martin ratio, OF, (7 to 0.48); 0.91); 0.92); 0.80; LR, 0.79; LR, XGB, XGB,
(2023)*2 neoplastic variables) slope, 1.13 XGB, XGB, 0.90 0.82; V 0.79; V 0.71; 0.87;
disease, (0.87-1.39); 0.86 (0.86- RF, 0.69; RF, 0.90; LR, LR,
immuno- XGB: (0.81- 0.93); LR, XGB, XGB, 0.73; 0.87;
suppression, intercept, 0.90); 0.91 0.81; LR, 0.88; LR, V RF, V RF,
Pplat at BL 0.02 (-0.30 LR, 0.87 (0.87- 0.84 0.85 0.64; 0.94;
to 0.35); (0.82- 0.94) XGB, XGB,
slope, 0.95 0.91); v 0.73; 0.92;
(0.74-1.16); RF, 0.89 LR, LR,
LR: intercept (0.85- 0.76 0.90
0.05 (-0.27 0.92);
to 0.37); XGB,
slope, 1.10 0.90
(0.85-1.34) (0.86-
0.93);
LR, 0.91
(0.87-
0.94)

This table provides an overview of the reported performance measures of the models in the development studies. Certain studies developed and tested multiple models, resulting in performance measures reported in
rows underneath each other. APACHE = Acute Physiology and Chronic Health Evaluation; AUC = area under the receiving operating characteristic curve, BL = baseline; D = derivation; fT3 = free triiodothyronine;
LIS = lung injury score; LR = logistic regression; MODS = Multiple Organ Dysfunction Score; MV = mechanical ventilation; NLR = negative likelihood ratio; NPV = negative predictive value; NR = not reported; OF =
extrapulmonary organ failure; OI = oxygenation index; PLR = positive likelihood ratio; Ppao = pulmonary artery occlusive pressure; Ppeak = peak pressure; POSTCARDS = Predicting Outcome and Stratification of
Severity in ARDS; Pplat = plateau pressure; PPV = positive predictive value; Pra = right atrial pressure; RF = random forest; SAPS = Simplified Acute Physiology Score; SOFA = Sequential Organ Failure Assessment;

V = validation; XGBoost = extreme gradient boosting.

°In this study, a model was developed using 3 distinct methods: logistic regression analysis following variable selection by a genetic algorithm, random forest, and extreme gradient boosting machine learning

techniques.
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Evaluation of Model Performance
Discrimination Clinical Usefulness Overall
Calibration, Perfor-
Hosmer- mance:
Lemeshow Discrimi- Kaplan- | Younden Concor- Overall
Predictors in Goodness native Meier Index, dance Speci- Sensi- Correct-
Study Final Model Model Type of Fit AUC Value Curve % Statistic ficity tivity PLR NLR PPV NPV ness
Villar et al APACHE II Scoring NR D, 0.70; V, NR NR NR NR NR NR NR NR NR NR NR
(2011)3° system 0.62
Villar et al APACHE II Scoring NR D, 0.63 NR NR NR NR NR NR NR NR NR NR NR
system .57-
(2016)%® (0.57
0.70); V,
0.66
(0.60-
0.72)
Tire et al APACHE II Scoring 45.32 0.85 NR NR 56.2 NR 78 78.2 NR NR 78.3 82.2 NR
(2005)°! system (0.041)
SOFA Scoring 35.63 0.86 NR NR 54.0 NR 74.0 80.0 NR NR 78.5 90.0 NR
system (0.037)
Puhr et al SOFA Scoring NR 0.77 (0.64- 7.5 NR 0.46 NR 0.50 0.96 NR NR NR NR NR
(2021)%” system 0.89)
CAD4COVID Scoring NR 0.55 (0.39- NR NR NR NR NR NR NR NR NR NR NR
system 0.72)
Lin et al APACHE II Scoring 4.088 (df, 8) 0.751 NR NR 0.39 NR 83 57 NR NR NR NR 70.0
(2010)*® system (P = .849) (0.042)
APACHE III Scoring 9.191 (df, 8) 0.785 NR NR 0.51 NR 74 77 NR NR NR NR 75.5
system (P=.326) (0.039)
APACHE IV Scoring 2.414 (df, 8) 0.792 NR NR 0.51 NR 76 75 NR NR NR NR 75.5
system (P = .966) (0.038)
RIFLE-D1 Scoring 5.711 (df, 2) 0.687 NR NR NR NR NR NR NR NR NR NR NR
system (P =.058) (0.047)
SOFA Scoring 6.691 (df, 8) 0.740 NR NR 0.42 NR 91 51 NR NR NR NR 71.0
system (P=.570) (0.042)
Hwang et al APPS Scoring P =.636 0.711 NR Yes NR 0.70 NR NR NR NR NR NR NR
(2020)*° system (0.609- (0.60-
0.813) 0.81)
APACHE II Scoring NR 0.624 NR Yes NR 0.62 NR NR NR NR NR NR NR
system (0.513- (0.51-
0.736) 0.74)
Bos et al APPS Scoring P < .001 0.62 (0.56- NR NR NR NR 0.56 0.63 1.43 0.66 NR NR NR
(2016)*° system 0.67)
APACHE IV Scoring NR 0.66 (0.61- NR NR NR NR NR NR NR NR NR NR NR
system 0.71)
(Continued)
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TABLE 3 | (Continued)

Evaluation of Model Performance
Discrimination Clinical Usefulness Overall
Calibration, Perfor-
Hosmer- mance:
Lemeshow Discrimi- Kaplan- | Younden Concor- Overall
Predictors in Goodness native Meier Index, dance Speci- Sensi- Correct-
Study Final Model Model Type of Fit AUC Value Curve % Statistic ficity tivity PLR NLR PPV NPV ness
Sanchez et al APv-aCO2 to Ratio NR 0.69 (0.60- NR Yes NR NR 85.2 49.2 3.32 0.60 NR NR NR
(2023)** ACa-vO2 0.77)
ratio
SAPS II Scoring NR 0.70 (0.60- NR Yes NR NR NR NR NR NR NR NR NR
system 0.78)
Villar and SPIRES Scoring V: RF D: 0.86; V: NR NR NR V: RF, V: RF, V: RF, NR NR V: RF, V: RF, NR
Gonzalez- system intercept, RF, 0.85 0.85 0.83; 0.78; 0.73; 0.86;
Martin 0.93 (0.79- (0.79- XGB, XGB, XGB, XGB,
(2023)>2 (0.49- 0.90); 0.90) 0.84; 0.79; 0.74; 0.87;
1.38); RF XGB, XGB, LR, LR, LR, LR,
slope, 0.38 0.87 0.87 0.84 0.79 0.74 0.87
(0.30- (0.83- (0.83-
0.46); XGB 0.91); 0.91)
intercept, LR, 0.88 LR,
0.10 (0.83- 0.88
(-0.20 to 0.91) (0.83-
0.40); XGB 0.91)
slope, 1.04
(0.80-
1.28); LR
intercept,
0.09
(-0.21 to
0.39); LR
slope, 1.08
(0.84-
1.33)

This table provides an overview of the reported performance measures of the models in the external validation studies. Certain studies validated multiple models, resulting in performance measures reported in rows
underneath each other. APACHE = Acute Physiology and Chronic Health Evaluation; APPS = age, plateau, and Pao, to Fio, ratio score; AUC = area under the receiving operating characteristic curve; CAD4COVID =
Computer-Aided Detection for Coronavirus Disease; D = derivation; ACa-vO2 = change in arteriovenous oxygen content difference ratio; APv-aCO2 = change in venous to arterial CO, gradient; df = degrees of
freedom; LR = logistic regression; NLR = negative likelihood ratio; NPV = negative predictive value; NR = not reported; PLR = positive likelihood ratio; PPV = positive predictive value; RF = random forest; RIFLE-D1 =
risk, injury, failure, loss, end-stage kidney disease day 1; SAPS = simplified acute physiology score; SOFA = Sequential Organ Failure Assessment; SPIRES = Stratification for Identification of Prognostic Categories in
the ARDS Score; V = validation; XGB = extreme gradient boosting.

°In this study, a model was developed using 3 distinct methods: logistic regression analysis following variable selection by a genetic algorithm, random forest, and extreme gradient boosting machine learning
techniques.



640 20359Yd

‘61 orun( ud 191A9s]q 10d s2'A33[[eOIUID) 9P AJLINOAG [RIDOS PuE P[BIH JO ATRIqIT [RUONERN UL (W0 [rewd@)gzniew n]) ojnduy eron eied opedredssoq

*SOPBAIISII SOYIAIIP SO[ SOPO], “dU] ITASS[H "$Z0ZO IYSHAdO)) ugroeZIIOINE UIS SOSN $01)0 udIuLIdd 98 ON "OJUSWEAISN[OX [euosIdd osn eIk ‘S70T

€T

TABLE 4 | Overview of Model Feasibility

Model and Additional Costs Beyond
Study Predictors Timing Resources Standard of Care Personnel
Villar et al Age, Pplat, Pao, Immediate MV, blood sample No Nurse or intensivist
(2011)3° to Fio, ratio
Villar et al Age, Pplat, Pao, 24 h (Pao, to Fio, ratio MV, blood sample No Nurse or intensivist
(2019)3° to Fio, ratio, and Pplat)
OF
Villar et al Age, Pplat, Pao, 24 h (Pao, to Fio, ratio MV, blood sample No Nurse or intensivist
(2016)°¢ to Fio, ratio and Pplat)
Tire etal (2005)>* Age, fT3 24 h (fT3) Blood sample Yes, fT3 measurement Nurse or intensivist
APACHE III 24 h (APACHE) Standard care No =
score and sex
SOFA score and Immediate Standard care No —
age
Swaroopa et al APACHE 1II 24 h (APACHE, IL-6 or Low Yes, IL-6, and IL-8 Nurse or intensivist
(2016)°? score, IL-6, IL-8 within 24 h) measurement
IL-8
Sharma et al OF, SAPS II 24 h (SAPS 11, OF) MV, blood sample No Nurse or intensivist
(2016)%° score, Ppeak
Rocco et al Age, MODS, LIS Onset of ARDS MV, blood sample, chest No Nurse or intensivist
(2001)33 radiography
Puhretal (2021)37 CAD4COVID After CT scan CT scan, CAD4COVID CT Yes, CT scan, and Radiologist to
scan software tool CAD4COVID CT scan measure PA to AA
software® ratio
SOFA score Immediate Standard care No Nurse or intensivist
Monchi et al ARDS score After right heart MV, blood sample, right Yes, right heart Intensivist
(1998)3* catheterization heart catheterization catheterization
Lin et al (2010)38 APACHE II, III, After 24 h Standard care No —
and IV
scores;
RIFLE-D1
SOFA score Immediate Standard care No -
Hwang et al APPS At 24 h (maximal MV, blood sample No Nurse or intensivist
(2020)° airway pressure,
Pao, to Fio, ratio)

(Continued)
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TABLE 4 | (Continued)

Model and Additional Costs Beyond
Study Predictors Timing Resources Standard of Care Personnel
APACHE II At 24 h Standard care No —
score
Bos et al (2016)*° APPS At 24 h (maximal MV, blood sample No Nurse or intensivist
airway pressure,
Pao, to Fio, ratio)
Sanchez et al APv-aCO2 to Within 30 min after MV, blood sample No Nurse or intensivist
(2023)* ACa-v02 intubation
ratio
SAPS II score At 24 h MV, blood sample No =
Villar and POSTCARDS At 24 h (Pao, to Fio, Low No Nurse or intensivist
Gonzalez-Martin model and ratio, Pplat, OF)
(2023)3° SPIRES

This table provides an overview of the feasibility of the models included, based on the factors timing, resources, additional costs, and personnel. Additional costs were recorded as either yes or no, whereas further
specifying the types of expenses incurred. Most of the included prediction models did not generate costs beyond standard care. When additional costs were incurred, they were associated with biomarker mea-
surements, extra CT scans, software, and right heart catheterization. AA = ascending aorta; APACHE = Acute Physiology and Chronic Health Evaluation; APPS = age, plateau, and Pao, to Fio, ratio score; AUC = area
under the receiving operating characteristic curve; CAD4COVID = Computer-Aided Detection for COVID; D = derivation; fT3 = free triiodothyronine; ACa-vO2 = change in arteriovenous oxygen content difference
ratio; APv-aCO2 = change in venous to arterial CO, gradient; LIS = lung injury score; MODS = Multiple Organ Dysfunction Score; MV = mechanical ventilation; OF = extrapulmonary organ failure; PA = pulmonary
artery; POSTCARDS = Predicting Outcome and StratifiCation of Severity in ARDS; Pplat = plateau pressure; RIFLE-D1 = risk, injury, failure, loss, end-stage kidney disease day 1; SAPS = Simplified Acute Physiology

Score; SOFA = Sequential Organ Failure Assessment; SPIRES = Stratification for Identification of Prognostic Categories in the ARDS Score; V = validation; XGB = extreme gradient boosting.
3CADA4COVID CT scan software was free of charge during the pandemic.
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Discussion

Our study presents a comprehensive overview of
multivariable prediction models for mortality in
moderate to severe ARDS. Nine development studies
and 5 validation studies evaluated a total of 20 unique
prediction models. Models specifically developed for
moderate to severe ARDS often show good
discriminative power, but frequently lack calibration
measures and rarely are validated externally.’”***> Most
models were considered feasible because the inclusion
criteria that required variables collected within 24 hours
was met, and included variables primarily were obtained
through routine standard care. General ICU severity
models, such as APACHE II and SOFA, were the most
frequently validated externally. However, based on the
ranges of AUCs and calibration measures, their
performance generally was less accurate than models

specifically developed for patients with moderate to
severe ARDS. Pooled performances were calculated for
the APPS, APACHE 1II score, and SOFA score, with the
SOFA score having the highest pooled AUC.

Models specifically developed for moderate to severe
ARDS show the best performance and often prioritize
respiratory parameters derived from ventilator data and
blood sample analysis as predictors. From these models,
only the ARDS and POSTCARDS models reported both
discrimination and calibration measures and were
validated externally. The ARDS score, with good
discriminatory power, excellent calibration, and low bias
risk, may predict mortality in these patients accurately.
However, it has not undergone external validation by
another study. Villar et al***>*® and Villar and
Gonzalez-Martin®” contributed 4 distinct studies that

Meta-analysis results for prediction models in moderate to severe ARDS

Random Effects Model

All models - |—e—0.782 (0.748-0.817)

SOFA A f ® {0.802 (0.719-0.885)
APPS f L | 0.724 (0.643-0.805)

APACHE |l - ——e—0.667 (0.613-0.721) Figure 4 — Graph showing random
effects model of the pooled AUC of all
models in moderate to severe acute
respiratory distress. APACHE = Acute

Other scores - j——e—0.813 (0.774-0.852) Physiology and Chronic Health Eval-
uation; APPS = Age, Plateau, and

: : : : : : Pao, to Fio, Ratio Score; AUC = area

05 06 0.7 0.8 0.9 10 under the receiving operating charac-

Pooled AUC (95% Cl)

chestcc.org

teristic curve; SOFA = Sequential
Organ Failure Assessment.
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both developed and validated models in patients with
ARDS, using various combinations of variables, with the
APPS score being the only one externally validated by
2 studies. The APPS score had AUCs of 0.76 in the
derivation cohort and 0.80 in its validation cohort, but
lower AUCs of 0.71 and 0.66, respectively, in external
validation studies.”*””*’ Their recently published
POSTCARDS model based on 7 variables is promising,
but needs further external validation.™

Our findings revealed that the SOFA and APACHE
scores, already integrated into general ICU practice, were
externally validated most frequently in patients with
moderate to severe ARDS. These scores initially were
developed to evaluate and predict disease severity and
organ failure across a wide range of patients who were
critically ill. Although typically demonstrating good
performance within general ICU populations (AUC, 0.84-
0.85),">*” our review showed substantially lower
performance in moderate to severe ARDS cohorts. None
of the models reached a pooled AUC of > 0.72, with
substantial heterogeneity between studies; therefore,
caution is warranted to avoid overinterpretation of the
results. Our analysis revealed that no individual or group
of studies significantly influenced the pooled AUC, thus
suggesting minimal ROB from outliers. However, we did
find that smaller studies had lower AUCs than expected,
indicating small-study bias. Subgroup analyses by score
type revealed significant differences in pooled AUCs,
likely contributing to the heterogeneity. Additionally, we
hypothesize that because ARDS is a syndrome with
diverse causes,"* variations in ARDS causes, patient
characteristics, and the evolution of management
practices over time*>*°—such as positive end-expiratory
pressure titration*”** and corticosteroid therapy*’—also
may play a role. Unfortunately, the inability to perform
meta-regression because of the small numbers of studies
precludes us from commenting further on the specific
sources of heterogeneity.

One-half of the included studies demonstrated a high
ROB, which was driven mostly by the analysis domain (eg,
not handling missing data, lacking calibration

measures, and failing to account for overfitting and
optimism).””*>*>*"*! For instance, Swaroopa et al**
presented an AUC of 0.94 in a cohort of 30 patients. The
risk of overfitting would have required other techniques to
be used, such as penalized regression or bootstrapped Cls.
Clinicians need to be cognizant of these shortcomings
when deciding to use these scores in practice, whereas
future research should strive to minimize bias and use

16 Original Research

reporting guidance (eg, Standards for Reporting of
Diagnostic Accuracy Studies)™ when presenting results.

Accurate prediction of mortality provides clinicians with
valuable information to decide who needs intensified
monitoring. This may include more frequent
assessments of potential ARDS-related complications or
coinfections, increased diagnostic testing (eg, blood
cultures or bronchoalveolar lavage), earlier
consideration of advanced therapies, and a more
proactive multidisciplinary approach. Despite this
potential, the feasibility of such models remains difficult
to quantify because no universal feasibility scoring
system exists. Our systematic review includes a
feasibility assessment based on time point of
measurements, resources, costs, and personnel—an area
that has been relatively ignored in previous literature.
Feasibility becomes increasingly important during
periods of capacity constraints, aiding in resource and
personnel prioritization. Among the included models,
feasibility varied with many models posing immediate
feasibility challenges by relying on variables collected
up to 24 hours after ICU admission, rather than
immediately or within the first hour.”***>**** Some
models require specific resources, reducing feasibility
and complicating implementation, particularly in low-
income settings.””” One example is the ARDS score,
which relies on right heart catheterization, an invasive,
time-consuming, and cost-intensive procedure that is
potentially harmful.”* Although these prediction models
provide a structured, quantitative tool for assessing
mortality risks, caution is essential in interpreting their
results, because they cannot fully capture the clinical
nuances and complexity of patients treated in the ICU.
Therefore, the use of these scores always should be
considered in the specific clinical context,
complementary to the expertise of the ICU team.
Moving forward, we advocate for the inclusion of
feasibility as a criterion in the development of prediction
models. An ideal model should be based on parameters
accessible on ICU admission, should incorporate
ventilator parameters not subject to physician
interpretation, and should include a standard care

51-55

biomarker of inflammation.

Our systematic review has several strengths. To our
knowledge, this is the first comprehensive overview and
meta-analysis within this patient population. Second, we
included a feasibility evaluation and an ROB assessment,
enhancing directions for future research by identifying
potential weaknesses and strengths. However, we also
acknowledge several limitations. Some well-conducted
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studies were not included because of our specific
inclusion criteria, such as those involving patients with
mild to severe ARDS with no stratification by ARDS
severity. Although the strict selection of patients with
moderate to severe ARDS results in a more homogenous
patient population, it limits generalizability.
Additionally, the predominance of European studies in
our review may affect generalizability to health care
settings in other regions.

Looking ahead, recent advancements in artificial
intelligence have catalyzed the development of novel
prediction models. In a review on machine learning-
driven models in ARDS, several have been identified.”®
One notable example is the model by Zhang” that
includes neural networks of predictors, which
outperformed the APACHE III score in predicting
mortality. This study was excluded from our review
because of the inclusion of patients with mild ARDS.
Another promising direction for future research lies in
shifting the focus of outcome prediction models from
mortality to predicting treatment efficacy, such as
extracorporeal membrane oxygenation or corticosteroid

personalized and effective treatment strategies for
patients with ARDS.

Interpretation

We present a comprehensive overview of mortality
prediction models in moderate to severe ARDS.
Although models developed specifically for this
patient population demonstrate the best performance,
general disease severity models like APACHE and
SOFA are validated more extensively. Currently, no
well-validated model with good discrimination and
calibration for moderate to severe ARDS exists.
Promising models tailored to ARDS, especially the
POSTCARDS models, require further external
validation. Furthermore, we emphasize the importance
of assessing feasibility before clinical implementation
of prediction models.
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