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KEY POINTS

� Urine specimens collected from normal adult female bladders are populated by different
genera of bacteria termed the urinary microbiome or urinary microbiota.

� The female urinary tract outlet is located within the genital tract; therefore, there exist in-
teractions between the urinary and genital microbiomes.

� The significance of the urinary microbiome in the pathobiology of urinary tract infection
(acute bacterial cystitis) is unknown currently.

� The standard urine culture test has been designed to identify only the most common ur-
opathogenic bacteria. However, other genera of bacteria which can cause UTI do not
grow with standard urine culture methodology.

� While bacterial molecular genetic testing has a distinct advantage of shortened time,
compared to bacteriologic culture technique, to identify bacteria present in urine, the
optimal integration of these techniques into evaluation and management of UTI has not
been defined.
INTRODUCTION

Although urinary tract infections (UTI) are common, most clinicians do not think about
them much until they experience patients (or family/friends) with frequent recurrences
or serious infectious complications, such as pyelonephritis or urosepsis. The current
clinical view is that UTIs are common—like the common cold—and that treatment is
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straightforward based on a sound evidence base with a clear goal. Yet, for affected
patients, emerging evidence suggests that there are opportunities to better under-
stand UTI, improve treatment, and refine goals of therapy to reduce potential harms.
This article reviews common clinical beliefs regarding UTI and provides the evidence
for an updated concept that the bladder has a resident bacterial community (micro-
biome) and that the mere presence of a microbe in the bladder should not trigger
UTI diagnosis or antibiotic therapy.
The term “UTI” is familiar within and beyond clinical medicine, with multiple forms of

direct-to-consumer advertising for UTI-associated products. Within medicine, it is a
broad term that can be applied to any uropathogenic microorganism (bacterial, fungal,
viral) infecting any part of the urinary tract from the kidneys to the urethra in both
sexes. In clinical practice, however, the term “UTI” is generally usually used to
mean uncomplicated acute bacterial cystitis, typically in a non-pregnant patient
who is otherwise healthy. UTIs in individuals with urinary tract abnormalities/obstruc-
tion, renal calculi (stones), urinary catheters, or who are pregnant, male, or immuno-
compromised are considered “complicated UTIs.”
Women are disproportionately affected by UTI and UTI-mimics (ie, conditions that

cause symptoms attributed to UTI without evidence of uropathogenic microbes). In
women, the reproductive tract and urinary tract are separate until the end of the urinary
tract (ie, urethral meatus), which has a separate external opening above the vagina.
Although the length of the female urethra has been implicated (without evidence) as
a UTI risk factor, it is more logical to consider the biological events in a woman’s
life course, such as menstrual cycles, pregnancy/delivery, coital activity, and estrogen
levels as important factors that impact UTI pathogenesis and UTI risk.
In men, the lower urinary tract, downstream of the bladder, is anatomically con-

nected to the reproductive tract (prostate, vasa, epididymis, testes); thus, a UTI in
men also could involve simultaneous prostatitis, epididymitis, and/or epididymoorch-
itis. This is because uropathogens that access the bladder retrogradely through the
urethra also can access the reproductive tract. These unique and differing character-
istics between men and women require that any discussion of UTI be separate for the
2 sexes. This article discusses the urinary microbiome in relation to uncomplicated
acute bacterial cystitis (UTI) in women unless otherwise specified.
Lay and scientific awareness of the human microbiome has increased significantly

over the past decade. Most individuals assume “microbiome” refers to the huge num-
ber of microbes present in the gut, and the multiple studies that relate gut microbes to
human health states. Yet, over the past decade there have been an increasing number
of investigations into clinical questions related to the discovery of the female urinary
microbiome or microbiota. The concept that bladder sterility was the state of a normal
bladder and non-sterility represented a UTI-diseased state was accepted by the med-
ical community. Two publications clearly showed that this concept was not correct:
these publications reported the use of 16S rRNA gene sequencing1 and an enhanced
urine culture technique2 to demonstrate the presence of microbes in the female urinary
bladder, now known as the female urinary microbiota. In retrospect, there were several
earlier clinical observations that should have prompted clinicians to challenge “the
bladder is sterile” concept. In 1956, Edward Kass from Boston City Hospital (now
Boston Medical Center)/Harvard Medical School published that 6% to 23% of urine
specimens obtained by urethral catheterization from women with different medical
conditions, but all without symptoms of UTI, had greater than 105 bacteria/mL by cul-
ture.3 The bacteria were identified as bacillus-form and gram-negative, which we
might presume to be Escherichia coli. As early as 1956, there was concern for high
prevalence (thought to be w20%) of “occult” renal infections (pyelonephritis, renal
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abscess). Furthermore, pyelonephritis was thought to be the leading cause of end-
stage renal failure.4 Dr Kass believed that these “asymptomatic” individuals had UTI
and would go on to develop pyelonephritis and therefore used the term “asymptom-
atic infections.” Today, however, we would use the term “asymptomatic bacteriuria”
to describe these individuals.
The introduction by Jack Lapides, MD, at the University of Michigan of clean inter-

mittent self-catheterizations (CISC) for bladder emptying dysfunction also challenged
the notion that a healthy bladder required sterility.5 CISC was initially rejected by the
medical community for fear that clean, and not sterile, technique of urethral catheter
reuse would convert the sterile bladder into an infected, non-sterile bladder, resulting
in UTI and then pyelonephritis. Dr Lapides stated his hypothesis in the 1972 publica-
tion that “organisms supposedly ascending through the urethra are of doubtful impor-
tance in the genesis of urinary infection,” which is prescient of the development in the
literature over the past 10 to 15 years. A 10-year follow-up study of individuals using
CISC (60 total, of which 39 were females) found that none had long-term sequelae
such as deterioration of renal function from pyelonephritis.6

In separate work, an observant physician, Rosalind Maskell, noted slow-growing
microbes in urine obtained from patients with UTI-like symptoms, but negative stan-
dard urine cultures.7,8 These slow-growing microbes require growth conditions that
differ from those of the standard urine culture. Although Maskell correctly concluded
that standard urine culture was insufficient for diagnosis of many urinary disorders, un-
fortunately, her conclusion was repudiated and ignored, an all-too-common event in
the history of women in medicine9

In our current era, the risk of pyelonephritis within 30 days following diagnosis of UTI
(specifically stated as uncomplicated cystitis) was investigated in a large nationwide
sample ofw750,000 women in Sweden.10 The odds ratio for developing pyelonephri-
tis after UTI wasw1%. Most of these women (78%) did not fill their antibiotic prescrip-
tions after being diagnosed with UTI. For women who filled their antibiotic
prescriptions, the risk reduction in developing pyelonephritis, compared to those
not taking antibiotics, was too low to be clinically significant. The authors concluded
that non-antibiotic treatments for UTIs could be considered, though future studies
should be done to define those at highest risk for pyelonephritis to allow better selec-
tion of those who should be treated with antibiotics. This work highlights the need for
clinicians to be specific about treatment goals: whether it is symptom reduction (oc-
curs quickly—supporting very short course antibiotics), prevention of pyelonephritis
(difficult to justify based on rarity of event), microbial eradication (requires follow-up
testing), or other goals. Clinically, it is clear that currently the main reason for UTI treat-
ment is symptom reduction. Given this, clinicians should prescribe adjuvants to facil-
itate symptom relief, such as anti-inflammatory and analgesic agents, and discontinue
antibiotics once symptoms resolve (often within 24–48 hours). However, most clinical
studies comparing single dose to 3 or more days of therapy have found lower efficacy
with the shorter regimen and thus current guidance for treatment of uncomplicated
UTI ranges between 3 and 5 days depending on the agent used. It is generally
accepted that symptoms are caused by a host response, although the specific mech-
anisms of symptom generation and resolution are poorly understood.
It is within this context that we need to understand the role of the urinary microbiota

in UTI pathogenesis. Identifying the microbes present in health versus those present
during UTI is only the beginning to understand the complexity of UTI pathogenesis,
including differentiating normal variations in the urinary microbiota from pathologic
states that require clinical intervention. Since the bladder was considered to be sterile,
mechanisms underlying the host response to microbes are understudied. It makes
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biologic sense that the microbiota of different niches (bladder, vagina, and gut)
interact with each other in health, as well as during a UTI event; however, these rela-
tionships remain poorly understood. Future research should close knowledge gaps
regarding the interactions between the urinary microbiota and the host, amongst
the microbiota of adjacent niches, and between the microbes within the same micro-
biota. The new knowledge should result in improved UTI treatment in the age of anti-
biotic stewardship.

PRESENCE OF URINARY MICROBIOTA IN ASYMPTOMATIC WOMEN

In a seminal study, 16S rRNAgene sequencingwas used to detectmany different types
of bacteria in urine samples obtained from asymptomatic women using urethral cath-
eterization and suprapubic aspiration techniques.1 Soon after, similar results were
observed by another research team.11 To determine whether these bacteria were alive,
the first team of investigators developed an enhanced culture method called
“expanded quantitative urine culture” (EQUC). Relative to the standard urine culture
(SUC) method typically used by clinical microbiology laboratories, EQUC used greater
volumes of urine,more types of culturemedia, varied atmospheric conditions, and pro-
longed incubation times. In this early study, EQUC detected 35 different bacterial
genera and 85 different bacterial species,2 most of which SUC did not detect. The
most common bacterial genera detected with EQUC in the urinary microbiota were
Lactobacillus (15% of study subjects), Corynebacterium (14.2%), Streptococcus
(11.9%), Actinomyces (6.9%), and Staphylococcus (6.9%). The authors concluded
that EQUC was more sensitive than SUC in detecting both uropathogenic and non-
uropathogenic bacteria in the urine and confirmed the presence of living resident fe-
male urinary microbiota. In another study with a larger population of asymptomatic
women (n 5 224), using both EQUC and 16S rRNA gene sequencing, investigators
found that themain constituents of the urinary microbiota weremembers of the genera
Lactobacillus, Streptococcus, Gardnerella, and Escherichia.12 A recent study
compared results obtained by EQUC with 16S rRNA sequencing technique applied
to urine specimens obtained from urethral catheterization of 59 asymptomatic
women,13 finding that 16S rRNA gene sequencing was more sensitive than EQUC in
detecting bacteria. The most common families of bacteria identified in this study with
16S rRNA sequencing included Streptococcaceae, Staphylococcaceae, Pseudomo-
nadaceae, Lactobacillaceae, and Enterobacteriaceae. However, EQUC also identified
bacteria notdetectedby16S rRNAgene sequencing, includingEnterococcaceae, Pep-
toniphilaceae, Morganellaceae, Corynebacteriaceae, and Leuconostocaceae. There
was only 15% concordance in identities of bacteria detected by 16S rRNA sequencing
compared to EQUC. While EQUC and bacterial DNA sequencing each have advan-
tages and disadvantages, these tests complement each other. DNA sequencing de-
tects more taxa but does not quantify the microbes; EQUC detects fewer taxa but is
quantitative. Each test detects microbes that the other tests do not. These studies
showed that many types of bacteria, both uropathogens and non-uropathogens, exist
in the bladder of healthy asymptomaticwomen and that sequencing and enhanced cul-
ture capture overlapping but distinct parts of the urinary microbiota.

EXPANDED QUANTITATIVE URINE CULTURE IN URINARY TRACT INFECTION
MANAGEMENT

While clinicians currently rely onSUCresults toguidemanagementofUTI, it is important
to point out that obtaining a careful patient history, performing physical examination
including pelvic examination when appropriate, interpreting the laboratory urinalysis,
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and applying clinical acumen and judgment also are important in determining diagnosis
and planning treatment. Although a UTI diagnosis may seem simple, a UTI diagnosis
has complexities that are not always recognized. Startingwith symptoms, it is generally
understood that clinicians expect to obtain a history that indicates a change in urinary
symptoms. In young, healthywomen, this is commonly anabrupt symptomchangewith
acute onset of dysuria, frequency, and urgency. However, later in life when the preva-
lence of lower urinary tract symptoms is much higher, it can be difficult to determine
which urinary tract symptoms indicate UTI. Generally, the most important symptom
that supports a UTI diagnosis, based on EQUC and SUC results, is dysuria.14 The cur-
rent definition of a “positive” SUC result is growth of a single predominant uropathogen
at the quantity of greater than 105 colony-forming units (CFU)/mL from a “clean catch”
midstreamvoided urine specimen and a lower cutoff of greater than 103CFU/mL froma
catheterized urine specimen. The culture conditions and media used in SUC are
designed to primarily detect growth of the Enterobacteriaceae family of gram-
negative bacteria, which includes E coli, Klebsiella species, and Enterobacter species,
amongothers. EQUC ismore sensitive thanSUCbecauseEQUCuses100�moreurine
and additional culture conditions for growth of bacteria that grow poorly or do not grow
at all under SUC conditions.15 However, as with other diagnostic tests, increasing
sensitivity often comeswith a price of decreasing specificity. Identification ofmore spe-
cies by EQUC does not necessarily mean that these species are causative for UTI. A
way to increase the specificity of EQUC is by defining what constitutes a positive
EQUC result based on analysis of differences in EQUC results in women with and
without symptoms of UTI.16 These data showed that, with EQUC, while there were
higher uropathogen loads (higher CFU/mL) in women with UTI symptoms, the differ-
ences between uropathogen loads between the 2 cohorts differed depending on spe-
cies of the uropathogen. Thus, a potential way to increase specificity of EQUC is to
define different cutoff positive values (eg, set different cut-points of CFU/mL) based
on which uropathogenic species grows out from EQUC.
These studies lead to a larger question—that is, what is the “gold standard” for UTI

diagnosis? An even bigger question is—which symptoms are related, or caused, by
which microbe (alone or through actions of the entire microbial community)? For
many years, once testing identified the presence of E coli, further thought and inves-
tigation was set aside, with the belief that the causative agent had been identified. To
see whether associations existed between specific microbes and symptoms, investi-
gators analyzed EQUC results obtained from culturing catheterized urine from 43
post-menopausal women with a history of recurrent UTIs.17 Most of the women
(63%) did not feel like they had a current UTI at time of urine collection, though
more participants who did not feel like they had current UTI had dysuria (74%)
compared to those who felt like they had UTI (50%). These participants stratified
Table 1
Five different clinical phenotypes

Phenotype Characteristics

A Odor, Cloudiness, Vaginal Estrogen Use

B Frequency, Back Pain, Incomplete Emptying, Vaginal Estrogen Use

C Pain/Burning, Odor, Cloudiness, Urgency

D Frequency, Urgency, Pain/Burning, Vaginal Estrogen Use

E Frequency, Urgency, Pain/Burning, Odor, overactive bladder (OAB), Sexual
Activity
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Fig. 1. Summarization of expanded quantitative urine culture (EQUC) studies.
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into 5 different clinical phenotypes (Table 1): Phenotype A: cloudy and malodorous
urine using vaginal estrogen; Phenotype B: urinary frequency, low back pain, incom-
plete emptying; Phenotype C: dysuria, urgency, urine cloudiness/malodorous; Pheno-
type D: dysuria, urgency, urine cloudiness/malodorous with vaginal estrogen use;
Phenotype E: frequency, urgency, dysuria, malodorous, overactive bladder, and sexu-
ally active. Whereas the investigators detected E coli in each of the phenotypic
groups, they found different bacterial species associated with each of these groups.
These results suggest either that the E coli detected in each phenotypic group differed
somehow or that the different symptoms resulted from the functions of the entire mi-
crobial community.
In a randomized trial, EQUC was compared to SUC to determine which diagnostic

test was better in guiding clinicians to treat or not to treat (with antibiotics) women pre-
senting with symptoms suspected to be a UTI, with the primary outcome being symp-
tom relief based on antibiotic treatment guided by results from EQUC or SUC.18 The
schematic of this trial is shown in Fig. 1. Women who thought they had UTI were ran-
domized to either EQUC or SUC testing on catheterized urine specimens and, based
on these culture test results, clinicians followed a protocol to treat or not to treat with
antibiotics. The definition of a “positive” SUC result was based on the presence of any
uropathogen (no cutoff CFU/mL); the definition of a “positive” EQUC result was similar
to SUC with additional growth of any of these following 8 species using no cutoff CFU/
mL: Actinotignum schaalii, Aerococcus sanguinicola, Aerococcus urinae, Alloscardo-
via omnicolens, Corynebacterium riegelii, Corynebacterium urealyticum, Oligella ure-
thralis, and Streptococcus anginosus. If there was growth of more than 1
uropathogen on EQUC or SUC, a common antibiotic that covered each uropathogen
was used. Multiple antibiotics were prescribed to cover every cultured uropathogen, if
needed. The primary outcome was the symptom response of the participants. A
responder or non-responder was defined by the participant’s binary response (yes
or no) to a single symptom question (“do you continue to have UTI symptoms?”).
The outcome was similar between SUC (64% responder rate) and EQUC (69%
responder rate) without statistical difference. Though this trial was not powered pre-
hoc to detect benefit of EQUC over SUC in the specific situation of women whose cul-
tures grew non-E coli uropathogens, a sub-analysis revealed that EQUC did result in a
trend toward a significantly higher responder rate than SUC (77% vs 56%, P 5 .08).
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This is the only randomized trial that compared clinical utility of 2 diagnostic culture
testing methods in UTI management. The symptom response rate of 69% using
EQUC to guide antibiotic treatment suggests that there is additional room for improve-
ment in UTI treatment. While other trials have incorporated test-of-cure culture as part
of outcome data, this trial did not perform test-of-cure culture (with either SUC or
EQUC). Potentially, paired comparisons of SUC and EQUC culture changes pre-
antibiotic and post-antibiotic treatment in relationship to symptom response changes
might have provided additional useful information, such as possibly correlating
response rates to change in uropathogen growth on EQUC pre-antibiotic and post-
antibiotic treatment. This is especially important in women with frequent/recurrent
UTI events, as these individuals are more likely to have non-E coli microbes identified
during their UTI events.
Since neither EQUC nor SUC measures host responses, increasing diagnostic

specificity could include combining EQUC results with another diagnostic test
measuring host responses, such as urinary cytokines.19,20 By combining diagnostic
tests that measure both the host and pathogen factors/characteristics occurring dur-
ing UTI, one would be able to maximize both sensitivity and specificity in UTI
diagnosis.
A practical factor needs to be taken into consideration if EQUC is to be broadly used

in UTI management. This factor is the need to obtain urine specimens via urethral cath-
eterization to minimize contamination from vagina/perineum that would occur if voided
specimens were used for testing. While urethral catheterization is routinely performed
in an urogynecology or urology clinic, this is not necessarily true for primary care, gen-
eral internal medicine, ID clinics, and emergency departments. These ambulatory care
environments do not routinely catheterize women to obtain urine for diagnostic
testing. While an alternative voided collection method requiring patient education
and use of a collection aid device did decrease vaginal/perineal flora detected by
EQUC,21 urine from urethral catheterization is still the best in minimizing contamina-
tion. The addition of urethral catheterization for these clinics may impose a hurdle diffi-
cult to overcome. Finally, urethral catheterization may induce pain during the
catheterization and post-catheterization dysuria for some women, though the vast
majority tolerates this minor procedure.
In summary, EQUC is a more sensitive culture technique compared to SUC for

detecting more types of uropathogens. To maximize specificity, EQUC should be
used on catheterized specimens. However, one of the main hurdles to overcome in
EQUC, similar to SUC, is that the growth of uropathogens in culture may not be clin-
ically important. Finding uropathogens on EQUC does not necessarily mean that the
symptoms are caused by these uropathogens. Further research into host factors
that are elicited during UTI will be a useful adjunct test to EQUC. Other areas for
research could include longitudinal EQUC testing accompanied by correlative symp-
tom changes in order to potentially associate a specific bacterial species with symp-
tom changes. Test-of-cure EQUC done at multiple post-treatment time points in
antibiotic trials with correlation to symptom changes can result in finding stronger as-
sociations between symptoms and EQUC findings.
BACTERIAL GENETIC (MOLECULAR) DIAGNOSTIC TESTING IN URINARY TRACT
INFECTION MANAGEMENT

Clinicians may be offered the opportunity to order non-culture tests to identify mi-
crobes in urine. There are 2 general high-throughput approaches to identifying mi-
crobes in a urine specimen: targeted and non-targeted. The targeted approach
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utilizes select polymerase chain reaction (PCR) primer sequences that can uniquely
detect a pre-determined set of bacteria, primarily those known to cause UTI. In one
way, this multiplex PCR (mPCR) technique can be analogized to SUC as both tests
target certain pre-determined bacteria, usually those bacteria most likely to cause
UTIs. However, the mPCR technique is faster than the SUC, delivering results as
fast as 6 hours. Also, if designed properly, mPCR can detect microbes that SUC
cannot. For example, a set of investigators found that an mPCR method pre-
determined to detect 31 types of bacteria considered to be uropathogens was more
sensitive in detecting the presence of these bacteria than SUC.22 The non-targeted
approach takes advantage of next generation sequencing (NGS). In this approach,
universal PCR primers are used to amplify all the 16S rRNA genes within a urine spec-
imen. These amplicons are then sequenced, and those sequences are compared to a
database to identify each bacterium. 16S rRNA gene sequencing can be analogized to
the EQUC in that both tests “widen the net” by identifying more bacteria compared to
the more targeted methods, such as PCR and SUC. One downside to 16S rRNA gene
sequencing is that it can only detect bacteria and then often only to the genus level. In
contrast, mPCR, EQUC, and SUC can reach the species level. While both mPCR and
16S rRNA gene sequencing identify many more types of bacteria than culture-based
tests, identification of bacteria by these molecular tests does not necessarily mean
that these bacteria are alive. On the other hand, molecular tests can detect bacteria
that are alive but are not cultured. Another problem with 16S rRNA gene sequencing
is that some reports provide “recommendations” or “considerations” for treatment.
Clinicians are cautioned to avoid acceptance of such recommendations without care-
ful evaluation of the patient, her clinical status, and the risks of antibiotic therapy. The
mere presence of bacterial DNA should not be equated with a UTI. Moreover, clini-
cians should evaluate whether there is a lack of beneficial microbes and minimize
further disruptions of a recovering urinary microbial community.
In a non-randomized study, 16S rRNA gene sequencing was compared to SUC to

determine the percentage of positive results and treatment outcomes (symptom re-
lief).23 The study found that individuals who were treated based on positive 16S
rRNA gene sequencing results had more symptomatic relief compared to those that
were treated based on positive SUC results. In this small study (n5 44), every individ-
ual (100%) undergoing 16S rRNA gene sequencing had a positive result, whereas only
30% undergoing SUC had a positive result. It might not be surprising that non-blinded
treatment with antibiotic in 100% of individuals who had positive sequencing test
resulted in better outcomes compared to 30% of individuals who were treated with
antibiotic in the SUC testing arm.
16S rRNA gene sequencing was performed on catheterized urine specimens

collected from 49 women presenting with symptoms of UTI.24 SUC was also per-
formed on all urine specimens. The urine specimens were stratified into 2 groups
based on whether women had recurrent UTI defined as �2 SUC-proven UTI in the
past 6 months or �3 SUC-proven UTIs in the past 12 months (n 5 31) or had no
UTIs in the past 3 years (n5 11 without recurrent UTI). The theory was that a difference
in the urinary microbiota could possibly explain why some women have recurrent UTI
and others do not. While the demographics of the 2 strata had no statistical differ-
ences with the small sample sizes, the mean age of women with recurrent UTI were
older (55 years of age) compared to those with without recurrent UTI (51 years of
age). Furthermore, the women were not matched for menopausal status (68% of
recurrent UTI group were menopausal, 55% of without recurrent UTI group were
menopausal). Because prior antibiotic use would likely affect the urinary microbiome,
it was surprising that prior antibiotic use was actually higher in the group without
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recurrent UTI (64% had prior antibiotic use) compared to the group with recurrent UTI
group (52% had prior antibiotic use). This was counterintuitive and there were no de-
tails of how investigators defined prior antibiotic use. Similar to other studies, the
detection rate for bacteria was significantly higher with 16S rRNA gene sequencing
compared to SUC in both cohorts. Clinicians should interpret these studies with
caution. Just because a new telescope sees more stars does not mean there ARE
more stars. Just because a new test finds more bacteria, this does not mean there
ARE more bacteria. What clinicians need is helpful information to guide assessment
and treatment planning. Broad knowledge about the state of the urinary microbiota
should be helpful for clinicians who know their patients; clinicians should avoid reflex
prescribing based on a laboratory recommendation.
A drawback espoused about sequencing compared to urine culture technique is

that antimicrobial resistance cannot be measured. However, this drawback can be
addressed. Using PCR to sequence antibiotic resistance (ABR) genes, antibiotic resis-
tance patterns can be measured.25 The concept of modulation of ABR genes by bac-
teria within the urinary microbiota was described in this publication. The idea is that the
constituent bacteria work together to regulate ABR gene expression within the com-
munity, including within uropathogens. This community effect would not be detectable
by culture techniques because uropathogens lose communication with the resident
microbiota when they are isolated by culturing on a Petri dish.
Investigators have studied how uropathogens interact with other bacteria within the

urinary microbiota.26 These investigators found that uropathogens, cultured from UTI
individuals, were better able to control growth of commensal bacteria isolated from
the urinary microbiota of asymptomatic individuals than vice-versa. Furthermore,
gram-positive uropathogens regulated growth of commensal urinary microbiome bac-
teria differently than gram-negative uropathogens. While this study utilized in vitro cul-
ture techniques, future studies should seek methods and techniques to study in vivo
interactions within the urinary microbiota since what happens in vitro may not reflect
what occurs in vivo within the urinary microbiota.
While 16S rRNA gene sequencing and mPCR, compared to culture-based tech-

niques, result in increased sensitivity of detection of bacteria from urine specimens,
the question becomes the clinical significance of the additional sensitivity. There is
likely decreased specificity as the sensitivity of the test goes up. Investigating howmo-
lecular testing changes longitudinally after antibiotic treatment for UTI could result in
better test performance for these molecular tests.
INFLUENCE ON OTHER MICROBIOMES (GUT AND VAGINAL) ON URINARY
MICROBIOME AND URINARY TRACT INFECTION

Since the 3 tracts (urinary, reproductive, gut) are in close proximity in the pelvic outlet
in the female, it is plausible that these microbiomes (urinary, vaginal, and stool) interact
with each other. The urinary and vaginal microbiota are similar, while both are dissim-
ilar to the gastrointestinal tract.27 This is likely because of the closer proximity of the
bladder/urethra to the vagina. Many bacteria seem to see the urogenital tract as 1
niche. A recent study touting similarity of urinary microbiota with gut microbiota was
based on a highly heterogeneous population (subjects aged <3 months to adult, renal
transplant individuals, subjects who underwent fecal transplants, individuals with UTI)
and heterogenous urine collection techniques (voided and catheterized).28 Given
these issues, especially the use of voided urine, the findings from this study are difficult
to interpret.
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Though the GI tract microbiome is dissimilar to the urinary microbiome, several
studies suggested that changing the gut microbiome altered the risk of UTI. Investiga-
tors used 16S rRNA gene and shotgun metagenomic sequencing to obtain evidence
for the hypothesis that the presence of certain pathogens in the gut microbiome are
associated with increased risk of UTI development post-renal transplant, a clinical
group that has especially high risks of UTI and serious consequences, including
potential loss of the transplanted kidney.29,30 Furthermore, case reports and single-
cohort retrospective studies have provided evidence that fecal transplant for Clos-
tridium difficile colitis can reduce UTI risk.31–34 However, no analysis of the urinary
microbiota was performed in these fecal transplant studies, so how the urinary micro-
biota changed after fecal transplant remains unknown.
The vagina is another ecologic niche that likely contributes to the urinary micro-

biota and may play a role in UTI pathogenesis. The identities of bacteria that popu-
late the vagina and urine showed that these 2 niches are similar.27 Randomized
controlled trials have clearly demonstrated that low-dose intravaginal estrogen can
decrease the frequency of UTI recurrence in post-menopausal women who have
recurrent UTI.35,36 Changes in both the vaginal and urinary microbiomes have
been observed with low-dose vaginal estrogen use in post-menopausal women.37

Although probiotics that target the vaginal microbiota to reduce risk of UTI have
been suggested, the evidence does not support a change in clinical recommenda-
tions at this time.38 Some have proposed vaginal microbiota transplant to improve
vaginal health and to resolve vaginal dysbiosis39; however, there is no current evi-
dence that vaginal microbiome transplant is effective in reducing UTI risk. Since
the vagina and bladder niches are adjacent, study of mechanisms by which the
vaginal and urinary microbiota interact is likely to elucidate additional mechanisms
by which UTI develops.27,40
THE FUTURE OF URINARY TRACT INFECTION MANAGEMENT IN THE URINARY
MICROBIOME ERA

The traditional clinical concept of a UTI is based on the incorrect framework of causa-
tion by a single uropathogenic bacterial species that normally resides in the gut and
migrates into a sterile bladder to incite a host immune response, giving rise to acute
lower urinary tract symptoms, including dysuria, urinary frequency, and urinary ur-
gency. Diagnosis and treatment based on this incorrect framework are likely associ-
ated with missed opportunities to refine treatment and reduce harm associated with
antibiotic misuse and over-use. There are promising non-antibiotic prevention strate-
gies, such as vaccines, that are beyond the scope of this manuscript.
Scientific honesty about the limitations of our knowledge will help prioritize clinically

relevant research studies that close knowledge gaps about the detailed physiologic
interactions between the host and the urinary microbiota during health and UTI and
how the microbiota between adjacent niches interact with each other. While a small
proportion of individuals with UTIs progress to develop serious UTI manifestations,
including pyelonephritis, urosepsis, and renal abscess, we do not understand how
the different microbial niches might be involved in or prevent these outcomes.
Currently, the main rationale to treat UTIs with antibiotics is to relieve patients’ symp-
toms, although treatment often continues well beyond symptoms resolution, often
with the unsubstantiated goal of reducing bladder microbial load. In the era of anti-
biotic stewardship, treatment of UTIs presents a challenge to balance the use antibi-
otics to treat UTI against potential collateral damage caused by those antibiotics. To
advance this field, more in depth understanding of the myriad of biologic mechanisms
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underlying UTI pathogenesis in the context of the existence of the urinary microbiota
will be required. While antibiotics will remain the mainstay of treatment for the time be-
ing, non-antibiotic therapies as adjuncts or solo treatments must be developed and
specific strategies tested in rigorously designed randomized trials. Understanding
the host response to UTI will help deliver other treatments that modulate the host
response, resulting in reduction in symptoms without concomitant increase in
morbidity from UTI.
Clinicians who want to help their patients with improved UTI care must learn about

the evolving evidence related to the urinary microbiota and the implications for UTI
diagnosis and treatment. No clinician wants to miss an important diagnosis or provide
incorrect treatment. The necessary research should not be delayed, given the preva-
lence and cost of UTI care.
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