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A B S T R A C T   

Aims: To evaluate the potential causal effect of glycemic traits on lung cancer and investigate the impact of 
antihyperglycemic agent-target genes on lung cancer risk. 
Methods: Genetic variants associated with glycemic traits, antihyperglycemic agent-target genes, and lung cancer 
were extracted from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), expression 
quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and the International Lung Cancer Con
sortium (ILCCO), respectively. Mendelian randomization (MR) analyses were performed to examine the asso
ciations of glycemic traits and antihyperglycemic agent-target genes with lung cancer. Mediation analysis was 
conducted to explore whether overweight operated as a mediator between antihyperglycemic agents and lung 
cancer outcomes. 
Results: Genetically determined glycated hemoglobin A1c levels were associated with squamous cell lung cancer 
(OR = 1.78; 95 % CI, 1.08–2.92; p = 0.023). The PRKAB1 gene (the target of metformin) was associated with a 
lower risk of developing lung adenocarcinoma (OR = 0.85; 95 % CI, 0.76–0.96; p = 0.006). Further mediation 
analyses did not support overweight as a mediator between PRKAB1 activation and lung adenocarcinoma. 
Conclusion: Our analyses suggest an association of genetically determined abnormal glycemic traits with squa
mous cell lung cancer. The potential association between PRKAB1 activation and a reduced risk of developing 
lung adenocarcinoma appears to be independent of the anti-obesity effects of metformin, suggesting that PRKAB1 
activation may have a direct protective effect on lung adenocarcinoma development.   

1. Introduction 

According to Cancer Statistics 2023, lung cancer is the leading cause 
of cancer death in both men and women aged 50 years and older [1]. 
Non-small cell lung cancer (NSCLC), including squamous cell carcinoma 
and adenocarcinoma, represents approximately 90 % of all lung cancers 
[2,3]. Although advances in earlier detection and therapeutic develop
ment have decreased the mortality of lung cancer, the 3-year survival for 
lung cancer patients is approximately 30 % [1]. In addition, the het
erogeneity of cancer subtypes, drug resistance, and chemotherapeutic 
side effects hinder the effective treatment of lung cancer [4–6]. There
fore, it is necessary to identify and modify lung cancer risk factors early 

in high-risk populations to reduce the disease burden. In the United 
States, it is predicted that approximately 81 % of lung cancer deaths in 
2023 will be directly caused by cigarette smoking [1]. Notably, meta
bolic risks, such as high body mass index (BMI), fasting glucose and 
glycated hemoglobin A1c (HbA1c), should not be undervalued in the 
prevention of lung cancer [7,8]. 

Previous observational studies have observed that abnormal glucose 
metabolism is a risk factor for lung cancer [9–12]. The UK Biobank study 
published in 2024, including 331,877 participants, indicated that high 
HbA1c concentration was associated with an increased risk of lung 
cancer during the 10.9-year follow-up period [7]. A study using na
tionally representative data from the Korean National Health Insurance 
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System (KNHIS) published in 2021 reported that the highest variabilities 
in fasting glucose increased the risk of developing lung cancer even after 
adjustment for baseline fasting glucose, weight, systolic blood pressure, 
and total cholesterol [10]. Similarly, the results of the 
Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) study 
published in 2017 suggested that higher fasting insulin concentrations 
and the presence of insulin resistance were associated with an elevated 
risk of lung cancer development [12]. However, most previous obser
vational studies focused solely on the association of glycemic traits with 
lung cancer without distinguishing between different types of lung 
cancer, such as squamous cell lung cancer and lung adenocarcinoma, 
which have different underlying mechanisms. 

Mendelian randomization (MR) has emerged as a powerful method 
using genetic variants as instruments to estimate causal relationships 
between exposures and outcomes, which can overcome the impact of 
potential confounding and reverse causality [13]. A recent MR study 
published in 2023 did not detect a significant association of fasting 
glucose and HbA1c with lung cancer using univariable and multivari
able MR (MVMR) analyses in either East Asians or Europeans [14]. 
However, this study did not evaluate the influence of fasting insulin on 
lung cancer. Therefore, the current study aims to fill this gap by 
assessing the relationships of multiple glycemic traits, including fasting 
glucose, fasting insulin and HbA1c, with overall lung cancer as well as 
lung adenocarcinoma and squamous cell lung cancer. 

Given that abnormal glucose metabolism is closely associated with 
lung cancer risk, it prompts consideration for using antihyperglycemic 
agents in preventive therapeutic efficacy. However, previous observa
tional studies provided inconsistent evidence regarding the association 
between antihyperglycemic agents and lung cancer [15–18]. A cohort 
study published in 2021, using the KNHIS database, found that met
formin use in the group with diabetes had a protective effect on lung 
cancer incidence compared with the group without diabetes [16]. 
Conversely, a meta-analysis published in 2023, involving studies from 
2011 to March 2021, observed that biguanide were not associated with 
lower risks of lung cancer [19]. Residual confounding, sample size and 
reverse causality may contribute to inconsistent results in previous 
observational studies. MR analysis has gained traction in various fields, 
including drug repurposing and drug target development [20–23]. 
However, a previous MR analysis used growth differentiation factor 15 
(GDF15), which is strongly associated with metformin use, failed to 
establish causality between metformin use and lung cancer incidence 
[24]. Moreover, previous studies primarily examined the effects of in
dividual antihyperglycemic agent, particularly metformin, on the risk of 
lung cancer, neglecting the associations of other types of 
glucose-lowering medications with lung cancer and its subtypes. Hence, 
a comprehensive MR study is necessary to systematically investigate the 
association between all types of antihyperglycemic agents and the risk of 
lung cancer. 

2. Methods 

2.1. Study design 

This MR study was based on publicly available summary-level data 
from genome-wide association studies (GWASs), expression quantitative 
trait loci (eQTLs) and protein quantitative trait loci (pQTLs) studies. 
First, a two-sample MR analysis was performed to investigate the causal 
effects of glycemic traits (including fasting glucose, fasting insulin, and 
HbA1c) on lung cancer and its subtypes (including squamous cell lung 
cancer and lung adenocarcinoma). Second, summary data-based MR 
(SMR) analyses were conducted to explore the associations of anti
hyperglycemic agents with the risk of developing lung cancer. Third, 
antihyperglycemic agent-target genes that achieved suggestive evidence 
were further tested using pQTLs in blood plasma and Genotype-Tissue 
Expression (GTEx) project data in relevant tissues. Finally, a two-step 
MR study was further used to estimate whether overweight operated 

as a mediator between antihyperglycemic agents and lung cancer. The 
overall design and key assumptions of this study are shown in Fig. 1. The 
reporting guidelines follow the Strengthening the Reporting of Obser
vational Studies in Epidemiology using Mendelian Randomization 
(STROBE-MR) statement [25]. Ethical approval can be found in the 
original GWASs, eQTLs and pQTLs. 

2.2. Genetic instrument selection 

Summary-level genetic data for fasting glucose, fasting insulin and 
HbA1c were derived from the Meta-Analyses of Glucose and Insulin- 
related traits Consortium (MAGIC) involving approximately 200,000 
participants of European ancestry that was released in 2021 [26]. 
Fasting glucose and fasting insulin analyses were adjusted for body mass 
index (BMI). Details of the GWASs included in our study are presented in 
Table 1. Genetic variants associated with fasting glucose, fasting insulin 
and HbA1c at the genome-wide significance level (p < 5 × 10− 8) were 
selected and filtered for linkage disequilibrium (LD) coefficients (r2) of 
less than 0.001 to ensure that the instrumental variables (IVs) were in
dependent [27]. Palindromic SNPs with intermediate allele frequencies 
were removed [27]. Finally, radial MR was conducted to detect and 
remove outliers by setting a threshold for identifying outliers (0.05 in 

Fig. 1. Study design overview and key assumptions. MAGIC, Meta-Analyses of 
Glucose and Insulin-related traits Consortium; ILCCO: International Lung Can
cer Consortium; GIANT, Genetic Investigation of Anthropometric Traits; MR, 
mendelian randomization; SMR, summary-data-based MR; IVW, inverse- 
variance weighted; pQTL, protein quantitative trait loci; eQTL, expression 
quantitative trait loci. 
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our model) and using modified second-order weights [28]. The 
remaining SNPs were used as instruments to perform two-sample MR 
analyses. The detailed information for genetic instruments of fasting 
glucose, fasting insulin and HbA1c is shown in Tables S1–S3. 

Eight classes of antihyperglycemic agents were included in our study: 
biguanides, sulfonylureas, sulfonamides (heterocyclic), alpha- 
glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4 
(DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) analogues, and 
sodium-glucose cotransporter 2 (SGLT2) inhibitors. We used the Drug
Bank database (DrugBank Online | Database for Drug and Drug Target 
Info) to identify the targets of these drugs (Table S4). The associations 
of genetically determined antihyperglycemic agents with lung cancer 
outcomes were assessed by using selected cis-eQTLs as instruments. 
Summary-level data for the cis-eQTLs were obtained from the eQTLGen 
Consortium (eQTLGen - cis-eQTLs) or GTEx-V8 (https://gtexprotal.or 
g/). The most significant cis-eQTL was selected as a genetic instrument 
to conduct SMR analysis. Genetic variants (±200 kb of the gene loca
tion) associated with target genes at the genome-wide significance level 
(p < 5 × 10− 8) were identified. They were further clumped to an LD 
threshold of r2 < 0.3 and were selected as proxies for antihyperglycemic 
agent-target genes to perform a two-sample MR analysis (Table S5). For 
drug targets that achieved suggestive associations for the risk of devel
oping lung cancer using eQTLGen Consortium data, we further per
formed a two-sample MR analysis to validate associations using selected 
pQTLs from UK Biobank (34,557 European participants) (https: 
//metabolomips.org/ukbbpgwas/) (Table S6). Additionally, we con
ducted SMR analyses to validate associations in relevant tissues using 
GTEx-V8 data. Because the practicable genetic instruments for ABCC8, 
KCNJ8, KCNJ1, SI, and AMY2A were not found from eQTLs, seven 
classes of antihyperglycemic agents and twelve target genes were 
included in the final analyses. 

2.3. Data sources for outcomes 

International Lung Cancer Consortium (ILCCO) data were accessed 
for GWAS lung cancer (11,348 cases and 15,861 controls) and its sub
types [including squamous cell lung cancer (3275 cases and 15,038 
controls) and lung adenocarcinomas (3442 cases and 14,894 controls)] 
[29] (Table 1). 

2.4. Statistical analysis 

2.4.1. Analyses of genetically determined glycemic traits and lung cancer 
outcomes 

The inverse-variance weighted (IVW) model (≥3 SNPs) was con
ducted as the primary statistical method to identify the causality be
tween genetically predicted glycemic traits and lung cancer outcomes 
[30]. Additionally, other statistical methods were also performed to 
estimate confounding by pleiotropy, including Mendelian Randomiza
tion Pleiotropy RESidual Sum and Outlier (MR-PRESSO), weighted 

median, simple mode and weighted mode. To ensure the robustness of 
the results, several sensitivity analyses were conducted by using 
Cochran’s Q test based on the IVW method and MR‒Egger regression. 
The F-statistic was calculated for each selected IV to evaluate instrument 
strength. If the value was below 10, it was considered indicative of a 
weak IV [30]. 

2.4.2. Analyses of drug target gene expression and lung cancer outcomes 
The SMR approach was conducted as the main MR analysis to 

investigate the association between genetically determined anti
hyperglycemic agents and lung cancer outcomes. The SMR method can 
be used to evaluate the effects of gene expression on complex traits using 
summary data from eQTLs and GWASs [31]. The heterogeneity in 
dependent instruments (HEIDI) test was performed to determine 
whether the observed association between gene expression and outcome 
was due to a linkage scenario, and a p value of less than 0.05 for the 
HEIDI test indicates that the association may be due to linkage. Second, 
to validate the robustness of the suggestive results, we additionally 
performed the IVW model and four other models. Cochran’s Q statistic, 
MR‒Egger and F-statistic were conducted to evaluate heterogeneity, 
pleiotropy and weak instrument bias, respectively. For drug targets that 
reached suggestive evidence for the risk of developing lung cancer in 
both SMR and IVW-MR analyses, we used pQTLs and GTEx-V8 data for 
the relevant tissues to validate the associations. 

2.4.3. Mediation analysis 
For suggestive associations between antihyperglycemic agents and 

lung cancer outcomes, a two-step MR study was applied to evaluate 
whether overweight operated as a mediator. The first step was to 
identify the causal association of genetically proxied antihyperglycemic 
agent-target genes with overweight. The second step was to evaluate the 
causal effect of overweight on lung cancer based on an univariable MR 
approach. The total effect was then divided into a direct effect (the effect 
of antihyperglycemic agents on lung cancer independent of being 
overweight) and an indirect effect (the effect of being overweight on 
lung cancer). The GWASs for overweight (93,015 cases and 65,840 
controls) were obtained from the Genetic Investigation of Anthropo
metric Traits (GIANT) consortium (GIANT consortium data files - Giant 
Consortium (broadinstitute.org). The control individuals had a BMI <25 
kg/m2, and overweight was defined as a BMI ≥25 kg/m2 [32]. Genetic 
variants associated with overweight at the genome-wide significance 
level were identified and clumped to an LD threshold of r2 < 0.001 to 
perform MR analysis. The IVW model was the primary statistical 
method. Furthermore, to validate the mediation effect of overweight, 
SMR analyses were used to evaluate the causality between genetically 
predicted use of antiobesity drugs and lung cancer outcomes. Gene 
targets of antiobesity drugs were also identified using the DrugBank 
database (Table S7). 

Bonferroni correction was used to adjust for multiple testing. For the 
association of glycemic traits with lung cancer outcomes, strong 

Table 1 
Data description of contributing GWAS summary-level data.  

GWASs Resource Sample size Population ancestry Data download 

Glycemic Traits 
Fasting insulin MAGIC Number of participants: 151,013 European https://magicinvestigators.org/downloads/ 
Fasting glucose MAGIC Number of participants: 200,622 European https://magicinvestigators.org/downloads/ 
Glycated hemoglobin A1c MAGIC Number of participants: 146,806 European https://magicinvestigators.org/downloads/ 
Lung Cancer 
Lung cancer ILCCO Number of cases: 11,348 European https://gwas.mrcieu.ac.uk/datasets/ieu-a-966/ 

Number of controls: 15,861  
Lung adenocarcinoma ILCCO Number of cases: 3442 European https://gwas.mrcieu.ac.uk/datasets/ieu-a-965/ 

Number of controls: 14,894  
Squamous cell lung cancer ILCCO Number of cases: 3275 European https://gwas.mrcieu.ac.uk/datasets/ieu-a-967/ 

Number of controls: 15,038  

GWASs: genome-wide association studies; MAGIC: Meta-Analyses of Glucose and Insulin-related traits Consortium; ILCCO: International Lung Cancer Consortium. 
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evidence was defined as p < 0.0056 (3 exposures and 3 outcomes), and 
suggestive evidence was defined as 0.0056 ≤ p < 0.05. For the associ
ation between antihyperglycemic agents and lung cancer outcomes, 
strong evidence was defined as p < 0.0014 (12 exposures and 3 out
comes), and suggestive evidence was defined as 0.0014 ≤ p < 0.05. For 
the association of antiobesity drugs with lung cancer, strong evidence 
was defined as p < 0.0036 (14 exposures and 1 outcome), and suggestive 
evidence was defined as 0.0036 ≤ p < 0.05. For the other analyses, an 
observed two-sided p < 0.05 was considered indicative of statistical 
significance. Statistical analyses were performed using the TwoSam
pleMR (version 0.5.6), MR-PRESSO (version 1.0), and RadialMR 
(version 1.0) packages in R (version 4.2.1) and SMR software (version 
1.3.1) (SMR | Yang Lab (westlake.edu.cn)). 

3. Results 

3.1. Causal effects of glycemic traits on lung cancer outcomes 

Among fasting insulin, fasting glucose, and HbA1c, we found that 
only genetically determined HbA1c levels were suggestively associated 
with an increased risk of squamous cell lung cancer in the IVW-MR re
sults [odds ratio (OR) = 1.78; 95 % confidence interval (CI), 1.08–2.92; 
p = 0.023] (Fig. 2 and Table S8). A nonsignificant association was found 
between either fasting insulin or fasting glucose and lung cancer out
comes. The results of the MR-PRESSO method were consistent with the 
IVW-MR results (Table S8). In sensitivity analyses, F-statistics for all IVs 
were over 10, avoiding the existence of weak instrumental bias 
(Tables S1–S3). Heterogeneity and pleiotropy were not observed with 
Cochran’s Q test (all p > 0.05) or the MR‒Egger intercept test (all p of 
intercept >0.05) (Table S8). 

3.2. Causal effects of antihyperglycemic agents on the risks of lung cancer 
outcomes 

A total of 165, 1362, 764, 101, 232, 134, 331, 186, 1127, 166, 1019, 
and 13 cis-eQTLs were selected from eQTLGen for the antihyperglycemic 
agent-target genes DPP4, ETFDH, GAA, GANAB, GANC, GLP1R, KCNJ11, 

MGAM, PPARG, PRKAA1, PRKAB1, and SLC5A2, respectively. The SMR 
analyses using the most significant cis-eQTL in blood as a proxy of 
exposure found that PRKAB1 of metformin was the only drug target 
suggestively associated with a lower risk of developing lung adenocar
cinoma (OR = 0.85; 95 % CI, 0.76–0.96; p = 0.006) (Fig. 3 and 
Table S9). Other genetic instruments of drug targets did not show causal 
effects on lung cancer outcomes (Tables S9–S11). In sensitivity analyses, 
the F-statistics for selected cis-eQTLs were >30. The HEIDI test indicated 
that no associations were due to linkage (p > 0.05) (Tables S9–S11). 

The IVW-MR analysis using 36 selected significant cis-eQTLs and 4 
pQTLs also provided suggestive evidence for the effect of PRKAB1 
expression on lung adenocarcinoma (OR = 0.91; 95 % CI, 0.85–0.98; p 
= 0.009) and (OR = 0.72; 95 % CI, 0.56–0.93; p = 0.012), which was 
consistent with the SMR result (Tables S12–S13). In sensitivity analyses, 
weak instrumental bias, pleiotropy and heterogeneity were not found 
with F-statistics, the MR‒Egger intercept test (all p of intercept >0.05) 
or Cochran’s Q test (all p > 0.05) (Tables S5–6 and Tables S12–S13). 

Furthermore, genetic variants related to PRKAB1 expression in liver 
and transverse colon tissues were applied as IVs for further validation 
using SMR analyses. Seven cis-eQTLs were identified from GTEx-V8 data 
for the PRKAB1 gene in the liver and transverse colon. The results from 
the SMR analyses found a causal relationship between higher expression 
of the PRKAB1 gene and a lower risk of developing lung adenocarci
noma in both the liver (OR = 0.88; 95 % CI, 0.80–0.97; p = 0.010) and 
transverse colon (OR = 0.69; 95 % CI, 0.52–0.92; p = 0.010) 
(Table S14). In sensitivity analyses, the F-statistic for rs11064881 was 
>50. The HEIDI test showed that no associations were due to linkage (p 
> 0.05) (Table S14). 

3.3. Mediation analysis 

The two-step MR analysis did not provide evidence that overweight 
was a mediator between metformin use and lung adenocarcinoma. The 
results of IVW-MR analyses showed that genetically determined 
PRKAB1 expression was not associated with overweight (OR = 0.98, 95 
% CI, 0.93–1.03, p = 0.465), and overweight was not associated with 
lung adenocarcinoma risk (OR = 0.91, 95 % CI, 0.74–1.10, p = 0.327) 

Fig. 2. IVW-MR analyses for association of glycemic traits with the risks of lung cancer outcomes. IVW, Inverse-variance-weighted; IVs: instrumental variables; MR, 
Mendelian randomization; OR, odds ratio; CI, confidence interval. 
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(Tables S15–S16). In sensitivity analyses, no heterogeneity or pleiotropy 
was observed using Cochran’s Q (all p > 0.05) or the MR‒Egger inter
cept test (all p of intercept >0.05) (Tables S15–S16). The F-statistics for 
all IVs were over 20, indicating strong instrumental variables 
(Tables S17–18). 

Furthermore, three classes of antiobesity drugs were included: cen
trally acting antiobesity products, peripherally acting antiobesity 
products, and other antiobesity drugs. A total of 67, 37, 53, 614, 1588, 
750, 434, 312, 2, 676, 87, 288, 34 and 609 cis-eQTLs were identified 
from eQTLGen for the antiobesity drug target genes SCN3A, SCN5A, 
ADRB2, CNR1, CA2, SIGMAR1, CACNB2, ADRB1, CACNA1C, CACNB3, 
SCN8A, CA4, SCN4A, and GRIK1, respectively, and the most significant 
cis-eQTL SNP was selected as a genetic instrument for the target gene 
(Table S19). The SMR analyses identified no association of antiobesity 
drug target gene expression levels with lung adenocarcinoma risk. In 
sensitivity analysis, the HEIDI test indicated that observed associations 
were not due to a linkage (p > 0.05), except for expression of the gene 
ADRB1 (p = 0.005). The F-statistics for the IVs were over 30 (Table S19). 

4. Discussion 

In this comprehensive MR study, we found a suggestive association 
between HbA1c levels and the risk of squamous cell lung cancer. 
Additionally, upregulated expression of PRKAB1 (the target of metfor
min) in blood was suggestively associated with a decreased risk of 
developing lung adenocarcinoma, which was validated using pQTLs in 
plasma and eQTLs both in the liver and transverse colon. Mediation 
analysis indicated that overweight did not participate in the mediating 
pathway from PRKAB1 activation to lung adenocarcinoma incidence. 

Two previous studies estimated the causal association between 

glycemic traits and lung cancer using MR analyses. Liu et al. [14] did not 
detect a significant association of fasting glucose and HbA1c with lung 
cancer. However, the influence of fasting insulin on lung cancer was not 
evaluated in this study. According to Ding et al. [33], a causal rela
tionship was also not provided between glycemic traits and lung cancer, 
including HbA1c, fasting glucose, and fasting insulin. However, their 
analysis was limited by a small dataset of only 2485 cases, which lacked 
information on lung cancer subtypes. Consistent with previous findings, 
we could not provide strong evidence to support significantly positive 
associations of glycemic traits with lung cancer. However, we found that 
the genetically determined HbA1c level was suggestively associated 
with an increased risk of squamous cell lung cancer. This observation 
aligns with a study from the UK Biobank, which also found an associa
tion between high HbA1c levels and squamous cell lung cancer after 
adjusting for potential confounders [7]. The HbA1c level represents a 
long-term state of blood glucose [34], while fasting glucose and fasting 
insulin are highly influenced by other factors, which might explain the 
observed inconsistency for the three glycemic traits with squamous cell 
lung cancer [11,35]. The observed association suggests that individuals 
with genetically higher HbA1c levels, indicative of elevated average 
blood glucose over time, may have an increased risk of developing 
squamous cell lung cancer. 

It has been proposed that metformin may have an antitumoral 
function [36]. An extensive cohort study found that patients with dia
betes taking metformin had a significantly reduced risk of developing 
lung cancer compared with patients not using metformin in the unad
justed model [hazard ratio (HR) = 0.49, 95 % CI, 0.32–0.44], while the 
protective effect on lung cancer incidence was not significant after 
adjustment (HR = 0.70, 95 % CI, 0.43–1.15) [18]. Another Korean study 
with 12.86 years of median follow-up found that metformin use could 

Fig. 3. SMR analyses for associations of expression of antihyperglycemic agent target genes with the risk of lung cancer outcomes. SMR, Summary-data-based 
Mendelian randomization; eQTL, expression quantitative trait loci. 
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not decrease lung cancer risk in either male (HR = 1.29, 95 % CI, 
0.98–1.69) or female patients with diabetes (HR = 0.66, 95 % CI, 
0.37–1.18) in the fully adjusted model [17]. However, observational 
studies on whether metformin could affect lung adenocarcinoma and 
squamous cell lung cancer are limited. Our study suggested that genet
ically determined PRKAB1 is associated with a decreased risk of devel
oping lung adenocarcinoma. In general, metformin plays a significant 
role in anti-non-small cell lung cancer cell activity through the liver 
kinase B1 (LKB1)-5′-adenosine monophosphate-activated protein kinase 
(AMPK) pathway [37,38]. Metformin inhibits its signaling [39] and 
growth [40] by directly activating AMPK via LKB1. Mammalian target of 
rapamycin (mTOR) is the downstream target of the LKB1-AMPK 
pathway, which is an important target of metformin in tumor inhibi
tion [37]. AMPK and its homologs appear to exist in heterotrimers 
consisting of catalytic α subunits and regulatory β and γ subunits [41], 
which are encoded by the PRKAA1, PRKAA2, PRKAB1, PRKAB2, 
PRKAG1, PRKAG2 and PRKAG3 genes [42]. AMPK activation plays an 
important role in inhibiting the proliferation and metastasis of cancer 
cells. Induction of AMPK-mediated caspase-dependent mitochondrial 
apoptotic conditions can selectively inhibit the proliferation of hepato
cellular cancer cells, and activation of AMPK and inhibition of 
ERK-signaling pathway can reduce the metastasis potential of melanoma 
A375 cells [6]. In our study, only genetic variants of PRKAB1 were 
suggestively associated with a decreased risk of developing lung 
adenocarcinoma. Metformin acts on the liver and intestines to lower 
blood glucose levels by decreasing glucose production and increasing 
glucose absorption and utilization [43]. Consistent results between 
PRKAB1 expression and lung adenocarcinoma risk were provided in the 
liver and transverse colon using SMR analyses. The AMPK-HOXB9-KRAS 
axis was proposed in 2022 and revealed a mechanism for metformin 
inhibition of lung adenocarcinoma [44]. HOXB9, a significant tran
scription factor, is closely linked to adverse outcomes in individuals 
diagnosed with lung adenocarcinoma [44]. In both mice and lung 
adenocarcinoma cells, AMPK mediates HOXB9 T133 phosphorylation 
and downregulates the level of HOXB9, ultimately controls lung 
adenocarcinoma progression [44]. 

Previous studies suggested that the antitumor effects of metformin 
may depend on BMI [45]. To test this hypothesis, a two-step MR 
approach was conducted to explore whether overweight operated as a 
mediator from metformin use to lung cancer incidence. In this study, the 
lack of causal association between overweight and lung adenocarcinoma 
incidence suggests that higher PRKAB1 expression reduces the risk of 
developing lung adenocarcinoma through other mechanisms. A prior 
investigation into the influence of common genetic variants in the genes 
PRKAA2, PRKAB1, and PRKAB2 on type 2 diabetes and related traits 
suggested that the impact of these genes on BMI is either minimal or 
non-existent [46]. 

Based on our findings, HbA1c levels could be considered as one of the 
risk assessment indicators for the development of squamous cell lung 
cancer. For individuals with genetic variants associated with high 
HbA1c levels, more frequent screening or closer monitoring may be 
warranted to detect potential lung cancer early. Additionally, our study 
suggests potential avenues for developing novel targeted therapies or 
interventions aimed at modulating AMPK activity for lung adenocarci
noma prevention or treatment. 

The main strength of this study was that we used genetic variants to 
proxy antihyperglycemic agent exposure based on eQTLs and validated 
the association in related tissues, thus overcoming limitations from 
observational studies. Second, we attempted to analyze the mediating 
role of overweight between metformin use and lung cancer risk using a 
two-step MR analysis. Third, radial MR and several sensitivity analyses 
were conducted to exclude potential outliers and examine the robustness 
of the results. 

4.1. Limitations 

However, this study had several potential limitations. First, genetic 
variants evaluate the effect of lifelong changes in glycemic traits and 
antihyperglycemic agents on lung cancer risk, and the magnitude of the 
effect may be different from the short-term effects of clinical in
terventions. Second, because of the unavailability of data on ABCC8, 
KCNJ8, KCNJ1, SI and AMY2A from the eQTLGen Consortium, we could 
not investigate the association between sulfonamide use and lung cancer 
outcomes. Finally, the GWAS, eQTLs and pQTLs data for this study were 
based on the European population, and our findings might not apply to 
populations with other ancestries. 

5. Conclusions 

In summary, this MR analysis revealed that genetically determined 
HbA1c levels were suggestively associated with a higher risk of squa
mous cell lung cancer. Additionally, the activation of PRKAB1 was 
associated with a lower risk of lung adenocarcinoma, suggesting that 
targeting PRKAB1 could potentially prevent lung adenocarcinoma. 
Moreover, the anti-tumor effect of PRKAB1 in lung adenocarcinoma may 
be independent of its anti-obesity effect. 
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[32] Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome- 
wide meta-analysis identifies 11 new loci for anthropometric traits and provides 
insights into genetic architecture. Nat Genet 2013;45:501–12. 

[33] Ding J, Tu Z, Chen H, Liu Z. Identifying modifiable risk factors of lung cancer: 
indications from Mendelian randomization. PLoS One 2021;16:e0258498. 

[34] Gomez-Peralta F, Choudhary P, Cosson E, Irace C, Rami-Merhar B, Seibold A. 
Understanding the clinical implications of differences between glucose 
management indicator and glycated haemoglobin. Diabetes Obes Metabol 2022;24: 
599–608. 

[35] Zhang M, Li X, Zhang X, Yang Y, Feng Z, Liu X. Association of serum hemoglobin 
A1c, C-peptide and insulin-like growth factor-1 levels with the occurrence and 
development of lung cancer. Mol Clin Oncol 2014;2:506–8. 

[36] Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing 
metformin for the prevention of cancer and cancer recurrence. Diabetologia 2017; 
60:1639–47. 

[37] Han P, Zhou J, Xiang J, Liu Q, Sun K. Research progress on the therapeutic effect 
and mechanism of metformin for lung cancer. Oncol Rep 2023;49 (Review). 

[38] Ciccarese F, Zulato E, Indraccolo S. LKB1/AMPK pathway and drug response in 
cancer: a therapeutic perspective. Oxid Med Cell Longev 2019;2019:8730816. 

[39] Han D, Li SJ, Zhu YT, Liu L, Li MX. LKB1/AMPK/mTOR signaling pathway in non- 
small-cell lung cancer. Asian Pac J Cancer Prev APJCP 2013;14:4033–9. 

[40] Guo Q, Liu Z, Jiang L, Liu M, Ma J, Yang C, et al. Metformin inhibits growth of 
human non-small cell lung cancer cells via liver kinase B-1-independent activation 
of adenosine monophosphate-activated protein kinase. Mol Med Rep 2016;13: 
2590–6. 

[41] Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that 
maintains energy homeostasis. Nat Rev Mol Cell Biol 2012;13:251–62. 

[42] Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, et al. Structural basis for AMP 
binding to mammalian AMP-activated protein kinase. Nature 2007;449:496–500. 

[43] Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. 
Diabetologia 2017;60:1577–85. 

[44] Wang T, Guo H, Li Q, Wu W, Yu M, Zhang L, et al. The AMPK-HOXB9-KRAS axis 
regulates lung adenocarcinoma growth in response to cellular energy alterations. 
Cell Rep 2022;40:111210. 

[45] Arrieta O, Zatarain-Barrón ZL, Turcott JG, Barrón F, Yendamuri S, Cardona AF, 
et al. Association of BMI with benefit of metformin plus epidermal growth factor 
receptor–tyrosine kinase inhibitors in patients with advanced lung 
adenocarcinoma: a secondary analysis of a phase 2 randomized clinical trial. JAMA 
Oncol 2022;8:477–9. 

[46] Sun MW, Lee JY, de Bakker PI, Burtt NP, Almgren P, Råstam L, et al. Haplotype 
structures and large-scale association testing of the 5’ AMP-activated protein 
kinase genes PRKAA2, PRKAB1, and PRKAB2 [corrected] with type 2 diabetes. 
Diabetes 2006;55:849–55. 

W. Sun et al.                                                                                                                                                                                                                                     

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en junio 14, 
2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.

https://doi.org/10.1016/j.dsx.2024.103048
https://doi.org/10.1016/j.dsx.2024.103048
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref1
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref1
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref2
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref2
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref2
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref2
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref3
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref3
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref4
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref4
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref4
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref5
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref5
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref5
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref6
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref6
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref7
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref7
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref7
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref8
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref8
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref8
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref9
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref9
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref9
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref10
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref10
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref10
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref11
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref11
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref12
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref12
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref12
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref13
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref13
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref14
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref14
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref14
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref15
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref15
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref15
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref16
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref16
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref16
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref16
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref17
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref17
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref17
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref18
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref18
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref18
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref19
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref19
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref19
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref20
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref20
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref20
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref21
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref21
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref21
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref22
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref22
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref22
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref23
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref23
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref23
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref24
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref24
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref24
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref25
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref25
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref25
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref25
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref26
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref26
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref27
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref27
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref27
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref28
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref28
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref28
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref28
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref29
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref29
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref29
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref30
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref30
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref31
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref31
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref31
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref32
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref32
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref32
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref33
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref33
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref34
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref34
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref34
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref34
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref35
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref35
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref35
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref36
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref36
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref36
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref37
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref37
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref38
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref38
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref39
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref39
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref40
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref40
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref40
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref40
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref41
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref41
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref42
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref42
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref43
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref43
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref44
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref44
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref44
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref45
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref45
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref45
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref45
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref45
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref46
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref46
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref46
http://refhub.elsevier.com/S1871-4021(24)00109-7/sref46

	Genetic association of glycemic traits and antihyperglycemic agent target genes with the risk of lung cancer: A Mendelian r ...
	1 Introduction
	2 Methods
	2.1 Study design
	2.2 Genetic instrument selection
	2.3 Data sources for outcomes
	2.4 Statistical analysis
	2.4.1 Analyses of genetically determined glycemic traits and lung cancer outcomes
	2.4.2 Analyses of drug target gene expression and lung cancer outcomes
	2.4.3 Mediation analysis


	3 Results
	3.1 Causal effects of glycemic traits on lung cancer outcomes
	3.2 Causal effects of antihyperglycemic agents on the risks of lung cancer outcomes
	3.3 Mediation analysis

	4 Discussion
	4.1 Limitations

	5 Conclusions
	Ethics approval and consent to participate
	Consent for publication
	Funding
	Authors’ contributions
	Data availability
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


