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Significant advances in artificial intelligence (AI) over the
past decade potentially may lead to dramatic effects on
clinical practice. Digitized histology represents an area
ripe for AI implementation. We describe several current
needs within the world of gastrointestinal histopathology,
and outline, using currently studied models, how AI
potentially can address them. We also highlight pitfalls as
AI makes inroads into clinical practice.

Keywords: Artificial Intelligence; Deep Learning; Digital
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Although the inception of artificial intelligence (AI)
began more than 50 years ago, there has been a

dramatic expansion of AI research in the clinical realm
over the past decade.1 As researchers and institutions,
both public and private, have created increasingly com-
plex AI models, clinicians have been promised a para-
digm shift in the management of patients, both at the
population as well as individual levels. As of this writing,
AI applications in general clinical use include virtual
chatbots that can parse through patient symptoms and
recommend whether further (and what specific) evalu-
ation is required,2,3 wearable technology that can assess
for the presence of atrial fibrillation,4 models that can
assist clinicians with real-time colon polyp identifica-
tion,5 and algorithms that can aggregate hospital-based
outcomes enabling comparisons with other institutions.6

Notably, the vast majority of Food and Drug Administra-
tion (FDA)-cleared devices are in radiology, likely
because of the large archives of digital data that are crit-
ical for the development of AI models.7 It is abundantly
clear that given its clinical and procedural emphasis,
gastroenterology is a field that is ripe for innovation
from an AI standpoint. Indeed, a simple PubMed search
for artificial intelligence gastroenterology has seen a
distinct increase in annual publications, from 13 in
2013 to more than 600 in 2022.

The clinical adoption of high-throughput digitization
of pathology slides has accelerated in the past 5 years,
particularly after the FDA approved marketing of a
digitized whole slide imaging platform.8 Given the critical
role histology plays in the management of an array of
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gastrointestinal disorders, AI potentially will impact
diagnosis and therapy in this field.

In this review we provide an overview of AI appli-
cations for gastrointestinal histopathology near adoption
or currently in clinical use, highlighting those that will
have a significant impact on clinical care. It is imperative
that practicing physicians understand the implications of
AI, including potential contributions, pitfalls, and impact
to their profession.

What Is Artificial Intelligence?

The term artificial intelligence was coined in the
1950s initially as a framework of if, then statements, with
the goal of simulating critical thinking.9 With advances in
algorithmic development, AI models in the modern area
can complete complex tasks with accuracy and efficacy
on par with human beings, a process that has been
expedited by the creation of machine learning (ML) and
deep learning models.

Analysis of histopathology images using ML can be
considered as a subset of computer vision. However, it is
important to recognize that other types of data can be
leveraged for image-oriented tasks, including unstruc-
tured text notes of an electronic medical record that can
be processed via natural language processing models,10

as well as tabular data, defined as information ar-
ranged in rows and columns, such as laboratory values.
This non-imaging information can be merged with his-
topathology inputs when training a model.

Table 1 presents an overview of the various tasks
that can be performed in histopathology using
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Table 1. Summary of Different Tasks and Corresponding Deep Learning–Based Computer Vision Approaches

Task Description

Classification task Assigning a class label to input examples (eg, deciding whether a WSI containing a colorectal polyp
specimen is benign or malignant)

Segmentation task Dividing different regions of an image by accurate delineation (eg, tumoral area on a pancreatic
carcinoma WSI)

Object-detection task Creating bounding boxes around the object of interest (eg, drawing bounding boxes around
lymphocytes in gastric crypts)

Regression task Predicting a continuous numeric value (eg, predicting free-recurrence survival from colorectal
carcinoma WSI)

Image-generation task Normalizing or synthesizing images that do not exist (eg, generating WSI with the staining style of
Institute A using WSIs from Institute B)

WSI, whole slide image.
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computer vision. Each of these tasks can be trained in a
supervised manner, that is, if human annotations are
provided to teach the model. The performance of the
model will depend on the quality of annotations that
were provided, and therefore annotation agreement
often may be required among experts within the field of
interest before including such data in model training.
However, there also are models built in an unsuper-
vised manner, in which human annotations are not
included during training. This can be used in various
tasks in which the objective is to discern different
Figure 1. Schema for the development of an artificial intelligen
may be trained in a supervised (annotations provided), unsupe
model training. (B) Unsupervised models could be adjusted bas
first is validated internally to assess performance characteristics
generalizability and precision.
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categories or clusters of information based on imaging
features. Oftentimes, algorithms initially trained in an
unsupervised manner form the basis of foundational
models, which are finetuned using a supervised
approach to improve performance.

Once developed, models then are validated, involving
cross-fold validation to assess the model robustness,
then evaluating performance on a hold-out internal test
set, and, finally, assessing performance on an external
test set (Figure 1). External validation of models is
important to establish generalizability across different
ce model in digital histopathology. (A) Deep learning models
rvised (no annotations provided), or combination manner for
ed on inputs provided by researchers. (C) Model performance
, and (D) then is applied to an external validation set to assess
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staining, scanning, and biopsy techniques, and tissue
preparation types.
Opportunities for Improvement and
Potential of Digital Pathology

The digitization of pathology enables facile imple-
mentation of AI into clinical workflows. There are a
number of use cases in which AI involvement can benefit
clinical care. Given the critical shortage of physicians in
the United States,11 the adoption of AI in clinical pa-
thology workflow may allow for high-throughput slide
assessment and initial impressions, which then can be
reviewed by pathologists who can synthesize the slide
findings within the clinical context. Furthermore, this
may enable remote pathologist review (which is partic-
ularly helpful in resource-scarce locations), ultimately
enabling appropriate management, which can lead to
improved patient care. In addition, in disease states in
which review of slides involves tedious manual seg-
mentation of histologic features, AI may expedite this
process, again freeing up pathologists for more pertinent
work.

It is exceedingly unlikely that AI models will replace
physicians. There are intangible factors that physicians
may pick up on that could affect patient care, such as
showing empathy, which allows a patient to open up and
share symptoms that perhaps initially were not shared
willingly, or to accomplish procedures without the need
for complex robotics/machinery (eg, consider what type
of device would be needed to place a central line on a
crashing patient). From a pathology perspective,
currently trained models will not be able to generate
hypotheses and lead investigations based on disease
processes seen on slides. However, given the ability to
mine large, multicategoric data sets, it is conceivable that
AI models may identify associations that are not inher-
ently obvious to clinicians, and when combined with
histopathology, novel diagnostic and prognostic infor-
mation may be gleaned, leading to personalized thera-
peutic options for patients.

Slide digitization may enable collaboration in both
clinical care and research. Currently, slide review from
external organizations is a laborious process involving
identification of appropriate patients, calling of stored
slides (which often are kept at remote locations in the
case of historical slides used in research, associated with
slide degradation, a known complication that occurs over
time), and, finally, manual review, until slides are ship-
ped to a partnering institution, exposing them to the
prospect of getting lost or damaged. Digitization offers
the ability for rapid review of slides globally while
maintaining the quality of slides as they were created
originally. Coupled with AI, this could significantly
improve diagnostic capabilities and enhance research
collaboration.
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What Are the Problems That Artificial
Intelligence Currently Is Solving in Digital
Histopathology?

Improved Efficiency of Tissue Analysis for
Dysplasia Assessment

Barrett’s esophagus. Barrett’s esophagus (BE) is the
only known precursor lesion for the development of
esophageal adenocarcinoma (EAC). Multiple gastroen-
terological societies have recommended endoscopic
surveillance of patient with nondysplastic BE to identify
dysplasia, which is amenable to endoscopic therapy.12,13

During endoscopic surveillance, 4-quadrant biopsy
specimens are taken in 1- to 2-cm increments.14 How-
ever, this method, although rigorous, misses sampling of
the vast majority of the BE segment.

Wide-area transepithelial sampling with 3-
dimensional analysis (WATS-3D; CDx Diagnostics, Suf-
fern, NY) overcomes this limitation by using a stiff brush
to sample a significantly greater area of BE mucosa.
Samples are processed enabling a 3D view of tissue in
0.5-m sections, which consist of mainly cells and some
stromal elements. Using a convolutional neural network
(CNN) developed on a residual neural network model,
regions suspicious for atypical and/or dysplastic epithe-
lium are identified and presented to an interpreting
pathologist for final diagnosis.15 This process rapidly in-
creases the speed of interpretation by highlighting areas
most concerning for manual review. As such, this partic-
ular example of an AI application allows for more efficient
analysis of a larger amount of tissue than would be ob-
tained via traditional BE sampling, while adding only an
average of 4.5 minutes to the total procedure time.15

A meta-analysis of 13 studies showed that the addition
of WATS-3D to routine BE sampling yielded an increase in
dysplasia diagnosis by 2.1%.16 Given these results, WATS-
3D, which is commercially available and has its own
Current Procedural Terminology billing codes, is available
for clinical use and a large, prospective multicenter trial is
underway to determine the impact of this AI-augmented
digital histology test on dysplasia detection in compari-
son with conventional Seattle protocol biopsies.

Eosinophilic esophagitis. Several disease states
require carefulmanual review and quantification of subtle
histology features on slides, a prime example being
eosinophilic esophagitis (EoE) and the EoE histologic
scoring system.17 Although research suggests this system
outperforms standard peak eosinophil count with regard
to disease diagnosis and monitoring, adoption is slow
given the significant manual effort required to assess not
only eosinophil count, but other components of the EoE
histologic scoring system including basal zone hyperpla-
sia, eosinophilic abscesses, surface layering, and so
forth.17 AI models may expedite the process of slide re-
view, enabling pathologists to perform more efficient
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review of straightforward cases, thus saving time formore
focused review of difficult cases. An AI model for seg-
mentation of many of the features mentioned earlier was
trained on 40 EoE slides, and validated on 203 slides with
interobserver variability on par with that of pathologists,
when compared with an interpretation by an expert
gastrointestinal (GI) pathologist.18 This may result in
meaningful clinical changes in management because this
information may help guide therapeutic decisions.

Helicobacter pylori. H pylori has been identified as a
class 1 carcinogen and is likely the most significant
global risk factor for gastric carcinoma. Although
noninvasive testing is available for detection of H pylori,
this bacterium can be identified on H&E and immuno-
histochemical staining on gastric biopsy specimens. Re-
view of whole slides to find these small bacteria, often no
larger than 4 mm, is tedious. As such, a CNN model was
trained on 477 slides to aid pathologists in the diagnosis
of H pylori on gastric biopsy specimens. This then was
tested on a subset of 87 slides in which further poly-
merase chain reaction or immunohistochemical staining
was performed as the gold standard. This decision sup-
port model achieved a sensitivity of 100% and a speci-
ficity of 68.4% when compared with the gold standard,
with an area under the curve (AUC) of 0.92. Results were
not as robust, but still reasonable, for H&E-stained slides
(AUC, 0.81), and shows a model could feasibly minimize
time spent assessing for H pylori.19

Ulcerative colitis. It is well established that histologic
remission in ulcerative colitis (UC) is associated with
improved clinical outcomes and has been suggested as a
therapeutic target for management of inflammatory
bowel diseases.20 To that end, UC patients undergo
frequent endoscopic evaluations to determine disease
activity in response to various treatments. However,
given the large amount of tissue obtained during pro-
cedures and the inherent difficulty with grading disease
severity, this is a time-consuming task, even for experi-
enced pathologists.21 A CNN model was developed and
trained on 118 colonic biopsy specimens to predict his-
tologic and clinical outcomes in patients with UC. In a
test set of 375 patients, this model achieved a sensitivity
and specificity exceeding 75% for histologic scoring, and
using a histologic index remission score, the model was
able to accurately risk-stratify patients (and exceeded
that as proposed by 6 expert inflammatory bowel disease
pathologists) who would experience a UC flare from
those who remained in remission.21,22

Colorectal cancer screening. Colorectal cancer (CRC)
remains a leading cause of morbidity and mortality
worldwide, and CRC screening has been recommended in
the general population starting at the age of 45 because
early stage diagnosis dramatically improves survival.23,24

In 2014, the National Colorectal Cancer Roundtable
initiated the Every Community Strategic Plan with the
goal of achieving 80% CRC screening rates in commu-
nities across the United States, which would equal
roughly 15 million colonoscopies per annum.25 This
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would greatly increase the need for pathologist review of
polypectomy specimens.

To mitigate this increase in pathology workload, a
graph neural network was trained on more than 5000
colon biopsy specimens with a wide range of pathologies
annotated by a team of expert GI pathologists.26 The
model was trained to distinguish normal from abnormal
tissue, with the clinical goal of saving valuable time spent
viewing unremarkable slides. This model achieved an
area under the receiver operating characteristic of 0.98
and an F1 score of 0.98 on internal validation sets, and
area under the receiver operating characteristics/F1
scores exceeding 0.95 and 0.94, respectively, on external
validation. This model would reduce the need to review
approximately 54% of slides in the validation sets, and in
practice could increase the efficiency of clinical flow. A
separate study examined the effect of an augmented AI
histopathology imaging system trained on 326 slides to
aid pathologist diagnosis among tubular, villous, sessile
serrated, and hyperplastic polyps.27 This improved
diagnostic accuracy from 73.9% to 80.8% (P < .001), but
also lead to a longer slide evaluation time, adding an
average of 4.8 seconds (95% CI, 3.0–6.5 s) compared
with microscope assessment alone.28 However, the au-
thors of this study noted that slide evaluation time
improved over the course of the study as pathologists
became more familiar with the software.
Improved Diagnostic Accuracy

Barrett’s esophagus dysplasia. The diagnosis of
dysplasia in BE is difficult, and likely is impacted by the
presence of nonspecific inflammatory and regenerative
changes and subjective criteria for dysplasia. Conse-
quently, agreement among pathologists for the diagnosis
of dysplasia is suboptimal, with poor agreement (as
measured by the k statistic <0.5), a metric that has not
improved in nearly 20 years.29 This results in an abun-
dance of overcalled dysplastic disease with important
ramifications, potentially leading to unnecessary endo-
scopic procedures in patients without a high risk of
neoplastic progression.30

A 2-step AI model was developed to improve the
diagnosis of BE dysplasia (Figure 2). This consisted of an
object detection model to scan whole slide images, identi-
fying regions of interest, and making first-pass dysplasia
grade predictions, which then were fed into a CNN model
for secondary predictions.31 The overall model combined
both reads, with the highest congruent read as the final
pathology read. After training on 368 whole slide images
(all of which were graded and annotated by expert GI pa-
thologists), a test set of 70 slides yielded sensitivity, spec-
ificity, and F1 score (measure of precision and recall) of
greater than 80% each for the diagnosis of nondysplastic,
low-grade, and high-grade dysplasia, a considerable
improvement compared with the agreement as assessed in
prior studies.29,30 External validation of this model is
 of Health and Social Security de ClinicalKey.es por Elsevier en junio 14, 
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Figure 2. Summary of preprocessing and training of object detection and classifier models, as well as process for inference by
ensemble model.31 (A–E) Object detection model development is shown. (I–M) Classifier model development is shown. (F–H)
Ensemble inference is shown. (A) Whole slide images showing areas of annotations by expert GI pathologists. (B) Magnifi-
cation view of annotation. (C) Creation of bounding box around annotation. (D) Segmentation of bounding box into 1280 �
1280 tile components. (E) Training for object detection model. (F) Whole slide with area of annotation. (G) Close up view of
annotated areas. (H) Resizing of annotations to 224 � 224 tile segments followed by training of classifier model. (I) Removal of
pathology annotations from test set slides with first-pass object detection model assessment. (J) Regions of interest as
identified by object detection model. (K) Resizing of identified regions of interest to 224 � 224 pixels for feeding into object
detection mode. (L) Second-pass prediction with classifier model. (M) Final dysplasia grade prediction by ensemble model.
HGD, high-grade dysplasia; LGD, low-grade dysplasia; NDBE, non-dysplastic Barrett’s esophagus; px, pixel; ResNet, residual
neural network; WSI, whole slide image; YOLO, you only look once. Reprinted with permission from Faghani et al.31
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underway, but this highlights the ability of AI to improve
diagnostic capabilities in cases in which this traditionally
has been a difficult task. Such a program could be used as
an adjunct to guide pathologist diagnosis. In community
practice, in which dysplastic BE slides may not be seen
commonly,30 this could result in fewer dysplastic overcalls,
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potentially leading to a decrease in unnecessary therapies,
whereas in academic centers, this could improve interob-
server agreement and increase pathologist confidence in
the dysplasia diagnosis.

Liver nodules and steatohepatitis. Differentiating
among various hepatocellular lesions is challenging,
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particularly high-grade dysplastic nodules from well-
differentiated hepatocellular carcinoma.32 To overcome
this limitation, whole slide images of pathology slides
from various hepatic adenomas, dysplastic nodules, and
carcinomas, as well as focal nodular hyperplasia, were
used to train 4 CNN models.33 On a test set of 264 pa-
tients, all 4 models showed sensitivities and specificities
exceeding 96%, with AUCs in excess of 0.99. Whole slide
image classification maps correlated with markers that
distinguished the diagnosis, mirroring what was anno-
tated by study pathologists.

The assessment of steatotic liver disease and pro-
gression over time relies on histopathologic review of
liver biopsy slides.34 This is a time-consuming process
with poor reproducibility, even among expert hep-
atopathologists,35 and represents an area in which AI
could make a meaningful impact. Slides were obtained
from 3 randomized controlled trials that recruited pa-
tients with advanced fibrosis attributable to nonalcoholic
steatohepatitis (NASH), and careful pathologist review
and grading was completed before study inclusion.36,37 A
CNN model was trained on more than 1200 slides and
subsequently tested on more than 3000 slides.38 This
model showed high concordance in NASH features when
compared with the original pathologist grading
(exceeding 0.6 for steatosis and fibrosis, although with
poorer concordance for hepatocyte ballooning).
Furthermore, segmentation of slides, which is not effi-
ciently possible with human review in the clinical setting,
showed considerable heterogeneity in histopathologic
findings over time in individual patients, as well as
among patients with similar clinical fibrosis scores. The
authors of this study therefore believe this model can
increase the accuracy of NASH histopathologic diagnosis
and predict fibrosis progression while identifying pa-
tients who may benefit from therapeutic options for
management of NASH.
Improve Clinical/Endoscopic Access While
Limiting Costs

Rapid on-site evaluation in endoscopic ultra-
sound. Endoscopic ultrasound is an important facet of
diagnostic endoscopy, enabling minimally invasive sam-
pling of abnormal lymph nodes and masses. However,
given the small-caliber needles used for sampling in
these cases, suboptimal tissue acquisition is a well-
established limitation.39 Although larger-bore needles
and increasing the number of passes may mitigate this
issue, the concept of rapid on-site evaluation (ROSE) by a
cytotechnologist has gained favor in the past decade,
enabling confirmation of adequate sampling in real time
during the procedure. However, this can be time
consuming, and resources to have this service readily
available limits broad applicability.

Utilizing advances with deep learning image analysis
tasks, a CNN model was trained on 467 images obtained
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from 51 patients, with pathologists annotating cancer
cells, and classifying whether images were inadequate,
negative for malignancy, atypical, neoplastic (benign or
malignant), suspicious for neoplasia, or definitively ma-
lignant. This model achieved sensitivity and specificity
for cancer exceeding 79%, with accuracy greater than
83%, on a test set of 467 images on an internal test set,
with similar results when applied to an external test set
consisting of 693 images.40 Similar adjunctive ROSE deep
learning models assessing pancreatic masses have ach-
ieved similar results with AUCs greater than 0.90, sur-
passing that of trained endoscopists while nearing the
performance of cytopathologists.41

These results support the feasibility of incorporating
an AI cytology model into endoscopic ultrasound prac-
tice. This would enable widespread adoption of ROSE
capabilities, particularly in resource-poor locations
where an on-call cytopathologist may not be readily
available. This also may improve clinical efficacy given
the speed with which such samples can be analyzed.
Predict Prognosis

Barrett’s esophagus and esophageal cancer. As previ-
ously described, BE is the only precursor lesion of EAC,
which has poor morbidity and high mortality. However,
although the risk of malignant progression in BE is
increased significantly compared with the general pop-
ulation, the overall rate of progression is low, particu-
larly in those with no dysplasia.42 Progression prediction
models, based on clinical factors alone, perform
modestly,43 resulting in a critical need to accurately
identify patients who are truly at high risk of malignant
progression and warrant more intense surveillance or
consideration for ablation.

The TissueCypher assay (Castle Biosciences, Inc,
Pittsburgh, PA) is an AI-powered digital platform for
whole slide imaging using multichannel fluorescence,
image object segmentation, as well as high-dimensional
biomarker and morphology feature measurement,
which is integrated with clinical data to prognosticate BE
progression.44,45 Samples are stratified into high-risk,
intermediate-risk, and low-risk (for progression) clas-
ses based on progression risk over the next 5 years. In a
pooled analysis of 552 patients, clinical variables pre-
dicting incident progression (defined as development of
high-grade dysplasia/EAC 12 months or later from BE
diagnosis), yielded a c-statistic of 0.68, whereas the
addition of the TissueCypher assay risk assessment
increased this significantly to 0.75, suggesting value to
the use of this assay over the use of clinical variables
alone.46 Furthermore, nondysplastic patients in the high-
risk TissueCypher category had an odds ratio of 14.3 for
the risk of progression. This tool can assist clinicians
with identifying high-risk patients who may benefit from
more intense endoscopic surveillance or could consider
ablation. TissueCypher is commercially available and the
 of Health and Social Security de ClinicalKey.es por Elsevier en junio 14, 
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Centers for Medicare and Medicaid Services has
approved an Advanced Diagnostic Laboratory Test code
for it.

AI may be capable of predicting prognosis in esopha-
geal adenocarcinoma. A model was trained on diagnostic
histology slides from 67 patients with gastroesophageal
junction adenocarcinoma, and accurately distinguished
patients who responded well to neoadjuvant therapy
based on comparison of pretherapy with posttherapy
positron emission tomography (at least 35% decrease in
standardized uptake value maximum) with an accuracy of
0.78 (P < .01).47

Hepatocellular carcinoma. Hepatocellular carcinoma
(HCC) is a lethal malignancy and ranks as one of the top
causes of cancer-related mortality worldwide.48 Prog-
nostic factors on HCC tissue include microvascular inva-
sion and tumor differentiation, although more subtle
features such as tertiary lymphoid structures and vessels
encapsulating tumor clusters also have been
described.49,50 These features may impact prognosis, but
interpretation of these factors on histopathology is limited
by subjectivity. However, AI may be able to formally
segment these features and create a framework that may
predict prognosis reliably based on biopsy specimens.

A CNN therefore was created to identify and map
multiple elements that may be found on HCC histopa-
thology, which are correlated with patient survival. This
model was trained on 260 whole slide images, and using
these data combined with survival, a tumor risk score
was calculated to predict patient survival. This score was
an independent predictor of survival in 2 validation sets,
and exceeded prognostication capabilities when
compared with clinical staging systems.51 After seg-
mentation, the features associated strongly with higher
risk scores were sinusoidal capillarization, prominent
nucleoli and nuclear envelope, and infiltrating inflam-
matory cells, providing a strong plausibility for the bio-
logic basis of this model. Similar models also have shown
good correlation of histopathologic findings with survival
in HCC.52

Colorectal cancer. Colorectal cancer is a leading cause
of cancer-related morbidity and mortality worldwide,
and based on stage at diagnosis, therapeutic options
include surgical resection, chemotherapy, and
radiotherapy.

Quantification of histologic features may identify
features that increase the risk of poor prognosis or could
be combined with clinical factors to assess risk at the
individual patient level. A quantitative model to segment
features on colorectal cancer slides was trained on more
than 550 annotated slides, with results combined with
clinical and immunohistochemical staining to create a
prognostic model for recurrence. This was validated both
internally on 483 slides and externally on 938 slides.
This model accurately distinguished high risk from low
risk of disease recurrence at a per stage level (eg, at stage
III, hazard ratio, 2.24; 95% CI, 1.33–3.87 for high- vs low-
risk disease, respectively), and also predicted recurrence
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between these groups (at 36 months, 32.7% high-risk vs
13.4% low-risk). Removal of the quantification AI model
from the overall prognostic model resulted in a signifi-
cant performance decrease.53

The presence of lymph node involvement is associ-
ated with poorer cancer-specific survival outcomes and
higher rates of recurrence.54 Predicting lymph node
involvement based on initial histologic sections can help
streamline patient care and prognosticate outcomes at
the individual patient level. A CNN was trained and
validated on more than 1500 digitized slides obtained
from 2 large cancer trial databases, and externally vali-
dated on a subset of 582 slides. This model achieved a
modest AUC of 61.2% on this external test set, showing
the feasibility of a model predicting lymph node metas-
tasis based on cancer histopathologic slides. A limitation
of this study was the heterogenous source of tissue, from
both endoscopic and surgical resections, which could
impact generalizability of these findings, particularly if
this model’s aim is to predict lymph node metastasis at
initial diagnosis.

Predicting the risk of metastasis at the time of sur-
gery for locally advanced colorectal cancer may help
inform therapeutic decisions such as the need for adju-
vant chemoradiotherapy. To assess whether AI can pre-
dict metastatic risk on surgical resection specimens, a
model was trained on 102 patient specimens from
resected locally advanced colon cancer, segmenting
slides according to various features including ratios of
smooth muscle, inflammation, stroma, and necrosis,
among others.55 The authors found that the model’s
assessment of inflammation and smooth muscle ratios
correlated with metastatic probability.55 Another model
trained on early stage colorectal cancer patients with an
external validation cohort incorporating data from more
than 1100 patients showed excellent prognostic ability,
with those assessed as having poor prognostication
having a hazard ratio of 3.04 (P < .0001) for the outcome
of cancer-specific mortality.56 Other studies have shown
models can assess for clinically actionable mutations and
microsatellite instability accurately.57,58
How Will Artificial Intelligence Be
Incorporated Into Clinical Practice?

A literature review yielded thousands of AI models
evaluating their use in GI endoscopy, pathology, imaging,
and medical records systems, the majority of which are
built and trained on open-source code. Therefore, AI-
powered solutions represent a unique domain from a
regulatory standpoint, not clearly falling into previous
categories such as drug development or medical devices,
which traditionally have marked advances in medicine.

Most histopathologic ML models fall into the category
of software as a medical device given that these models
analyze medical images and information typically shared
between health care providers, may provide
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recommendations to a health care provider, and the basis
for those recommendations is not provided. To that end,
the FDA has issued guidance regarding AI and ML soft-
ware as a medical device and created a Digital Health
Center of Excellence to innovate the regulatory approval
process and efficiently (but safely) guide the imple-
mentation of AI models in clinical practice.59

Obtaining FDA approval for clinical use of an AI
model is a rigorous process, but with careful design of
algorithms and trials, approval can be granted using
either the de novo pathway for novel AI models or via a
510(k) review for models that are substantially equiva-
lent to an already existing one. The FDA also is working
on innovative ways to expedite approval of medical de-
vices, including vetting developers (and not individual
devices), allowing these developers to forego premarket
review for all devices they create, and also creating a
framework for adaptive learning, wherein models can
learn and adjust in real time based on clinical data it
receives during regular use.60

Acknowledging the open-source nature of many of
the models on which AI algorithms are based, it can be
difficult to strike a balance between protection of intel-
lectual property and commercialization of products. In-
novators must work closely with their institutions or
private funding partners when developing models to
ensure that distribution of any profits of a product is
determined early in the process.

Through July 2023, the FDA has approved more than
500 AI models for clinical use. In practice, will this result
in the need to download dozens of models, or will a
model package be delivered from which a singular pro-
gram could be used to answer dozens of clinically rele-
vant questions? What will ownership of the models look
like in the future? How will such programs fit into the
Table 2. Challenges and Potential Solutions for Incorporating A

Challenge

Data annotation Human–computer interaction tec
Collaboration among subject ma
Using objective ground truths (la

Bias Finding, learning, and applying t
avoiding unrepresentative da

Heterogeneity of medical data Preprocessing techniques, such

Variety of clinical tasks Task-specific modeling to develo
Developing an artificial general in

classification

Patient privacy Generating synthetic data sets b
Using federated learning (enablin

can lead to security concerns

Transparency Using explanation techniques, s

Reproducibility Sharing code or providing detail

Uncertainty of model predictions Incorporating uncertainty quantifi
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many different software/hardware programs and
communicate across these devices as used in everyday
practice? Furthermore, will models assessing similar but
distinct questions (such as polyp identification based on
endoscopy with tissue interpretation on whole slide
images) learn from each other, as human beings do, to
improve clinical knowledge? These questions are
important, and the next few years hopefully will shed
light on them.

From a practice perspective, the impact that AI will
have on clinical jobs and compensation is unclear. Such
algorithms could save time for clinicians to focus on
other tasks. It is unlikely that AI will replace physicians,
but how AI is used may impact physician compensation
and potentially job prospects. Although we can only hy-
pothesize what impact AI will have in the future, physi-
cians must recognize that these models will have some
impact on their day-to-day work in the near future and
must be ready to adapt to their clinical practice, or risk
being left in the dust.
What Are the Pitfalls of Artificial
Intelligence–Powered Digital Histology?

Although we have examined several exciting areas in
which the incorporation of AI may affect clinical practice
favorably, as with any new technology, there are some lim-
itations that may temper our enthusiasm for widespread
adoption into practice. Given the rapid advancement of this
technology, there are issues that are easily identifiable
(although solutions may not be as forthcoming), but also
concerns that we may not anticipate until AI is widely
implemented in practice. For a summary of these challenges
and potential solutions, please refer to Table 2.
rtificial Intelligence Into Clinical and Research Practice

Possible solutions

hniques (eg, active learning while annotating)
tter experts to create publicly available data sets
bels)

echniques to be fair such as relying on multiple sources of data,
ta sets, overfitting hyperparameters

as co-registration and color normalization

p goal-directed models for each clinical task
telligence–based model for pathology detection rather than disease

ased on real data to protect patient information
g data to remain local without need for centralization of data, which
)

uch as saliency and attention maps

ed model descriptions

cation techniques into model development
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A Model Is Only as Good as What It Is Trained
On

Many AI models have been developed to answer
problems that arise when the histopathologic diagnosis is
difficult to make, such as in the case of dysplastic BE31 and
grading of steatohepatitis.38 Models typically use super-
vised learning, which requires accurate and reliable an-
notated imaging data, based on expert pathologist
annotations; however, manual labeling is costly and time
consuming, and it is well established that histopathologic
interpretation can vary even among expert pathologists,
leading to the possibility that these annotations may not
be truly representative of the ground-truth.29 This prob-
lem is magnified further when the diagnosis may rely on
subjective criteria (eg, degree of inflammation as mild,
moderate, or severe). Bias significantly affects data
handling, model development, and slide evaluation.61–63

As such, the ground-truth itself may not be based on a
concrete foundation. Because amodelmay be only as good
as the tissue that it is trained on, we may not fully
appreciate a substantial improvement in diagnostic ca-
pabilities compared with our best human pathologists
because the intangible difficulties in making these di-
agnoses are not accounted for by the model. This may
explain the noted decrease in model performance seen on
most external validation results. In addition, variation in
stain characteristics (H&E or other special stains) also
may influence AI model performance developed on slides
from a single institution, although models to standardize
stain characteristics have been developed.64 The hetero-
geneity of medical data, variety of clinical tasks, patient
privacy concerns, and algorithm trustworthiness further
must be considered before widespread AI adoption.

To address these issues, several solutions come to
mind. The ability to input long-term outcomes data when
training models may enable such models to pick up on
intangible factors that could better predict prognosis than
currently used diagnostic models. For example, in BE
histology, inputting into an AI model (clinical) factors that
influence the risk of progression to EAC data could impact
the way the model assigns a grade of dysplasia. Further-
more, models may need to report some form of explain-
ability so clinicians can better understand model
predictions. Models alsomay use segmentation of features
(such as defining the exact degree of inflammation or a
certain cell type, which may be too mundane and time
consuming for human beings) to better understand the
various degrees of pathologic processes. This would
require significant upfront effort from an annotation
standpoint but is incorporated commonly into model
training today.

Concerns Regarding the Role of Artificial
Intelligence in Digital Histology

We have discussed how AI can augment digital pa-
thology, but what exactly does this mean? Many
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pathologists and clinicians would be uncomfortable
without manual (human) overview of AI work, at least
during the initial incorporation of AI into practice.
However, removal of tedious, repetitive tasks is an area
conducive for AI involvement. It is unclear if AI should be
used as an adjunct, in which suspicious areas are high-
lighted for manual review (as in the case of WATS-3D),65

should act as a filter enabling pathologists to focus on
abnormalities (as in the case of colorectal biopsy speci-
mens in which the program can sort out normal tissue
not requiring further evaluation),26 or should be used
independently with occasional human review for quality
assurance. Multiple GI and pathology societies have
convened task forces to better address how exactly AI
fits into clinical practice.66,67

At a more philosophical level, the introduction of AI
highlights several moral and ethical concerns. With the
expectation that AI will improve clinical outcomes, it may
be expected that such tools are distributed equitably for
all patients. However, the development of these algo-
rithms requires significant computational resources,
including space to house servers, connectivity frame-
works, and a technically proficient workforce for upkeep
of infrastructure. It remains unclear as to who will bear
the brunt of these costs and whether the economics of AI
price-out resource-poor nations and/or patients.
Addressing these concerns as a clinical community is
critical.

Conclusions

This is certainly an exciting time to be a practicing
gastroenterologist or pathologist, and the incorporation
of AI in digital histology is likely to dramatically affect
patient care in a favorable manner. We have outlined
several high-impact use cases for AI technology in GI
pathology but acknowledge that limitations must be
addressed before commercialization and during wide-
spread adoption.
 of He
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