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KEY POINTS

� Pediatric brain injury can occur from a primary neurologic cause or as a sequela of multi-
system illness.

� Pediatric neurocritical care (PNCC) is an expanding multidisciplinary field incorporating
brain-specific imaging, monitoring, and treatment modalities along with focused efforts
in education, quality improvement, and collaboration.

� Although PNCC is emerging as a specialty, services are not universally available. Thus, all
pediatric practitioners should develop an approach to diagnosis, monitoring, and man-
agement for children with brain injuries.
INTRODUCTION

Whether the disease process originates from the neurologic system or manifests as a
neurologic complication of a systemic critical illness, pediatric brain injury is a major
health problem, accounting for 20% to 25% of all admissions and 65% of all deaths
in pediatric intensive care units (PICUs).1 Au and colleagues2 reported that more
than half of all patients in a large tertiary care PICU who died had an acute neurologic
injury, and in 90% of those, brain injury was the proximate cause of death. There are
numerous causes of primary pediatric brain injury. Traumatic brain injury (TBI) is the
leading cause of death and disability related to trauma in children. In the United States,
pediatric TBI caused 7440 deaths, 60,000 inpatient stays, and 600,000 visits to the
emergency department.3 Although the Brain Trauma Foundation has released guide-
lines for the management of severe pediatric TBI,4,5 significant variability exists in
management among practitioners.6 Status epilepticus is another common neurologic
emergency, with an annual incidence of approximately 20 cases per 100,000 children,
with a 3% mortality.7 Stroke in children carries an annual incidence of 1–2 cases per
100,000.8 In contrast to adult stroke, which is primarily caused by atherosclerotic dis-
ease, the causes of stroke in children range widely and include sickle cell disease,
inherited or acquired hypercoagulability, congenital heart disease, and arterial
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dissection. The field of pediatric neurocritical care (PNCC) has been ushered in recent
years by the recognition of this vast heterogeneity in causes, natural history, patho-
physiology, and treatment. Several large pediatric centers have instituted neurocritical
care services, consisting of specialists from several disciplines including critical care,
neurosurgery, and neurology. Because these services are not universal, all pediatric
practitioners should develop an approach to diagnosis, monitoring, and management
for pediatric brain injuries. The purpose of this review is to discuss the emerging sub-
specialty of PNCC, to review the pathophysiology of primary and secondary brain in-
juries, and to highlight contemporary imaging and monitoring modalities.
DISCUSSION
PNCC Subspecialty Service

Pediatric critical care as a subspecialty is only several decades old.9 Unlike ICUs for
adults, most PICUs are general and not designated based on a specific organ system.
However, this has changed in pediatric cardiac critical care, which has been increas-
ingly recognized as a field requiring specific resources and teams with a highly
specialized skill set.10 PNCC is an expanding field directed toward the mitigation of
secondary brain injury caused by systemic illness, stroke, cardiac arrest, trauma,
infection/inflammation, postneurosurgical conditions, and seizures. Although the
development of guidelines in adult neurocritical care may be several years ahead
than that of its pediatric counterpart, developmental differences between adults and
children prevent drawing undue parallels between the natural history of neurologic dis-
ease and treatments across the age groups. A comprehensive, multidisciplinary
approach to care, including current techniques of imaging, neuromonitoring, and neu-
roprotective strategies, augmented by focus on patient safety, quality, and education
can improve outcomes in children with brain injury.11 Recent data indicate that the
development of a PNCC service within an institution that includes experts from neuro-
surgery, neurology, and critical care medicine may improve patient outcomes.12,13 Po-
tential benefits of neurocritical care services include facilitation of communication
among the numerous services involved in the care of patients who often have compli-
cated needs, focused efforts on patient safety, quality improvement and education
among diverse groups of practitioners, as well as coordination of limited resources
in imaging and monitoring. In addition, the involvement of neurology and neurosurgery
services facilitates long-term follow-up after ICU and hospital discharge. A recent sur-
vey of PICU medical directors and program directors of pediatric neurosurgery and
child neurology fellowships reported the existence of 45 neurocritical care services
in the United States, 80% of which were consultant services to the PICU/CICU.14 Re-
spondents had an overall positive opinion on the value of PNCC as a specialty service.
The few negative opinions pointed out that developing a PNCC service would be
“redundant.” Recent studies have shown that a PNCC service can add diagnostic
considerations,15 and that it can be associated with a reduction in mortality and an
improvement in the favorable outcome.12 However, an important limitation in studies
exploring outcomes in specialized services in any discipline is uncertainty regarding
generalizability across different institutions, and whether it is the service itself confer-
ring benefit, or if it is due to increased resources and attention. Overall, the impact on
outcome of dedicated PNCC services warrants more study.

Pathophysiology of Brain Injury

Brain injury can be classified as either primary or secondary. Primary injury results
from the inciting event. In TBI, this consists of direct disruption of neurons and
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vascular structures that occurs at the moment of impact or acceleration/deceleration
force. Practitioners are relatively powerless against primary TBI, outside of physical
prevention measures and anticipatory guidance. In hypoxia/ischemia, stroke, infec-
tion, and seizures, the primary event leading to brain injury can often be treated or pre-
vented. If possible, every measure should be considered to reverse the primary cause
of brain injury. Secondary brain injury begins the instant following the inciting event
and is therefore the target of therapeutic interventions from the prehospital stage
through the entire hospitalization and rehabilitation phases. There are many ways a
brain cell can die from secondary injury, including inadequate supply of oxygen and
substrates to meet the metabolic demands of the vulnerable brain, inflammation,
apoptosis, and excitotoxicity. Mitigating imbalances in the supply and demand of ox-
ygen and nutrients following brain injury begins with supportive care of other organ
systems. Establishing and maintaining adequate airway, breathing, and circulation
is essential in ensuring cerebral oxygen delivery. This can be achieved using pediatric
critical care principles of airway management, ventilator strategies, fluid resuscitation,
and inotropic or vasopressor therapies.
Cerebral oxygen delivery 5 cerebral blood flow � arterial oxygen content.
Arterial oxygen content (mL/dL) 5 1.36 � SaO2/100 � Hb (g/dL) 1 0.003 � PaO2

(mm Hg).
Considering the determinants of cerebral oxygen delivery, it is important to ensure

adequate cardiac output, hemoglobin concentration, hemoglobin oxygen saturation,
and partial pressure of arterial oxygen. In children, there exist age-related differences
in cerebral blood flow, which range from 60 mL/100 g/min at 3 years, to 70 mL/100 g/
min at age 6 years, to 50 mL/100 g/min in adulthood.16 In addition, prevention of hy-
poglycemia is also essential in maintaining adequate cellular respiration.
Local oxygen delivery in the injured brain also depends on cerebral perfusion. Ce-

rebral perfusion pressure is equal to the difference between the mean arterial pressure
(MAP) and the intracranial pressure (ICP).
CPP 5 MAP–ICP.
Ensuring an adequate MAP and limiting ICP are important in maintaining cerebral

perfusion. Strategies to increase MAP include optimizing intravascular volume, use of
inotropes, and vasopressors if needed. ICP is influenced by the Monro–Kellie principle,
which states that the volume of the contents of the intracranial vault, that is, the brain,
cerebrospinal fluid, and blood, is constant. Therefore, if the volume of one of the com-
ponents increases, the volume of the other components must decrease to compensate.
When the compensatory mechanisms are exhausted, ICP rapidly increases. Brain vol-
ume can increase with cytotoxic, vasogenic, osmotic, and interstitial cerebral edema.
An increase in the blood component can occur with cerebral hyperemia or hemorrhage.
Finally, the CSF volume can be increased due to disorders of CSF drainage or resorp-
tion. Relative to the magnitude of increase in the volume of intracranial contents, ICP
can be lower in children with an open fontanelle or in those who have undergone
decompressive craniectomy. However, it is important to note that ICP can still be
high in such circumstances, and that injury can still be severe in the absence of ICP
elevation. Given the developmental differences in norms of systemic blood pressure
and cerebral blood flow, there is likely an age-related continuum for optimal cerebral
perfusion pressure. In a recent report, Allen and colleagues17 studied 317 adults and
children with severe TBI using specific CPP targets more than 50–60 mm Hg in adults,
more than 50 mm Hg in the 6–17-year age group, and more than 40 mm Hg in the 0–5-
year age group. Regardless of the likely existence of a similar age-related continuum,
the 2019 Brain Trauma Foundation guidelines for severe pediatric TBI support a CPP
threshold of greater than 40 mm Hg irrespective of age.18
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In addition to ensuring an adequate supply of blood and energy substrate, limiting
cerebral oxygen demand is also important to prevent secondary brain injury. Studies
on the effects of different classes of sedatives and anesthetics on cerebrovascular
response and compensatory reserve in TBI are conflicting,19,20 and studies in children
are even more limited. However, sedatives can reduce the cerebral metabolic rate of
oxygen, an effect that is possibly coupled with a global reduction in cerebral blood
flow. Thus, in the brain-injured child requiring mechanical ventilation, analgesia and
sedation are mainstays of treatment to prevent pain, agitation, and ventilator desyn-
chrony, all of which can increase cerebral blood volume and ICP.21–23 Preventing fever
through targeted temperature management and management of seizures with the
antiepileptic therapy with electroencephalography (EEG) monitoring can also reduce
the cerebral metabolic demand.

Neurologic Examination

Evaluation of neurologic injury in a child begins with the pupillary examination and
measurement of vital signs. Any combination of bradycardia, systemic hypertension,
disordered regulation of respiration, and abnormal pupillary reflex could indicate an
acute herniation syndrome, requiring immediate medical or surgical treatment.
Another early step in assessment is the Glasgow Coma Score (GCS). The GCS was
initially developed in 1974 to assess the altered consciousness after TBI.24 The
GCS ranges from 3 to 15, with a score between 1 and 6 assigned for motor function,
between 1 and 5 for verbal function, and between 1 and 4 for eye opening. The initial
1974 scale did not include children younger than 5 but modified scales are available
and can be applied to children,25 although they have not been widely validated for
the younger age groups.26 Initial GCS in children correlates with outcome,27,28 and
it is often used to stratify severity of TBI among mild (GCS 13–15), moderate (GCS
9–12), and severe (GCS 3–8) both in clinical practice and in research. A recent study
showed that further stratifying the group of children with severe TBI with GCS between
3 and 8 is associated with mortality.29 Although the GCS has not been rigorously vali-
dated outside of trauma, its ease, reproducibility, and quantitative nature have
resulted in wide acceptance to represent the degree of impairment across various
neurologic conditions. Indeed, it is often used by practitioners to communicate the
severity of injury to each other for several different disease states causing encephalop-
athy.26 It can also be applied serially to determine improvement or deterioration. Lim-
itations of the GCS in the assessment of severe brain injury includes lack of inclusion of
other important neurologic examination parameters such as pupillary and brainstem
reflexes, focality/laterality, and airway protective reflexes.30 Therefore, a more
comprehensive neurologic examination assessing consciousness, airway protection,
cranial nerves, motor function, reflexes, and sensory function should be performed
along with the GCS.

Imaging

Indications for imaging of a child with brain injury are based on the mechanism of
injury, findings from the clinical neurologic examination and GCS, likelihood of imaging
findings to affect management decisions, and the stability of the patient for transport.
Computed tomography (CT) continues to be widely used to detect and stage various
neurologic injuries because it is usually readily available, expeditious, and does not al-
ways require sedation of the patient. Noncontrast head CT is a good first-line test to
detect bony abnormalities in the skull and upper cervical spine, acute intracranial
hemorrhage, hydrocephalus, mass effect, cerebral edema, and extraaxial fluid collec-
tions. Because the detection of these abnormalities can change the medical or
Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social 
Security de ClinicalKey.es por Elsevier en junio 17, 2022. Para uso personal exclusivamente. No se 
permiten otros usos sin autorización. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.



Pediatric Neurocritical Care 419
surgical management following head trauma, CT is the preferred modality for the initial
evaluation and staging of adults and children with severe TBI.31–33 One drawback of
CT is the risk of acquired malignancy due to radiation.34 A study of CT scans in the
US children from 1996 to 2011 projected that 4 million pediatric CT scans per year
would cause about 5000 future cancers, and reducing the highest radiation doses
given might prevent cancers.35 Other important limitations of noncontrast head CT
include failure to detect important neurologic abnormalities such as ischemia, inflam-
mation, subacute hemorrhage, axonal injury, ligamentous high cervical spine injury,
subtle cerebral edema, thrombosis, vascular abnormalities, and abnormalities of pos-
terior fossa contents. If any of these conditions are suspected, magnetic resonance
imaging (MRI) should be performed. Limitations of MRI include availability, duration,
requirement of sedation in young children, and challenges of monitoring during the
procedure. It is therefore not routinely performed in children during the acute stage
of TBI because patients are often unstable in the first several days following injury,
and most of the information necessary to guide therapy can be obtained from CT.
However, it is superior to CT in the evaluation of ischemic stroke, and rapid sequence
MRI protocols confer the added benefits of shorter duration, more widespread avail-
ability, and the dispensing with the need for sedation. A recent study showed that the
rapid sequence MRI can be used in the evaluation of both ischemic and nonischemic
brain attacks in children.36 In that study, diffusion-weighted imaging was shown to be
more sensitive and specific in detecting ischemic strokes compared with fluid-
attenuated inversion recovery techniques, as the latter was useful in the identification
of inflammatory and metabolic disorders.

Other Monitoring Modalities

Nonconvulsive seizures (NCS) and nonconvulsive status epilepticus (NCSE) are
increasingly recognized conditions in pediatrics. The gold standard for diagnosis of
NCS, and for monitoring of children with neurologic injuries at risk for NCS, is contin-
uous EEG (cEEG). In the past, limitations of cEEG included inadequate equipment,
lack of technologists and personnel to interpret the study at regular intervals, and
lack of data on its benefit on outcome. In adults, studies have shown that the mental
status changes out of proportion to the degree of the primary neurologic illnesses of
TBI, stroke, or intracerebral hemorrhages can be due to NCS.37 A growing body of pe-
diatric literature recognizes NCS as a common primary diagnosis or a common harm-
ful sequela of other neurologic conditions.1,38,39 Prompt recognition and treatment of
seizures is essential, as NCSE has been shown to be an independent predictor of mor-
tality in children.40,41 Various studies have shown that delayed initiation of treatment of
seizures is associated with refractoriness of status epilepticus.42 In addition, failure to
treat seizures according to a protocol is associated with the development of status
epilepticus,43 and a proportion of seizure-related deaths are preventable.44 Specific
disease states in pediatrics warrant heightened index of suspicion for NCS, as it
can occur frequently in children on extracorporeal membrane oxygenation,45 following
neonatal cardiac surgery on bypass,46 and following TBI.47 cEEG monitoring should
be considered for children at high risk for NCS in whom a neurologic examination
cannot be used for sequential evaluation, such as children on sedation or neuromus-
cular blockade. cEEG should also be used to monitor response to intensive therapies
for known status epilepticus, for example, high-dose benzodiazepines or barbiturates.
Cerebral oximetry is an additional modality useful for monitoring a child with brain

injury. It can be used to assess imbalances between the supply and demand of oxygen
delivery to titrate therapies intended to mitigate secondary brain injury. Analogous to
the use of central venous oxygen saturation to monitor oxygen delivery, cardiac
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output, and oxygen extraction in shock, jugular bulb oximetry (SjvO2) can be used to
assess the cerebral blood flow, oxygen delivery, and extraction. Although it has
been used in pediatric neurosurgery,48,49 and there are reports of correlation between
SjvO2 and outcome after brain injury in adults and children,50–52 it is not currently
widely used in pediatric critical care. Another tool used to monitor cerebral oxygena-
tion is the brain tissue oxygen monitoring (PbrO2), where a catheter is inserted directly
into the brain tissue. Therapeutic measures to improve PbrO2 include pulmonary and
hemodynamic strategies to increase the cerebral oxygen delivery and arterial PO2 to
facilitate oxygen diffusion to brain tissue, and neuroprotective measures such as
limiting cerebral metabolic demand and raised ICP. Studies in both adult and pediatric
neurotrauma showed an association between unfavorable outcome and PbrO2 less
than 10 mm Hg.53–56 An important limitation of the goal-directed PbrO2 therapy is
related to the placement of the PbrO2 catheters. In one of the largest pediatric studies,
the monitors were placed either in normal appearing right frontal white matter if there
were no focal lesions or in the hemisphere with the greater swelling or more localized
lesions.53,54 If the monitor is placed in healthy brain tissue, the impact of therapy may
not reflect effects on at-risk brain tissue. Conversely, if the monitor is placed in dead
brain tissue with minimal local cerebral blood flow, therapy may not change measured
PbrO2. Because there was variability and subjectivity even in a single center series
which is considered a landmark study in this area, this modality may have limited
generalizability. The 2019 Brain Trauma Foundation Guidelines for Management of Se-
vere TBI state that while there is insufficient data to make a recommendation regarding
PbrO2 monitoring, therapy should aim for a threshold of greater than 10 mm Hg if it is
used.18 Transcranial near-infrared spectroscopy (NIRS) is a noninvasive modality of
cerebral oximetry, which uses a probe attached to the skin of the forehead to measure
the absorption of light in the near-infrared spectrum. Because oxyhemoglobin and
deoxyhemoglobin absorb light at different wavelengths, the proportion of absorption
can represent the oxygenation of brain tissue deep to the probe. Using the goal-
directed therapy for cerebral hypoxia monitored by NIRS to decrease the risk of death
or improved survival with severe brain injury in preterm infants has shown promise in a
phase II study.57,58 Cerebral NIRS has been extensively used intraoperatively in car-
diac surgery in children and adults59 and has been used as amarker of hemodynamics
in pediatric critical care.60 Specifics of the NIRS signal and the duration of desaturation
have been shown in the pediatric cardiac ICU setting to be associated with longer time
on mechanical ventilation, and longer duration of PICU and hospital stay.61 One
important limitation of NIRS, similar to that of PbrO2 monitoring, is the uncertainty of
using a local problem as a representation of global cerebral oxygenation, and whether
the probe placement limits the assessment of oxygenation locally where brain is at
risk. Overall, studies evaluating the use of NIRS to provide the goal-directed therapy
in PNCC are lacking.
SUMMARY

The greatest advances in medicine are generalizable across institutions regardless of
resources and are based on universal fundamentals of assessment, pathophysiology,
and natural history of disease, and applied through continuous processes of educa-
tion, safety, and quality improvement. Recently, there have been tremendous im-
provements in the field of PNCC, including the development and implementation of
monitoring and imaging techniques, evidence-based practice guidelines for stroke
and TBI, and the organization of multidisciplinary PNCC programs. Because the cause
of pediatric brain injury is at once diverse and relatively infrequent, a specialized model
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similar to adult neurocritical care and high-volume pediatric areas such as cardiac crit-
ical care may not be feasible. To further advance the field, the PNCC community must
continue to foster a culture of brain-oriented critical care through a focus on educa-
tion, quality improvement, and multidisciplinary collaboration within and across
institutions.

CLINICS CARE POINTS
� A comprehensive, multidisciplinary approach to care, including current techniques of
imaging, neuromonitoring, and neuroprotective strategies augmented by a focus on
patient safety, quality, and education can improve outcomes in children with brain injury.

� The overarching goal of PNCC in mitigating secondary brain injury can be achieved by
balancing the supply and demand of blood, oxygen, and nutrients of vulnerable brain
tissue. Ensuring adequate cerebral oxygen delivery begins with applying pediatric critical
care principles of airway management, ventilator strategies, fluid resuscitation, and
inotropic or vasopressor therapies, and continues with brain-specific therapies of ICP control,
improvement of CPP, and limiting cerebral metabolic demand.

� Evaluating and assessing illness severity in a child with brain injury begins with the
interpretation of vital signs and pupillary examination, as well as determining the GCS.
Indications for CTorMRI to evaluate injury depend on the mechanism of injury, initial clinical
examination, and patient stability.

� cEEG can be used to evaluate for NCS or NCSE, monitor intensive therapies for seizures such
as barbiturates or high-dose benzodiazepines, or if neurologic examination is limited, such as
in the setting of neuromuscular blockade or ECMO. Cerebral oximetry via NIRS, jugular
venous oximetry, or brain tissue oximetry can be used to assess imbalances between the
supply and demand of oxygen delivery to guide therapy intended to mitigate secondary
brain injury.
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