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A B S T R A C T   

Artificial intelligence (AI) is a rapidly evolving field with many neuro-oncology applications. In this review, we 
discuss how AI can assist in brain tumour imaging, focusing on machine learning (ML) and deep learning (DL) 
techniques. We describe how AI can help in lesion detection, differential diagnosis, anatomic segmentation, 
molecular marker identification, prognostication, and pseudo-progression evaluation. We also cover AI appli
cations in non-glioma brain tumours, such as brain metastasis, posterior fossa, and pituitary tumours. We 
highlight the challenges and limitations of AI implementation in radiology, such as data quality, standardization, 
and integration. Based on the findings in the aforementioned areas, we conclude that AI can potentially improve 
the diagnosis and treatment of brain tumours and provide a path towards personalized medicine and better 
patient outcomes.   

1. Introduction 

Central nervous system cancer is the tenth leading cause of death in 
men and women [1]. Brain tumour is not the primary cause of mortality, 
yet 40 % of all other cancer types can develop into brain cancer due to 
metastasis [1]. The diagnosis of brain tumors is predominantly based on 
neuroimaging findings, using techniques such as contrast-enhanced 
computed tomography (CT) or magnetic resonance imaging (MRI). 

Among the central nervous system (CNS) neoplasms, the most 
common type is Glioma originating from glial cells [2]. 

Gliomas are heterogeneous groups of disease, with many different 
histotypes and molecular subtypes ranging from slow growing pilocytic 
astrocytoma to the aggressive glioblastoma multiforme (GBM). Given 
poor prognosis of patients with brain cancer at a higher stage, accurate 
grading is crucial for treatment and prognosis. 

Common tests used for tumour diagnosis and grade estimation 
include neurological examination, imaging, biopsies, and biomarkers. 
Biopsies are the gold standard, but invasive and risky. 

Techniques such as contrast-enhanced computed tomography (CT) 
or magnetic resonance imaging (MRI) are used for diagnosis of brain 
tumours. As they are non-invasive and accessible, many efforts have 
been made to increase the information from brain imaging. 

Conventional MRI sequences, which include pre- and postcontrast 
T1-weighted imaging, T2-weighted imaging, and T2-weighted fluid- 
attenuated inversion recovery (FLAIR) sequences, help delineate tumour 
volume and morphologic characteristics. Unfortunately, contrast 
enhancement is nonspecific, and the detection of foci of tumour infil
tration within the T2-weighted FLAIR signal intensity abnormality is 
nearly impossible with conventional sequences [3]. 

Advanced MRI methods, including diffusion-weighted imaging, 
diffusion tensor imaging, perfusion MRI and MR spectroscopy, are used 
clinically for grading gliomas and identifying regions of tumour infil
tration. They are usually qualitative and vary across sites, units, and 
methods. With increasing incidence of brain tumours, [4] a non- 
invasive, automatic computer-aided tool that can diagnose and grade 
a tumour quickly is needed. 

One of the ways in which tumours can be swiftly diagnosed is 
through artificial intelligence. Artificial intelligence (AI) is defined as 
machines performing tasks characteristic of human intelligence [5]. AI- 
based algorithms have been used in the healthcare field to improve 
diagnosis, predict outcomes, guide efforts in drug discovery and for 
rapid data processing in clinical research. Moreover, neuroimaging 
research in AI has grown exponentially. There have been several articles 
published on the use of AI in brain tumour imaging. Ce et al [6] provided 
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a description of AI-based models and a narrative review of their appli
cations in various studies concerning brain imaging. Zhu et al [7] 
reviewed the latest machine learning-based AI applications in the 
radiomic analysis of brain tumours, providing a perspective on chal
lenges and future avenues. However, other aspects of AI, such as its 
usage in non-glioma evaluations, as well as a discussion on the promise 
of the use of transformers in neuro-oncology imaging, is an important 
area of research. Thus, this article aims to evaluate the various uses of 
AI-assisted tools in the diagnosis and treatment of brain tumours, with a 
unique focus on brain gliomas as well as non-glioma evaluations, and 
transformer-based networks in brain tumour imaging. 

2. Machine learning 

Machine learning (ML), falling under the umbrella of AI, in
corporates algorithms and statistical models to make predictions about 
new data points [8,9]. In ML, computers learn automatically from data 
accumulation and improve with experience. 

Deep learning (DL) is a subclass of ML that processes raw unstruc
tured data using multi-layered artificial neural networks (ANN) [8,9]. It 
is currently the basis of most of the AI tools used for image interpreta
tion.. It can extract features, analyze patterns, and classify information 
by learning multiple levels of lower and higher-order features. Lower- 
order features, for example, would include corners, edges, and other 
basic shapes. Higher-order features would include different gradations 
of image texture, more refined shapes, and image-specific patterns. 

However, in cases where there is a lack of diversity within the 
training data or bias, the reliability of integrating such platforms into 
healthcare settings may be called into question [10]. This can poten
tially result in platforms failing to recognize rarer Brain tumours or those 
in earlier stages of progression. 

3. Artificial intelligence in image analysis 

One of the most common applications of AI is in the analysis of 
diagnostic imaging. 

The process (Fig. 6) often commences with transforming the raw 
visual data into a format comprehensible to various deep learning 
models. This transformation is critical, whether the model in use is a 
Convolutional Neural Network (CNN), Vision Transformer (ViT), or 
another advanced architecture [11,12]. The core essence of these 
models lies in their ability to interpret the visual content of images 
through a structured analytical process, meticulously crafted to extract, 
highlight, and contextualize relevant features before making well- 
informed predictions. The process typically begins with preprocessing, 
where images are tailored to meet the models’ specific requirements. 
Tasks such as resizing, normalizing pixel values, and data augmentation 
are essential to ensure compatibility and enhance the robustness of the 
models. The prepared images are then fed into the models either as pixel 
matrices or segmented patches, setting the stage for intricate feature 
analysis [12,13]. 

For feature extraction, CNNs utilize convolutional layers to apply 
filters that capture distinctive features within the images, such as edges 
or textures. This process is complemented by activation functions (e.g., 
ReLU) to introduce non-linearity, enabling the model to learn complex 
patterns. Pooling layers, particularly max pooling, further distill the 
feature representation by reducing dimensionality and emphasizing the 
most salient features. ViTs, in contrast, dissect the image into a series of 
patches and employ self-attention mechanisms. This allows the model to 
assess the relevance of each patch in relation to others, fostering a deep 
understanding of contextual relationships and crafting a comprehensive 
representation of the image [11,12,13,14]. 

DL models typically undergo further stages for contextualization. 
Both CNNs and ViTs synthesize the extracted features to construct a 
holistic understanding of the image. CNNs might employ additional 
convolutional and fully connected layers for this purpose, whereas ViTs 

leverage ongoing transformer blocks to refine the contextual represen
tation of each patch within the overarching image narrative. 

The decisive phase is where models apply the accumulated knowl
edge to predict outcomes. CNNs typically progress through fully con
nected layers to an output layer for this task, whereas ViTs reach a 
climax at the classification head, directly translating the transformer- 
encoded features into predictions [11,12,14]. A common mechanism 
employed here, particularly for classification tasks, is the softmax 
function, which converts the models’ output into class probabilities. The 
culmination of this analytical process is the model’s prediction, which 
could manifest as class labels (classification), bounding boxes (detec
tion), or pixel-wise annotations (segmentation), depending on the task 
at hand [13]. 

Following the comprehensive synthesis of visual data through deep 
learning models, the evaluation of these models becomes paramount to 
ensure their efficacy and accuracy in clinical settings. The effectiveness 
of models in tasks such as classification, detection, and segmentation is 
measured using specific, relevant metrics that directly impact clinical 
outcomes. In classification, accuracy, sensitivity, specificity, precision, 
and recall provide a quantitative assessment of a model’s diagnostic 
ability, derived from a confusion matrix that compares predicted out
comes with actual clinical diagnoses [13]. Similarly, the F1 score offers a 
balance between precision and sensitivity, reflecting the model’s diag
nostic reliability across different decision thresholds. For tasks involving 
detection and segmentation, the Intersection over Union (IOU) and the 
Dice or Jaccard coefficients are critical for evaluating the alignment 
between the model-generated outputs and the expert-defined ground 
truths [13]. These metrics ensure that the models not only perform well 
technically but also meet the practical demands of medical diagnostics, 
making them valuable tools in the advancement of radiology and patient 
care. 

It is essential to understand the unique architectural innovations 
introduced over time to tackle specific challenges in deep neural 
network design. U-Net was specifically developed for medical image 
segmentation, introducing a symmetric expanding path to achieve pre
cise localization crucial for biomedical applications [15]. GoogLeNet 
and its Inception successors were designed to optimize deep neural 
network efficiency, using inception modules to manage computational 
budget and model size effectively [15]. ResNet addresses the vanishing 
gradient problem by incorporating skip connections that allow for 
training deeper networks than previously possible [15]. DenseNet201 
enhances feature propagation and reduces the number of parameters 
through its densely connected architecture [11]. Xception improves 
upon the Inception models by employing depthwise separable convo
lutions, optimizing both performance and computational efficiency. 
MobileNet, ideal for mobile and edge devices, uses similar convolutions 
to ensure model compactness without sacrificing accuracy [11]. Capsule 
Networks (CapsNet) tackle traditional CNN limitations in capturing 
spatial hierarchies and object relationships, enhancing the network’s 
ability to recognize objects from various viewpoints and orientations. 
These innovations ensure that deep learning models not only achieve 
high technical performance but also cater to the nuanced demands of 
medical diagnostics, thereby advancing the field of radiology and 
improving patient care [11,15]. 

Clinicians and radiologists are already utilizing ML models for non- 
invasive diagnoses as well as for treatment planning of brain tumours, 
a process sometimes referred to as “virtual biopsy”. This enables them to 
obtain crucial information about tumour characteristics based on im
aging features, including infiltrating tumour margins, molecular 
markers, and prognosis–all of which are relevant for patient manage
ment, pre and post-treatment follow-up, and therapeutic decision 
making [16]. 

As such, AI tools not only save radiologists’ time, but also provide a 
second opinion in the diagnosis. 
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4. Ai in brain gliomas 

4.1. Lesion detection and grade Prediction 

AI can improve diagnosis of small lesions [17] by using MRI, CT and 
PET scan data. (Table 3). Small lesions affect treatment choices and are 
very relevant for DL algorithms [18]. CAD tools need to be tuned to 
ensure accuracy and reduce overdiagnosis and overtreatment (Fig. 1). 

Blanc-Durand et al [19] used dynamic 18F-FET PET images to detect 
brain lesions in glioma patients. They used a 3D U-Net CNN to classify 
lesion or non-lesion voxels from PET features. They got 0.9868 accuracy 
in training and 0.9856 in validation for lesion detection. 

AI can also predict tumour grade from medical images, which mat
ters for glioma treatment and prognosis. AI can spot subtle features that 
clinicians may overlook. Different ML and DL methods with transfer 
learning, have high accuracy for glioma grading. For example, Support 
Vector Machine (SVM) models [20] had 0.987 Area Under the Curve 
(AUC) for low grade glioma (LGG) LGG vs high grade glioma (HGG). 
Deep learning methods [21] like GoogLeNet did better than traditional 
methods, with 0.939 test AUC. 

4.2. Anatomic segmentation and Volumetry 

Segmentation refers to identifying the boundaries of an object in the 
image. Frequently, the object is an organ, a tissue, a pathologic lesion, or 
another structure used for diagnosis or management of a particular 
disease. 

Accurate segmentation of gliomas on routine MRI is crucial for 

diagnosis, treatment planning and prognosis [22], (Fig. 2) Traditional 
approaches to segmentation rely on manual, semiautomated or fully 
automated delineation of the object of interest. Currently, it is accom
plished manually which involves separating tumour tissues, such as 
edema and necrosis, from normal brain tissue such as gray matter, white 
matter, and cerebrospinal fluid. However, this process is time 
consuming and is highly dependent on the subjective decisions of indi
vidual radiologists. As a result, the use of computational tools in glioma 
segmentation has been of high interest for radiologists, (Table 4) in their 
pursuit towards objectivity and accuracy (Fig. 3) [23]. 

Wu et al [22] created computational models in brain glioma seg
mentation that require only 5–7 s for segmenting one case. By using DL 
models like CNN, they were able to segment subregions of brain glioma 
with high accuracy (Sørensen–Dice scores of 0.80, 0.83, and 0.91 for 
enhancing tumor, tumor core, and whole tumor, respectively), effi
ciency, reliability, and generalization ability. AI-assisted segmentation 
tools are based on DL and ML algorithms. Currently, DL-based models 
have a greater impact on brain tumour segmentation and classification 
tasks compared to ML-based models. 

In 2022, Akinyelu et al conducted a survey comparing the most 
recently developed segmentation techniques based on ML, CNN, Capsule 
Networks (CapsNet), and ViT. These methods primarily contribute to 
identifying the grade of a brain tumour and developing the best treat
ment for it [24]. 

CNN algorithms, though representing the most often used DL algo
rithm, pose some drawbacks, such as the need for large quantities of 
training datasets and the inability to correctly identify inputs with 
different rotations and transformations. 

Fig. 1. Flowchart showing standard steps for lesion detection and grade prediction. 1. Collect a large dataset of MRI images, including both normal and abnormal 
(with lesions) images. Process the images to enhance quality & consistency. This can involve resizing, normalizing, and augmenting the images to improve the 
training process. Annotate the images with expert input, marking lesions accurately. This step is crucial for supervised learning models. 2. Choose an appropriate AI 
model for lesion detection (common choices include convolutional neural networks (CNNs) and deep learning models). Train the AI model using the labelled dataset; 
this involves feeding the images into the model, allowing it to learn differentiation between normal tissues and lesions. Validate the model’s performance using a 
separate set of images not used in training–this step assesses the model’s accuracy and generalizability. Further test the model on a new set of images to evaluate its 
real-world performance. Metrics like accuracy, sensitivity, specificity, and area under the curve (AUC) are often used. 3. Based on test results, refine and tweak the 
model for better performance. Integrate the AI model into clinical workflows, where it can assist radiologists in lesion detection on MRI images. 
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CapsNet have been proposed to address the limitations of CNN for 
tumour segmentation. CapsNets require smaller datasets for training 
compared to CNNs and consider the surrounding tissues of the tumour 
[24]. 

These models can be effectively used in clinical practice to aid neuro- 
oncologists or radiologists in obtaining quick and accurate 
segmentation. 

4.3. Molecular marker Identification 

The revised WHO classification of CNS tumours uses molecular pa
rameters such as IDH genotype and 1p/19q codeletion to classify gli
omas [25]. According to this classification system, both low-grade 
astroctyomas and oligodendrogliomas are classified by the presence of 
IDH 1 and IDH 2 mutations as well as loss of portions of chromosomes 1 
and 19, known as 1p19q codeletion. Having IDH1 or IDH2 mutations is 
associated with improved survival, as these gliomas respond better to 
Temozolomide therapy [26]. In a study by Beiko et al, in both WHO 
grade III and IV gliomas, resection of non-enhancing tumor after total 
resection of enhancing component correlated with improvements in 
survival as opposed to IDH mutant [27]. These findings show the 
importance of genetic information for patient monitoring and individ
ualized therapies.12. 

Currently, genomic profiling is usually done on tissue samples from 
enhancing tumour components, which may not reflect the whole tumour 
heterogeneity. 12 Biopsy samples often have low tumour content [28] 
and genetic testing can be expensive, limited, and time-consuming. Non- 
invasive imaging techniques that can provide genetic information may 

overcome these limitations. (Table 5). 
The process of obtaining genomic information from brain imaging 

led to the establishment of a new field: radio genomics. CNNs applied to 
conventional MRI modalities have been used to differentiate IDH mutant 
gliomas from IDH wild-type tumours with 92 % accuracy, consistent 
with prior visual assessment and underlying pathophysiology that IDH 
wild-type tumours demonstrate more infiltrative, ill-defined margins 
[29]. 

Other than a single manuscript reporting slight frontal lobe predi
lection, there are no consistent MR imaging features that can reliably 
and accurately predict 1p19q codeletion tumours [30]. Chang et al used 
CNN to predict 1p19q codeletion status achieving an accuracy of 94 % 
[29]. 

Approximately 33 %–57 % of diffuse gliomas exhibit hyper
methylation of the promoter of the MGMT gene [31]. MGMT promoter 
hypermethylation has been associated with better prognosis owing to 
improved sensitivity to alkylating agents (eg, temozolomide) [31]. 
Radiomic studies have identified distinct imaging signatures for this 
molecular marker. Studies have been able to predict MGMT methylation 
status with up to 88 % accuracy by combining texture features with ML 
methods. 

Akkus et al used a multi-scale CNN on post-contrast T1- and T2- 
weighted MR images to predict 1p19q codeletion with 93 % accuracy. 
They identified enhancement, infiltrative margins, and left frontal lobe 
as associated features [32]. 

Using radiomics analysis on preoperative MRI, Meng et al predicted 
ATRX status in 123 gliomas (grades II–IV) with high accuracy (0.79), 
sensitivity (0.73), and specificity (0.86). The AUC for ATRX mutation 

Fig. 2. Flowchart showing standard steps for Anatomic Segmentation and Volumetry. 1. Obtain high-resolution MRI images. The quality and resolution of these 
images is crucial for accurate segmentation and volumetry. Process the images, which includes noise reduction, contrast enhancement, and standardization of image 
dimensions. The goal is to prepare the images for better analysis and segmentation. Using AI algorithms, particularly those based on deep learning (CNNs), segment 
the MRI images to identify and delineate different anatomical structures. This involves classifying each pixel or voxel as belonging to a specific tissue or structure. 
Often, automated segmentation is followed by manual review and correction by experts, ensuring accuracy in delineating complex anatomical structures. 2. After 
segmentation, compute the volume of the segmented structures. This is particularly important in assessing organ sizes, tumour volumes, or changes in brain 
structures in neurological disorders. Normalize the volumes to account for patient-specific factors like overall head size or body size. This step is critical for 
comparative studies and clinical assessments. Ensure the accuracy and reliability of the segmentation and volumetry through quality control procedures, which might 
involve cross-verification with other imaging modalities or repeat analyses. 3. Integrate the segmented and volumetric data with other clinical data for compre
hensive analysis, aiding in diagnosis, treatment planning, and monitoring disease progression. Generate detailed reports and visualizations of the segmented 
structures and their volumes for clinical use. Continuously refine the AI algorithms and processes based on feedback and evolving medical knowledge to improve 
accuracy and efficiency. 
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was 0.84 (95 % CI: 0.63–0.91) [33]. 
Habould et al developed a fully automated tool that uses radiomics to 

predict the molecular status and grade of brain gliomas, based on clin
ical and laboratory data. The tool performed very well in distinguishing 
low-grade from high-grade gliomas, as well as in detecting ATRX and 
IDH1/2 mutations (Fig. 4). However, it was less accurate in predicting 
1p19q and MGMT status [34]. 

Thus, AI methods are useful in noninvasively distinguishing different 
central nervous system (CNS) malignancies prior to biopsy at levels 
comparable with trained neuroradiologists and can accurately classify 
genetic mutations of low and high-grade gliomas. 

4.4. Prognostication 

Basic imaging metrics, including maximal dimension and enhancing 

volume, have been used for prognostication. Additional studies have 
shown that in patients with GBM, both non-enhancing tumours and 
areas of infiltration are good predictors of overall survival (OS); poor OS 
is correlated with higher regional cerebral blood volume (rCBV) and 
EGFRvIII amplification (a marker of neo-angiogenesis) [35]. Various ML 
approaches, including SVM classifiers, have been utilized in grading and 
evaluating the prognosis of gliomas. In a study with 105 high-grade 
glioma patients, Macyszyn et al demonstrated that their SVM model 
could classify patients’ survival into short or long-term categories with 
an accuracy range of 82–88 % [36]. The most predictive features in this 
model included tumour volumes, angiogenesis (enhancing tumour vol
ume), peritumoural infiltration, cell density (trace diffusion values), and 
distance to the ventricles. 

AI-assisted tools can help diagnose brain tumours, devise follow-ups 
and management plans, and predict post-operative complications [37]. 

Fig. 3. Single slice multimodal MRI scans illustrating GLISTRboost segmentation examples. . 

Reproduced from Bakas, S. et al. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 
4:170117 (2017), licensed under CC BY 4.0. Good segmentations are represented in the first three row, while bad segmentations are represented in the last 
three rows.13 
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A recent review by Williams et al discussed several studies on the po
tential of integrating AI to predict the development of common post- 
operative complications in brain tumor patients [37]. These complica
tions include venous thromboembolism, falls, hypoglycemia, adverse 
drug events, and pressure ulcers [38,39]. 

Glioma patients also face the challenge of distinguishing tumor 
recurrence from radiation necrosis, which can affect their treatment 
options. Current MRI methods are not very reliable for this task, and 
artificial intelligence (AI) still struggles to capture tumor complexity. 

Few studies have explored this problem so far. However, AI can help 
measure tumor response to treatment by analyzing tumor volume and 
predicting outcomes. AI can also help identify imaging features that are 
linked to tumor immune activity, which is important for evaluating 
immunotherapies in GBM. These features are derived from different 
types of MRI images and T-cell gene expression data. Using MRI images 
of different types (T1-weighted post-contrast and T2-FLAIR) and gene 
expression data of T-cell markers (CD3D/E/G) from GBM patients, 
Narang et al. found six imaging features that are related to the activity of 
CD3 T-cells within GBM tumours [40]. 

4.5. Pseudo-progression 

Psuedo-progression is defined as new contrast enhancement that 
occurs due to radio-chemotherapy, and subsides independent of any 
alterations in treatment.24 The differentiation of pseudo-progression 
from true progression remains a crucial diagnostic dilemma. Macdon
ald criteria, the first and most widely used criteria to assess treatment 
response in patients with high-grade glioma (HGG), considers all 
enhancing lesions as progression without consideration for treatment- 
related processes such as inflammation or necrosis. The Response 
Assessment in Neuro-Oncology (RANO) criteria recognizes true disease 
progression within 12 weeks post-treatment only with pathological 
confirmation or if new lesions have appeared outside the radiation field; 
otherwise, pseudo-progression is instead considered as a possible 
diagnosis. 

A recent metanalysis showed that up to 36 % of cases of pseudo- 
progression were underdiagnosed using RANO criteria. 

Studies have successfully incorporated ML algorithms to predict 
pseudo-progression [41]. Results from one study showed 89.91 % 
sensitivity and 93.72 % specificity of an optimized one-class SVM(OC- 

SVM) classifier for pseudo-progression, as shown in the Table 1.25. 
Techniques such as DL and ML CNN-LSTM (long short-term mem

ory), are being used on patients with GBM from different institutions, to 
differentiate PsP from TP [42]. 

However, the lack of “ground truth” or histopathologically proven 
cases, and an insufficient number of well-curated, annotated MR images 
of PsP cases, may explain the relative absence of CNN manuscripts 
devoted to prediction of PsP, which remains a critical, unmet need in 
neuro-oncology. 

5. Ai applications in non-glioma evaluation 

Non-glioma brain tumours are a diverse group of brain tumours that 
can originate from different cell types and locations within the central 
nervous system. They include metastatic tumours, meningiomas, pitui
tary tumours, ependymomas, medulloblastomas, hemangioblastomas, 
and others. These tumours have different histopathological features, 
clinical manifestations, prognoses, and treatment options. Therefore, 
accurate and reliable methods for brain tumour classification are 
essential for improving patient care and outcomes. 

5.1. Metastasis 

BM is the most common type of intracranial tumour in adults [43]. It 
occurs when cancer cells from a primary site spread to the brain through 
the bloodstream or lymphatic system. BM can originate from various 
primary cancers [43], such as lung cancer, breast cancer, melanoma, 

Fig. 4. ROC curves of the prediction of the ATRX expression loss. . 
Reproduced from Haubold, J. et al. Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas.24 Cancers (Basel). 2021 Dec 8;13(24):6186. licensed under CC BY 
4.0. (A), the 1p19q co-deletion (B), the IDH1/IDH2 mutation (C) and the MGMT-status (D) in the validation data set (left) and the test data set (right).24 

Table 1 
Results of Obtained Optimal Classifier One-Class Support Vector Machine (OC- 
SVM) for Pseudoprogression.  

Characteristics Maximum 
AUROC 

Sensitivity 
(TP) 

Specificity 
(FP)   

Gamma = 5  0.9439  89.91 %  93.72 %   
v = 0.06 

Threshold =
-0.12      

Note: AUROC = Area Under Receiver Operating Characteristic Curve; gamma =
width of radius base function; v = fraction of outliers in training sample. 
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renal cell carcinoma, or colorectal cancer. 
AI techniques have been applied to BM differentiation from primary 

brain tumours. Using preoperative MRI data, Bae et al [44] developed a 
radiomic model to differentiate between GBM and brain metastasis 
using preoperative MRI data from 166 patients in the training cohort 
and 82 patients in the validation cohort. The model used 265 radiomic 
features from T2-weighted and contrast-enhanced T1-weighted MRI 
sequences, and various machine learning classifiers, such as adaptive 
boosting (AdaBoost), SVM, and linear discriminant analysis (LDA). The 
deep neural network model achieved an AUC of 0.956 in the validation 
cohort. Swinburne et al. [45] used SVM and Multi-Layer Perceptron 
(MLP) models to differentiate between intracranial GBM, Central Ner
vous System Lymphomas, and BM using preoperative brain MRI. The 
MLP model trained on fractional plasma volume (Vp) values from the 
non-enhancing T2 signal hyperintense region (NET2) surrounding the 
enhancing tumor component differentiated the three tumor classes with 
a moderate accuracy of 54 %. 

AI techniques have also been applied on determining the primary 
tumour source for BM. Ortiz-Ramón et al [46] used 43 texture-based 
features and Random Forest (RF) classifier to differentiate between 
BM derived from lung cancer, breast cancer, and melanoma using MRI- 
based texture Analysis. The RF classifier demonstrated that lung cancer 
BM could be differentiated from breast cancer and melanoma BM with 
high accuracy (AUC > 0.9) using a few features of the optimal dataset. 
The study also found that breast cancer and melanoma BM were poorly 
classified (AUC = 0.607) using the same features, indicating that RF 
classifiers are not suitable for discriminating between breast and mela
noma BM. 

Detection and segmentation of even the smallest brain metastasis is 
crucial for treatment planning. Various AI techniques have been applied 
to this task [1747] (Fig. 5), most using contrast-enhanced three- 
dimensional (3D) gradient echo (GRE) imaging datasets. Considering 
that black blood imaging technique [48] can suppress blood vessel 

signals, enabling clearer delineation and better detection of small brain 
metastases [49], Won Park et al [18] used a U-net-based DL model to 
segment brain metastases on black-blood (BB) and gradient-echo (GRE) 
MRI sequences from 188 patients in the training set and 45 patients in 
the test set. The combined BB-GRE model achieved high sensitivity (93 
%) and precision (85 %) for detecting brain metastases, especially for 
small lesions (<3 mm). The model also showed high Dice coefficient 
(0.822) for segmenting brain metastases. 

The clinical presentation of brain metastases (BM) may reflect the 
primary tumour site. Previous studies have mainly relied on radiomic 
features extracted from conventional MRI images. To evaluate the added 
value of clinical features for the AI model, Han et al. [50] conducted a 
retrospective study of glioblastoma multiforme (GBM) and metastatic 
brain tumors (MET) from two institutions, with data collected from 
January 2010 to December 2017 for MET and from January 2014 to 
December 2015 for GBM. They extracted 841 radiomic features from 
MRI scans and performed feature selection methods. They then built 
four radiomics models using different algorithms (logistic regression, 
support vector machine, decision tree, and random forest). They also 
constructed clinical-radiological models that incorporated patient age, 
sex, tumor size, edema ratio, and location. Furthermore, they trained 
combination models that integrated clinical, radiological, and radiomic 
variables. They applied these three types of models to distinguish be
tween GBM and MET, and between MET-lung and MET-other. The re
sults indicated that the combination models achieved the highest 
performance in both classification tasks. The combination GBM model 
had an AUC of 0.774 in the external validation, while the clinical- 
radiologic model had an AUC of 0.674. The combination MET model 
had an AUC of 0.833 in the external validation, while the clinical- 
radiologic model had an AUC of 0.759. The study demonstrated that 
the combination of radiomic features and clinical-radiological factors 
can enhance the accuracy of differentiating between GBM and MET, and 
between MET-lung and MET-other. 

Fig. 5. Example of brain metastasis detection.) 
Reproduced from Oh, JH., Lee, K.M., Kim, HG. et al. Deep learning-based detection algorithm for brain metastases on black blood imaging. Sci Rep 12, 19503 (2022). 
37 licensed under CC BY 4.0. The numbers 1–5 are displayed at each lesion. Blue boxes show the label that the lesion placed more than two adjacent slices and green 
boxes show the prediction result by deep learning algorithm. This figure was generated by MATLAB (MathWorks, R2020b, Natick, MA, USA)37. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article. 
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DNN is superior to ML and human readers for BM detection using 
MRI imaging. Cho et al [51] reviewed 16 studies that applied ML and 
DNN to brain metastasis detection using MR imaging. They found that 
DNN outperformed ML and human readers in most metrics, especially in 
reducing false positives (P < 0.001) while maintaining high sensitivity. 
Bae et al [51] compared various ML models and DNN with radiomic 
features from CE or PT regions of the brain tumours. The DNN achieved 
the highest performance with an AUC of 0.956, compared to AUC of 
0.890 for ML and 0.904 for human experts. 

5.2. Posterior fossa tumours 

Posterior Fossa Tumours (PFT) are tumours in the posterior fossa 
region of the brain, which has the cerebellum, brainstem, and fourth 
ventricle. PFTs account for about 15 % of all intracranial tumours in 
adults [52] and about 60 % of all intracranial tumours in children [53]. 
PFTs have various types, such as pilocytic astrocytoma, medulloblas
toma, ependymoma, ATRT, and hemangioblastoma. They differ in 
biology, symptoms, prognosis, and treatment. 

As the treatment modalities are different for the various PFTs, 
differentiating between these tumour types are important. Payabvash 
et al. [54] used ADC histogram metrics and CART decision tree models 
and random forest machine learning algorithms to differentiate between 
different PFT types, such as pilocytic astrocytoma, medulloblastoma, 
ependymoma, ATRT, and hemangioblastoma. The study included 200 
patients who underwent surgical pathology and MRI with ADC map, T2- 
weighted, FLAIR, and post contrast T1-weighted sequences. The study 
used classification and regression tree (CART) decision tree models and 
random forest machine learning algorithms to differentiate between 
tumor types. The CART model achieved accurate classification rates 
ranging from 30 % to 90 % for 7 histopathologies, while the random 
forest models showed high performance in multiclass differentiation, 
with an averaged AUC of 0.961 in training datasets and 0.873 in vali
dation datasets. This study demonstrated the potential of Machine 
learning algorithms for PFTs. Another study by Quon et al. [55] devel
oped a deep learning model to detect and classify four types of pediatric 
posterior fossa tumors: diffuse midline glioma of the pons, medullo
blastoma, pilocytic astrocytoma, and ependymoma, using T2-weighted 
MRIs. The model was based on the modified ResNeXt-50-32x4d archi
tecture and used transfer learning and data augmentation techniques to 
improve its performance. The results showed 0.99 AUROC value for 
tumor detection and 0.92 accuracy and 0.80 F1 score for tumor classi
fication on a multi-institutional dataset of 739 scans. The model out
performed two of the four radiologists in tumor classification and was 
comparable with the other two. A systematic review of ML algorithms 
developed to classify and diagnose pediatric PFTs by Yearley et al. [56] 
showed that the algorithms exhibited variable performance based on 

sample size, classifier(s) used, and the individual tumor types being 
investigated. The median reported AUC was 0.87, and the most popular 
algorithms were support vector machine and random forest. 

Some AI techniques have been used for PFT treatment. Post- 
operative hydrocephalus is a well-known complication after resection 
of PFT and can lead to long-term CSF diversion and prolonged hospi
talization. Bray et al [57] used an ANN model with 17 variables to 
predict hydrocephalus after PFT surgery needing permanent CSF 
diversion. The model has high accuracy (0.902 AUC), calibration, and 
usefulness in both validation cohorts, and beats other classifiers. The 
model can find high-risk patients and reduce hospital time and cost. 

A systematic review of ML algorithms developed to classify and di
agnose pediatric PFTs by Yearley et al [56] showed that the algorithms 
exhibited variable performance based on sample size, classifier(s) used, 
and the individual tumour types being investigated. The median re
ported AUC was 0.87, and the most popular algorithms were support 
vector machine and random forest. 

5.3. Pituitary tumours 

Pituitary tumours are tumours that arise from the pituitary gland, a 
small endocrine organ located at the base of the brain that secretes 
various hormones that regulate various bodily functions. 

Some patients with pituitary adenoma, especially those with acro
megaly [58], would benefit from surgery [59]. Tumour consistency is 
one of the factors that affects the surgical treatment of pituitary tumours 
[59]. Pre-operative knowledge of tumour consistency is relevant to 
surgical planning, risks and outcome, as fibrous tumours tend to be 
larger in size and invade neighbouring structure and cavernous sinus 
[59]. Fan et al. [60] developed a radiomics model to predict the tumor 
consistency of pituitary macroadenomas in patients with acromegaly 
using conventional MRI sequences. The model combines a radiomics 
signature derived from four selected features and clinical characteristics 
such as Knosp grade. The model shows high accuracy (0.88 in internal 
validation and 0.86 in external validation), calibration, and clinical 
usefulness in both internal and external validation cohorts, and out
performs the use of clinical features alone (0.72 in internal validation 
and 0.68 in external validation). Also, Zeynalova et al. [61] evaluated 
the potential value of machine learning (ML)-based histogram analysis 
on conventional T2-weighted MRI for predicting consistency of pituitary 
macroadenomas (PMA) and compared it with that of signal intensity 
ratio (SIR) evaluation. The model combines six selected texture features 
and surgical and histopathological findings as reference standard. The 
model shows high accuracy (0.71 AUC value), calibration, and clinical 
usefulness in a 10-fold cross-validation protocol and outperforms the use 
of SIR evaluation (0.55 AUC value). These models can help to preop
eratively evaluate tumour consistency in PMA and plan proper surgical 

Fig. 6. Sequential Workflow of AI in Diagnostic Imaging. Step-by-step process of using artificial intelligence, specifically through Convolutional Neural Networks 
(CNN) and Vision Transformers (ViT), for the analysis of diagnostic images. It details the stages from preprocessing raw data to evaluating model performance with 
specific metrics for classification, detection, and segmentation tasks. 
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strategy. 
AI techniques has also been used to predict treatment response and 

cavernous sinus invasion in pituitary adenomas. This is important 
because invasive pituitary adenomas are hard to treat, hence individu
alized treatment plan would benefit these patients the most. Fang et al 
[62] used a pre-trained Resnet50 CNN model with transfer learning and 
data augmentation to diagnose cavernous sinus invasion (CSI) in pitui
tary adenoma (PA) using T1-enhanced MRI. The model had 0.98 AUC- 
ROC, 0.95 sensitivity and 0.96 specificity for CSI prediction, and beat 
the Knosp grading system, which had 0.84 AUC-ROC, 0.96 sensitivity 
and 0.46 specificity. Niu et al [63] used a radiomics method with 
contrast-enhanced T1 (CE-T1) and T2 MR images to predict CS invasion 
by PA. The method extracts imaging features and uses an SVM model 
with a radiomics signature and clinical characteristics. The model had 
0.899 AUC in the training set and 0.871 AUC in the test set for the 
radiomics nomogram and beat the clinico-radiological model and the 
single-image models. These models can help to preoperatively evaluate 
tumour invasiveness and plan proper surgical strategy. 

AI techniques have also been used to differentiate pituitary tumours 
from other Primary CNS tumours. Ucuzal et al [64] and Haq et al [65] 
developed DL models to classify brain tumours into three types: glioma, 
meningioma, and pituitary, from MRI images. Ucuzal et al [64] used 
Auto-Keras to train and test on a dataset of 3064 MR images from 233 
patients. Their web-based software reported 98 % and above 

performance on various metrics for classifying the tumour types. The 
software is publicly accessible at [https://biostatapps.inonu.edu. 
tr/BTSY/]. Haq et al [65] used the ResNet-50 architecture and trans
fer learning and data augmentation techniques to improve their model. 
Their results reported 99.89 % accuracy on augmented brain tumour MR 
images data set, and out-performed other CNN models such as VGG-16, 
Inception V3, DenseNet201, Xception, and MobileNet. 

Although several studies conducted on ML and treatment response 
for pituitary tumour reported promising results, [66,67,68,69,70] Rech 
et al [66] systematically reviewed 20 studies on ML models for pituitary 
surgery outcomes, such as endocrine remission, tumour recurrence, and 
complications. They used the TRIPOD statement to evaluate the 
reporting quality. The results showed that the studies had low adherence 
to TRIPOD criteria (median 65 %) and high performance (median AUC 
0.84). The review concluded that ML applications in pituitary surgery 
are still nascent and need more validation and transparency. 

6. Transformer-based neural networks in brain tumour imaging 

Transformers, a groundbreaking architecture initially revolution
izing natural language processing, as seen in models like ChatGPT, have 
expanded well beyond their original purpose. Their remarkable success 
in understanding and generating human language has paved the way for 
their application in medicine, specifically neuro-oncology imaging 

Table 2 
Recent Studies on the transformer-based neural network in brain tumour imaging.  

Author 
and Year 

Sample/Data 
Size 

Imaging Modality/ 
Sequences and 
Clinical Data 

AI Model Task Main Results Limitations 

Baur 
et al., 
2023 

834 training, 208 
validation, 209 
test samples 

T1, T1Gd, T2, 
T2FLAIR MRI 

CKD-TransBTS Brain tumor 
segmentation 

Sensitivity: 
0.869–0.878, 
Specificity: 
0.921–0.935 

Under-segmentation of necrosis 
region in some cases 

Fink 
et al., 
2022 

10,455 patients CT, MRI, US exams BERT (NLP model) Assessment of 
oncologic 
outcomes 

BERT F1 score: 0.70 
(95 % CI: 0.68–0.73) 

Not as effective as radiologists in 
curating outcomes, similar 
performance to medical students. 

Anaya- 
Isaza 
et al., 
2023 

233 subjects 
(BTD dataset) 

T1-Gd Various 
(InceptionResNetV2, 
DenseNet121, etc.) 

Tumor 
classification 

F1 scores: 68.50 % −
95.39 % 

InceptionResNetV2 had 
significantly lower accuracy in 
meningioma detection. Variation in 
the data sets makes it difficult to 
determine detection accuracy and 
only 2D images databases were 
used. 

Anaya- 
Isaza 
et al., 
2023 

253 subjects 
(MRI-D dataset) 

T1WI Various 
(InceptionResNetV2, 
DenseNet121, etc.) 

Tumor detection F1 scores improved by 
3.4 % from scratch, 1 % 
improvement for data 
augmentation 

Variation in the data sets makes it 
difficult to determine detection 
accuracy and only 2D images 
databases were used. 

Anaya- 
Isaza 
et al., 
2023 

110 subjects 
(TCGA-LGG 
dataset) 

T1WI, T1-Gd, FLAIR 
sequences 

Various 
(InceptionResNetV2, Cross- 
Transformer, etc.) 

Tumor detection All networks achieved 
scores over 90 % 

Variation in the data sets makes it 
difficult to determine detection 
accuracy and only 2D images 
databases were used. 

Wu et al., 
2022 

493 glioma 
patients 

T2-weighted MRI, 
clinical data (gender, 
age, grade) 

Swin Transformer and 
ResNet 

Predicting IDH 
mutation status in 
glioma tumours 

Swin Transformer 
outperformed ResNet; 
best results achieved 
with 1.5 × Tumor Bbox 
input for Swin 
Transformer 

Only T2 images were used. Only 
one external dataset was used, 
potential generalization and 
interpretability issues. 

Lyu et al., 
2022 

1582 MRI images 
from 1,399 
patients 

Contrast-enhanced T1- 
weighted MRI, fast 
spoiled gradient echo 
brain MRI exams 

Deep learning Identifying 
primary organ site 
of metastatic brain 
tumours and 

Deep learning allowed 
for accurate diagnosis 
of primary organ site of 
brain metastases with 
AUC of 0.878 

Models had limited data storage 
and dataset lacked diversity for 
model training. Limited imaged of 
the primary cancer site used, lack of 
diversity in tumour classes and 
histological subtypes, model unable 
to diagnose patients with cancer of 
unknown primary origin. 

Pinaya 
et al. 
2022 

15,000 
radiologically 
normal images 

FLAIR images, brain 
MR datasets with 
small vessel disease, 
demyelinating lesions, 
and tumors 

Vector Quantized 
Variational Autoencoder 
(VQ-VAE) with 
autoregressive transformers 

Unsupervised 
anomaly detection 
and segmentation 
in brain imaging 

Superior anomaly 
detection on 2D and 3D 
data; effective in 
segmenting real-world 
lesions in different 
datasets 

Different resolution images may 
provide inconsistent results in 
transformer performance.  
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(Table 2), offering promising advancements in brain tumor diagnosis, 
classification and treatment. Transformers’ ability to efficiently process 
and analyze complex data makes them a valuable tool in medical im
aging, especially for the diagnosis of brain tumours. 

6.1. Transformer efficiency in MRI-Based brain tumour segmentation 

The efficient segmentation of brain tumours using MRI is crucial for 
enhancing diagnosis and treatment. Transformer-based algorithms have 
emerged as a powerful tool to significantly improving both the accuracy 
and efficiency of diagnosis over traditional methods. Lan et al [71], 2023 
highlight the potential of transformer-based algorithms in neuro- 
oncology, such as SPP-U-Net and RMTF-Net for MRI-based brain 
tumour segmentation. The Swin Transformer model showed promise in 
predicting molecular expressions of gliomas, particularly that of IDH 
mutation status. It surpassed conventional CNN-based methods, 
achieving an overall area under the receiver operating characteristic 
curve (AUC) of 0.878 (95 % CI: 0.873–0.883). 

Anaya-Isaza et al [72], 2023 conducted a comparative analysis of 
various AI techniques for brain tumour classification and detection. 
They demonstrated that transfer learning and data augmentation 
improved accuracy up to 6 % and proposed a model that was signifi
cantly more timely efficient compared to other models. 

Furthermore, Pinaya et al [73], 2022 developed a method for un
supervised anomaly detection and segmentation in brain imaging using 
transformers, where various anomalies were assessed and models were 
able to detect both image-wise and pixel/voxel-wise anomalies. Models 
achieved an impressive area under the receiver operating characteristic 
curve (AUROC) of 1.000 against far out-of-distribution (OOD) classes 
and 0.921 against near OOD classes in synthetic datasets, showcasing 
superior performance compared to other models. 

6.2. Clinical Knowledge-Driven hybrid transformer for enhanced 
segmentation 

Integrating clinical knowledge into AI models for brain tumour 
segmentation enhances precision medicine and treatment planning. Lin 
et al [74], 2023 developed the CKD-TransBTS model, a clinical 
knowledge-driven hybrid transformer, that demonstrated significant 
advancements in brain tumour segmentation. The model achieved su
perior Dice scores for enhanced tumour (ET), tumour core (TC), and 
whole tumour (WT), with the HD95 metric for ET notably lower at 5.93 
mm compared to the next best model at 9.01 mm. Incorporation of 
clinical knowledge into this model proved a significant improvement in 
precise and efficient segmentation of brain tumours using MRI. 

6.3. Leveraging deep NLP for structured oncology reports 

Deep NLP models like BERT can efficiently extract and analyze 
complex medical data from structured oncology reports, aiding in ac
curate tumour response classification. Fink et al [75], 2022 developed a 
deep NLP model using bidirectional encoder representations from 
transformers (BERT) to classify tumour response categories based on 
structured oncology reports. Analyzing data from 10,455 patients, the 
BERT model achieved a notable F1 score of 0.70 (95 % CI: 0.68–0.73) on 
802 free-text oncology reports, outperforming the reference linear 
support vector classifier (F1 0.63; 95 % CI: 0.61–0.66) and performing 
similarly to medical students but not as well as radiologists (F1, 0.73; 95 
% CI: 0.72, 0.75). 

6.4. Predicting molecular characteristics without refined tumour 
segmentation 

Predicting tumours’ molecular characteristics without detailed seg
mentation is crucial for personalized cancer treatment. Wu et al [76], 
2022 aimed to predict IDH mutation status from MRI scans without 
refined tumor segmentation. The Swin Transformer models they devel
oped achieved an average AUC of 0.965 and an ACC of 92.3 % in the 
internal test, and 0.842 AUC with 76.6 % ACC in the external test, 
outperforming the ResNet models. Best results were achieved when 
using a 1.0 × tumor bounding box input strategy. Highlighting the po
tential of transformer models in medical imaging for predicting complex 
molecular characteristics like IDH mutation status. 

6.5. Non-Invasive classification of brain metastases 

Non-invasively classifying brain metastases into primary organ sites 
is vital for determining effective treatment strategies. Lyu et al [77], 
2022 developed a deep-learning approach to classify brain metastases 
into primary organ sites using whole-brain MRI data. The model ach
ieved an overall AUC of 0.878 (95 % CI: 0.873–0.883) in tenfold cross- 
validation, indicating high accuracy in diagnosing brain metastases into 
categories like lung, breast, and melanoma. Binary classification ex
periments showed even higher accuracy, particularly for lung and breast 
categories with an AUC of 0.959. 

Although transformers demonstrate immense promise in neuro- 
oncology there are some challenges hindering their integration into 
clinical practice. Limited availability of well-annotated, diverse datasets 
for training impacts the models’ generalization abilities [72]. The 
complexity of transformers also introduces interpretability issues which 
is essential for gaining the models trust in its ability to accurately di
agnose and classify brain tumours [77]. Integrating transformers into 

Table 3 
Studies on Lesion Detection.  

Author and Year Dataset AI Model Tumour type Main Findings Limitations 

Blanc-Durand 
et al., 2018 

F-FET 
PET 

3D U-Net CNN Glioma Achieved 100 % sensitivity and specificity 
in lesion detection with no false positives 
reported across 11 validation cases. 

Limited dataset size of 37 patients may impact 
generalizability; potential overfitting due to 
small sample size despite data augmentation. 

Park et al., 2021 MRI 3D U-Net Brain Metastases The combined 3D black-blood and 3D 
gradient echo model achieved 93.1 % 
sensitivity in detecting brain metastases. 

Limited by a single-center, retrospective study 
design, and small dataset size which may impact 
generalizability. 

Chen et al., 2023 MRI Two-level Histogram- 
based Morphometry 
(HBM), SVM 

Gliomas Achieved AUC of 0.921 for glioma 
detection using structural MRI data. 

Limited dataset size (99 for detection, 134 for 
grading) may affect generalizability. 

Gokila Brindha 
et al., 2021 

MRI ANN and CNN Brain Tumor The CNN model achieved a testing 
accuracy of 89 % and a validation accuracy 
of 94 %. 

The paper does not discuss the performance on 
different tumor types or stages, which might 
affect its applicability to varied clinical cases. 

Isselmou Abd El 
Kader et al., 
2021 

MRI Deep Wavelet Auto- 
Encoder 

Brain Tumor The model achieved an accuracy of 99.3 % 
in detecting brain tumors, demonstrating 
high efficiency. 

The study is limited by lack of validation on an 
independent external dataset. 

Yakub Bhanothu 
et al., 2020 

MRI Faster R-CNN Glioma, 
Meningioma, 
Pituitary 

The model achieved mean average 
precision (mAP) of 77.60 % for tumor 
detection. 

Limited dataset size and variation in tumor 
appearance might affect the model’s 
generalizability.  
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existing clinical workflows, ensuring robustness across diverse data 
sources, and meeting real-time processing demands as well as ensuring 
data security, patient-privacy, predications bias further complicate their 
implementation. The use of only some imaging modalities to test the 
efficacy of various transformer models further calls into question the 
model’s generalizability and adaptability [77]. Overcoming these 
challenges is imperative for the seamless integration of transformers into 
clinical practice, ultimately enhancing neuro-oncology diagnostics and 
treatment strategies. 

6.6. Transformers perform better than CNN on corrupted images but not 
on clean images 

The performance metrics of ViTs and CNNs reveal distinct advan
tages for each architecture. According to Oh et al, ViTs demonstrate 
superior robustness in handling corrupted medical images compared to 
CNNs. For example, ViTs maintain a higher average AUROC under 
various levels of image corruption, registering minimal performance 
drop from 0.878 in clean conditions to 0.811 in corrupted settings. In 
contrast, CNNs experienced a more significant drop from 0.872 to 0.794 
when faced with corrupted images [78]. 

This robustness of ViTs is crucial in scenarios where medical images 

Table 4 
Studies on Brain tumour Segmentation.  

Author and Year Dataset AI Model Tumour type Main Findings Limitations 

Roelant S. 
Eijgelaar, et al., 
2020 

BraTS dataset plus a clinical 
dataset from six hospitals during 
2012–2013, including 751 
patients in total with 
glioblastoma. 

DeepMedic Glioblastoma − A model trained only on the BraTS 
dataset had a median Dice score of 0.81 
but performed poorly on clinical data 
(0.49). 
− Sparsified training improved 
segmentation performance on both 
complete and incomplete datasets, 
achieving Dice scores over 0.8 with site- 
specific data, comparable to models 
trained on all data. 

− Variability in MRI acquisition 
protocols and the quality of 
clinical images affected the 
model’s performance. 

Dongwei Liu, 
et al., 2022 

Brain Tumor Segmentation 
(BraTS) Challenge 2020 and 
2021 

SGEResU-Net Glioma Achieved DSC values of 83.31 %, 91.64 %, 
and 86.85 % for enhancing tumor, whole 
tumor, and tumor core, respectively. 
Hausdorff distances (95 %) of 19.278, 
5.945, and 7.567. 

Specific limitations not detailed 
in the summary. 

Yuqi Han, Lingling 
Zhang, et al., 
2021 

350 patients from two 
institutions 

Fisher decision 
tree, reliefF 
random forest 

Glioblastoma 
Multiforme and 
Metastasis 

− Fisher_DT and reliefF_RF showed best 
performances for GBM vs MET and MET- 
lung vs MET-other. 

Specific limitations not 
detailed; focus on radiological 
without much clinical 
integration. 

Yae Won Park, 
Yohan Jun, 
et al., 2021 

188 patients with brain 
metastases for training; test set 
of 45 patients with and 49 
without metastases. 

3D U-net using 
3D BB and 3D 
GRE images 

Brain metastases The combined 3D BB and 3D GRE model 
significantly improved segmentation 
performance with a Dice coefficient of 
0.822. 

Single-center, retrospective 
study, which may limit 
generalizability to broader 
clinical settings. 

Shaocheng Wu, 
Hongyang Li, 
et al., 2020 

2018 Multimodal Brain Tumor 
Segmentation Challenge 
(BraTS) dataset 

Two-dimensional 
U-Net models 

Gliomas Achieved mean Sørensen–Dice scores of 
0.80, 0.84, and 0.91 for enhancing tumor, 
tumor core, and whole tumor respectively. 

Single modality (MRI) and the 
retrospective nature of the 
study. 

Spyridon Bakas, 
et al., 2017 

TCGA glioma MRI collections 
(243 pre-operative scans) 

GLISTRboost Gliomas Dice Similarity Coefficient: 0.86; 
Sensitivity: 85 %; Specificity: 99 %; 
Hausdorff Distance: 3.2 mm. The method 
integrates a generative-discriminative 
model improving segmentation accuracy 
for glioma sub-regions. 

Manual corrections were 
necessary for accuracy. 

Agus Subhan 
Akbar et al. 
2022 

BraTS 2018, 2019, 2020, 2021 Single Level 
UNet3D with 
MRAB 

Brain tumor Dice scores: ET 77.71 %, TC 79.77 %, WT 
89.59 % for BraTS 2018; improvements in 
segmentation accuracy and performance 

Not specified in the provided 
tex 

Pranjal Agrawal 
et al. 2022 

BraTS 2020 3D-UNet Brain tumor Achieved segmentation accuracy with a 
Dice coefficient of 1.28, sensitivity of 0.97, 
specificity of 0.99, and precision of 0.88. 

High computational cost, 
requires high-end GPUs, and 
challenges in processing 3D 
data. 

Yan Hu & Yong 
Xia. 2017 

BraTS 2017 3D deep neural 
network, U-Net 

Brain tumor Achieved Dice similarity coefficients of 
0.81 for whole tumor, 0.69 for core tumor, 
and 0.55 for enhancing tumor 

High computational complexity 

Ramin 
Ranjbarzadeh 
et al. 2021 

BRATS 2018 Cascade CNN 
with Distance- 
Wise Attention 

Brain tumor Dice scores: whole tumor 0.9203, 
enhancing tumor 0.9113, tumor core 
0.8726; high accuracy and reduced 
computational cost 

Requires high-end GPUs for 
efficient training; complexity in 
handling 3D data 

Sindhu Devunooru 
et al. 2019 

No specific dataset mentioned VoxResNet and 
various CNN 
models 

Brain tumor Utilized various deep learning models with 
features like 3D residual networks, 
enhancing image contrast and accuracy, 
though specific metrics are not detailed 

Limited testing on large 
datasets, high computational 
requirements, and need for 
extensive validation 

T. Ruba et al. 2022 BRATS 2015 3D U-Net, TLN, 
LSIS based ITSN 

Brain tumor Achieved Dice scores of 0.9064 for the 
complete tumor, 0.8425 for the core, and 
0.8153 for the enhanced regions using the 
LSIS operator for feature extraction and a 
cascaded CNN architecture. 

High computational cost, 
limited to high-grade gliomas, 
may not generalize well outside 
BRATS dataset. 

Zeeshan Shaukat 
et al. 2022 

BRATS Dataset Cloud-based 3D 
U-Net 

Brain tumor Achieved an average Dice score of 95 %, 
demonstrating high accuracy in glioma 
segmentation. 

Requires high-end GPUs and 
cloud infrastructure for 
efficient training and 
accessibility.  
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Table 5 
Studies on Brain Tumour Molecular Marker Identification.  

Author and 
Year 

Dataset AI Model Tumour type Main Findings Limitations 

Banerjee 
et al., 
2020 

TCGA-GBM, TCGA-LGG, 
MICCAI BraTS 2017 

ConvNets (PatchNet, 
SliceNet, VolumeNet) 

Gliomas VolumeNet achieved the highest 
LOPO test accuracy of 97.19 % and 
holdout test accuracy of 95 % for 
LGG/HGG classification. 

Limited by training on specific 
datasets, which may not generalize 
across broader clinical populations. 

Xiong 
et al., 
2016 

84 patients with 
oligodendroglial 
tumours 

DTI and cMRI Oligodendroglial tumours Conventional MRI and DTI values 
correlated with IDH1/2 mutations, 
showing that tumours with 
mutations often had higher minimal 
ADC and lower maximal FA values, 
indicative of lower cell density. DTI 
values were significant for IDH 
mutation assessment (maximal FA: 
P = 0.009, minimal ADC: P =
0.001), but not for 1p/19q 
genotyping. 

The study was retrospective and 
limited to a single institution. The 
small sample size and lack of 
prospective validation might limit 
generalizability. 

Narang 
et al., 
2017 

79 GB patients from 
TCGA, 69 from MD 
Anderson 

Predictive model 
based on MRI texture 
features 

Glioblastoma Model achieved an accuracy of 97.1 
% (AUC of 0.993) in the training set 
and 76.5 % (AUC of 0.847) in the 
test set. This indicates a significant 
relationship between MRI-derived 
textural features and CD3 T-cell 
infiltration. 

Limited by the retrospective nature 
and potential variation in imaging 
protocols across the dataset. 

Meng et al., 
2022 

123 patients with 
gliomas, WHO grades 
II–IV 

SVM with LASSO Gliomas Achieved AUCs of 0.93 (training) 
and 0.84 (validation) for predicting 
ATRX status. The model showed 
sensitivity of 91 %, specificity of 82 
%, and accuracy of 88 % in the 
training set, and sensitivity of 73 %, 
specificity of 86 %, and accuracy of 
79 % in the validation set. 

Retrospective design, single-center 
data, modest sample size. Potential 
generalizability issues. 

Karami 
et al., 
2023 

146 adult-type gliomas ResNet with multi- 
shell dMRI and cMRI 

Adult-type gliomas Achieved an accuracy of 81 % ± 5 % 
for IDH mutation status prediction 
and 60 % ± 5 % for predicting three 
molecular subtypes. The 
combination of cMRI and dMRI 
inputs showed the best performance 
compared to each modality used 
alone. 

Limited by retrospective single-center 
data, modest sample size, and the 
potential lack of generalizability to 
other settings or MRI protocols. 

Haubold 
et al., 
2021 

217 patients with 
cerebral gliomas 

DeepMedic (CNN) Cerebral gliomas Achieved AUCs of 0.981/0.885 for 
differentiating low-grade from high- 
grade gliomas. Best results for ATRX 
expression loss prediction with 
AUCs of 0.979/0.923. 

The study utilized a retrospective 
design and a single MRI protocol, 
which may limit generalizability. 
Fully automated segmentation may 
still require validation in diverse 
clinical settings. 

Akkus 
et al., 
2017 

159 LGG patients, 477 
image slices 

Multi-scale CNN Low-grade gliomas Achieved sensitivity of 93.3 %, 
specificity of 82.22 %, and accuracy 
of 87.7 % in predicting 1p/19q 
status from T1C and T2 weighted 
MR images. 

Limited sample size, and the study’s 
external validity might be restricted 
due to the uniform scanning protocol 
used. Overfitting addressed only 
through data augmentation. 

Hollon 
et al., 
2023 

Multicenter, 
International (153 
patients) 

DeepGlioma (CNN 
with Transformer 
architecture and 
genetic embedding) 

Diffuse gliomas Achieved mean molecular 
classification accuracy of 93.3 % ±
1.6 %. F1 scores were 96.3 % for 
IDH, 96.6 % for 1p19q co-deletion, 
and 94.7 % for ATRX. 

Limited external testing cohort 
mainly in the United States and 
Europe, may not generalize globally. 
Model interpretability is a challenge. 

Gopal S. 
Tandel 
et al., 
2020 

REMBRANDT Convolutional Neural 
Network (CNN) with 
AlexNet transfer 
learning 

Multiclass brain tumours 
(including Astrocytoma, 
Oligodendroglioma, GBM) 

The CNN-based deep learning model 
showed superior performance 
compared to traditional ML models 
across five multiclass tumour 
datasets. Achieved mean accuracies 
of 100 %, 95.97 %, 96.65 %, 87.14 
%, and 93.74 % with mean AUCs of 
0.99. 

The study relied on predefined 
datasets and primarily utilized T2- 
weighted MRI images, which may not 
generalize across diverse clinical 
settings or imaging conditions. 

Beig et al., 
2020 

TCIA, Ivy-GAP, 
Cleveland Clinic 

LASSO Cox Regression Glioblastoma The radiomic risk score (RRS) from 
Gd-T1w MRI predicted progression- 
free survival with a concordance 
index of 0.81 on training and 0.84 
on the test set. Radiogenomic 
analysis linked RRS features to 
biological processes like cell 
differentiation and angiogenesis. 

Limited radiogenomic analysis to one 
cohort due to data availability. 
Potential batch effects in RNA- 
sequencing data. 

Ortiz- 
Ramón 

67 untreated brain 
metastases from 38 
cancer patients 

Random Forest Brain Metastases 3D texture features quantized with 
32 Gy-levels had the highest AUC of 
0.873 for classifying metastases 

Limited dataset size, restricted to 
three primary tumor types, and the 

(continued on next page) 
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may suffer from various artifacts or quality issues, such as in the complex 
imaging environment of neuro-oncology, where precise anomaly 
detection is critical despite potential visual obstructions or distortions. 
Conversely, CNNs continue to excel in tasks where the integrity of local 
features and textures is maintained, highlighting their utility in 
extracting detailed textural information critical for specific diagnostic 
processes. Although this study focused primarily on chest and skin im
ages, extending this analysis to brain tumor imaging could provide 
deeper insights into the comparative effectiveness of these architectures 
in neuro-oncology, potentially guiding more tailored model selection 
and hybrid approaches in clinical practice. 

7. Challenges 

Implementing AI in radiology presents several challenges, including 
the need for high-quality, ground-truth data, seamless integration into 
existing user workflows, and the development of methods that are 
generalizable, interpretable, and robust across different settings and 
population groups [79]. 

Data Quality and Diversity: Large, well-annotated, and diverse 
datasets are essential to minimize measurement errors [80] and enhance 
algorithm performance across various sites, parameters, and pop
ulations. However, assembling such datasets is time-consuming and 
expensive. Collaborative data sharing and harmonization efforts, along 
with the use of standardized imaging protocols and synthetic data 
generation through advanced deep learning techniques like generative 
adversarial networks, are crucial for improving data quality and 
diversity. 

Integration into Clinical Workflows: Effective integration of AI 
into radiological workflows is crucial for enhancing diagnostic accuracy. 
This involves designing user-friendly AI tools that complement the ra
diologist’s expertise and facilitate a collaborative approach to diagnosis. 
Ensuring that AI tools are intuitive and add value to the radiologist’s 
daily tasks without adding undue complexity is a significant challenge. 

Explainability and Trust: AI systems must not only perform well 
but also be interpretable by their users. Radiologists need to understand 
how AI tools arrive at their conclusions to trust and effectively use these 
tools in clinical practice. Developing AI models that provide transparent, 
understandable outputs is essential for their acceptance and effective 
use. 

Benchmarking and Standardization: There is a lack of clear, tar
geted “use cases” or tasks for benchmarking AI algorithms in neuro- 
oncologic imaging and radiomics, making it difficult to assess and 
compare performance consistently. The American College of Radiology 
Data Science Institute aims to address this by providing standardization 
and benchmarking tools and datasets. 

Robustness and Generalizability: AI tools must be robust to 
changes in imaging settings, equipment, and population demographics 
to maintain their accuracy and reliability. Developing algorithms that 
can adapt to these variations without a loss in performance is chal
lenging but necessary for widespread clinical adoption. 

Education and Adoption: As AI tools become more integrated into 
clinical practice, it is imperative for radiologists to become proficient in 
their use. This involves not only training on the technical aspects of AI 
but also understanding its limitations, ethical considerations, and po
tential impacts on patient care. 

8. Conclusion 

This review discusses the use of AI in brain tumour imaging. The 
development of CAD tools can improve diagnostic accuracy in detecting 
small metastatic brain lesions, allowing for early and accurate treatment 
planning, particularly for stereotactic radiosurgery. 

AI-driven extraction of imaging features that are not visible to the 
human eye is transforming radiological image analysis and reporting 
from a qualitative interpretation to an objective, quantifiable, and 
reproducible task. 

Segmentation is crucial for surgery or radiation therapy planning, 
lesion monitoring, and even the development of radiomics-based tools. 
However, manual segmentation is time-consuming, so researchers have 
developed semi-automated or fully automated AI-based tools to assist 
radiologists in their daily practice. These tools provide objective mea
surements of tumor burden and growth patterns. Differential diagnosis 
of primary brain neoplasms can be difficult, particularly for PCNSL and 
HGG. Non-invasive AI-based techniques for accurate diagnosis can 
revolutionize the approach to brain disorders, avoiding invasive biopsies 
and allowing for the most appropriate treatment to begin. 

The “virtual biopsy” is showing promising results in differential 
diagnosis and non-invasive characterization of tumor histotypes, 
allowing for increasingly personalized therapeutic plans. The better a 
lesion is characterized, the better the chances clinicians have of identi
fying effective therapies and predicting complications, recurrences, and 
progression. 

Transformer models in neuro-oncology have demonstrated immense 
potential. From enhancing the accuracy and efficiency of MRI-based 
brain tumour segmentation to predicting complex molecular charac
teristics without detailed segmentation, these models are reshaping the 
field of neuro-oncology. The use of deep NLP models such as BERT for 
structured oncology reports and non-invasive classification of brain 
metastases further solidifies the significance of Transformers in neuro- 
oncology. Although CNN models are still the best performing, espe
cially on clean image datasets, as transformer-based models continue to 

Table 5 (continued ) 

Author and 
Year 

Dataset AI Model Tumour type Main Findings Limitations 

et al., 
2018 

from lung, breast, and melanoma 
origins. 

use of a single imaging modality and 
machine. 

Lao et al., 
2017 

75 patients from TCGA, 
37 patients from Sun 
Yat-Sen University 
Cancer Center 

Deep Learning (CNN 
with transfer learning) 

Glioblastoma Multiforme The deep learning-based radiomics 
model achieved a C-index of 0.710 
in validation. Six deep features were 
crucial for survival prediction. 

Limited data set, retrospective study, 
reliance on transfer learning. 

Han et al., 
2021 

Retrospective dataset Logistic Regression, 
Support Vector 
Machine, Decision 
Tree, Random Forest 

GBM and MET Best classifiers: fisher_DT (GBM vs 
MET, AUC: 0.696) and reliefF_RF 
(MET-lung vs MET-other, AUC: 
0.759). Combination models 
outperformed clinical models. 

Study retrospective, variable MET 
origins. Small case numbers for MET 
subgroups from different primary 
origins. 

Chang 
et al., 
2018 

The Cancer Imaging 
Archives 

Convolutional Neural 
Networks (CNN) 

Gliomas The CNN achieved high accuracy for 
classifying genetic mutations: IDH1 
mutation status at 94 %, 1p/19q 
codeletion at 92 %, and MGMT 
promotor methylation status at 83 
%. Distinct imaging features were 
identified for each mutation. 

The study is limited by its 
retrospective design and the use of a 
relatively small, heterogeneous 
dataset from multiple sites. 
Generalization to unseen datasets 
remains untested.  
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evolve, their ability to process complex data holds great promise. 
All these AI applications aim to achieve personalized medicine, 

improved patient outcomes, and increased survival. The future devel
opment and widespread adoption of these tools will benefit clinicians 
and patients alike, resulting in a personalized medical approach. 
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