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A B S T R A C T   

Objective: To develop a deep learning algorithm to perform multi-class classification of normal pediatric heart 
sounds, innocent murmurs, and pathologic murmurs. 
Methods: We prospectively enrolled children under age 18 being evaluated by the Division of Pediatric Cardi
ology. Parents provided consent for a deidentified recording of their child's heart sounds with a digital stetho
scope. Innocent murmurs were validated by a pediatric cardiologist and pathologic murmurs were validated by 
echocardiogram. To augment our collection of normal heart sounds, we utilized a public database of pediatric 
heart sound recordings (Oliveira, 2022). We propose two novel approaches for this audio classification task. We 
train a vision transformer on either Markov transition field or Gramian angular field image representations of the 
frequency spectrum. We benchmark our results against a ResNet-50 CNN trained on spectrogram images. 
Results: Our final dataset consisted of 366 normal heart sounds, 175 innocent murmurs, and 216 pathologic 
murmurs. Innocent murmurs collected include Still's murmur, venous hum, and flow murmurs. Pathologic 
murmurs included ventricular septal defect, tetralogy of Fallot, aortic regurgitation, aortic stenosis, pulmonary 
stenosis, mitral regurgitation and stenosis, and tricuspid regurgitation. We find that the Vision Transformer 
consistently outperforms the ResNet-50 on all three image representations, and that the Gramian angular field is 
the superior image representation for pediatric heart sounds. We calculated a one-vs-rest multi-class ROC curve 
for each of the three classes. Our best model achieves an area under the curve (AUC) value of 0.92 ± 0.05, 0.83 
± 0.04, and 0.88 ± 0.04 for identifying normal heart sounds, innocent murmurs, and pathologic murmurs, 
respectively. 
Conclusion: We present two novel methods for pediatric heart sound classification, which outperforms the current 
standard of using a convolutional neural network trained on spectrogram images. To our knowledge, we are the 
first to demonstrate multi-class classification of pediatric murmurs. Multiclass output affords a more explainable 
and interpretable model, which can facilitate further model improvement in the downstream model development 
cycle and enhance clinician trust and therefore adoption.   

Abbreviations: CNN, convolutional neural network; GAF, Gramian angular field; MTF, Markov transition field; PCP, primary care provider; ROC, receiver 
operating curve; ViT, Vision transformer. 
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1. Introduction 

1.1. Clinical background 

An estimated 66 % of all children will have heart murmurs at some 
point during their childhood, yet only 1.5–2 % of children are born with 
congenital heart disease every year [1–4]. Evaluation for a murmur is 
one of the most common reasons for referral to a pediatric cardiologist. 
Up to 60 % of the murmurs referred will be diagnosed as innocent 
murmurs [5]. By definition, innocent murmurs are physiologic; the 
presence of an innocent murmur is not indicative of an underlying 
structural or physiological abnormality. A significant majority of inno
cent murmurs will be the Still's murmur, a characteristic low-pitched, 
musical murmur caused by the resonation of blood in the left ventric
ular outflow tract [6]. Other common innocent murmurs include pul
monary and systolic flow murmurs, which are caused by normal blood 
flow through the heart, and venous hums, a distinct sound caused by the 
flow of blood returning through the veins above the heart. Pathologic 
murmurs, by contrast, vary widely in their identifying characteristics; 
they may be systolic or diastolic, harsh or quiet, have a crescendo- 
decrescendo quality, or be uniform in volume throughout the cardiac 
cycle. 

The gold standard of diagnosis is echocardiogram, but auscultation is 
the first step that a clinician will take to evaluate a pediatric heart 
murmur [7]. Auscultation is a clinical skill that is highly dependent on 
the user. Auscultation in children is especially challenging, complicated 
by high heart rates which make it difficult to differentiate between 
systole and diastole, and by movement and crying, particularly in in
fants. Primary care providers (PCPs) and general practitioners, espe
cially less experienced clinicians, often have difficulty distinguishing 
pediatric heart murmurs reliably and accurately. Multiple studies have 
shown that primary care providers have lower accuracy and wider 
variability in diagnosing innocent murmurs compared to pediatric car
diologists [8–10]. As a result, many PCPs will refer a child with an 
innocent murmur for evaluation by a pediatric cardiologist, even in the 
absence of symptoms. While timely diagnosis of a pediatric heart 
murmur is critical for the early diagnosis of congenital heart disease, 
prevention of anxiety and resource expenditure associated with unnec
essary murmur referrals is also of high concern. Thirty to 75 % of 
murmur referrals will eventually be diagnosed as innocent [11]. In the 
United States, this amounts to up to 800,000 children referred to pedi
atric cardiologists for innocent heart murmurs in the US each year [12]. 
These referrals pose a significant burden of care, resulting in up to half a 
billion spent per year on unnecessary imaging [12,13]. 

1.2. Literature review 

Automated interpretation of heart sounds has become a growing 
field of interest to aid accurate classification of pediatric murmurs. 
Previous studies on pediatric murmur classification have developed 
models for binary classification, typically for normal vs pathologic 
classification, or normal vs some targeted pathology [14–20]. For 
example, Liu et al. focuses on the detection of left-to-right shunts [18]. 
Gharehbaghi et al. focuses on the detection of ejection murmurs [19]. 
Wang et al. focuses on the detection of ventricular septal defects [20]. 
The major limitation of these previous pediatric murmur classification 
studies is that their datasets lack a representative distribution of pedi
atric heart sounds; these specific pathologies represent a minor pro
portion of children with murmurs. While for adult heart sounds, the 
distinction between no murmur versus pathologic is sufficient, pediatric 
heart sounds are unique in that the majority of children presenting with 
a murmur will have an innocent murmur, and there are several different 
types of innocent murmurs [6]. To address the limitations of these 
previous studies, we sought to create a more comprehensive dataset that 
captures the wide range of heart sounds that can be encountered in real 
world clinical practice, including normal heart sounds, innocent 

murmurs, and pathologic murmurs. 
Only three studies so far have incorporated innocent murmurs into 

their dataset and attempted to differentiate the innocent murmurs as 
their own separate class [7,21,22]. Notably, two of the studies are from 
the same author group. All three studies, like the other previous studies, 
only propose a model for binary classification. Shekhar and Kang et al. 
and develop a binary classifier for differentiating Still's vs non-Stills 
murmurs [7,21]. The non-Still's murmur category groups together 
normal and pathologic sounds, which is not clinically useful. DeGroff 
et al. propose a binary classifier for differentiating innocent versus 
pathologic heart murmur but do not train the model with any normal 
heart sounds [22]. Additionally, all three studies lack venous hum, a 
common innocent murmur. We are the first to propose a model for 
multiclass classification of pediatric heart sounds into normal, innocent, 
and pathologic murmurs, which is a more clinically relevant classifica
tion problem. 

The application of deep learning for the automated classification of 
auscultated heart sounds has been an active area of research, partially 
fueled by the availability of public data bases of adult heart sounds 
[23,24]. A variety of different deep learning models and preprocessing 
methods have been proposed and studied. For example, Latif et al. 
studied using recurrent neural networks (RNN) with Mel-frequency 
cepstrum coefficients (MFCC) [25]. Khan et al. studied using long- 
short term memory (LSTM) networks with MFCC [26]. Yang et al. 
studied using RNN with the 1D time series signals [27]. Raza et al. 
studied using LSTM networks with the 1D time series signal [28]. 
Chorba et al., Ryu et al., Xu et al., Humayun et al., Xiao et al., Oh et al., 
Baghel et al. all studied using various 1D convolutional neural networks 
(CNN) architectures with the 1D time series signal [29–35]. Deperlioglu 
et al. studied using autoencoder networks (AEN) with the 1D time series 
signal [36]. Sun et al. studied using a Gaussian mixture model (GMM) 
with features derived from a short time modified Hilbert transform [37]. 
Among these methods, what has defined state of the art have been the 
use of 2D CNN on spectrogram images, with different variations of this 
method studied by Demir et al., Nilanon et al., Zhou et al., Dominguez 
et al., Cheng et al., Maknickas et al., Alafif et al., and Rubin et al. [38–45] 
All these methods have been proposed and validated on the classifica
tion of adult heart sounds. 

Methods specifically proposed and validated on pediatric heart 
sounds include the following. Kotb et al. studied hidden Markov models 
with MFCC [14]. Pretorius et al. studied using artificial neural networks 
(ANN) with the input to the model being a handcrafted feature vector 
consisting of features derived from the short-time Fourier transform and 
Shannon energy envelop [15]. Wang at el. studied ANN with a hand
crafted feature vector consisting of features derived from the power 
spectral density and the Shannon energy envelop [16]. Xiao et al. 
studied using a 1D CNN with the 1D time series signal [17]. Liu et al. 
studied using a hybrid CNN and RNN model with the 1D time series 
signal [18]. Gharehbaghi proposed a novel “time growing neural 
network” [19]. Wang and Shekhar et al. studied using a 2D CNN on 
spectrogram images [7,20]. Kang and DeGroff et al. studied using ANN 
and support vector machine (SVM), respectively, on a handcrafted 
feature vector [21,22]. Sepehri et al. [62,63] employ a method that finds 
the frequency bands that provide the lowest error in clustering instances 
of disease against normal heart sounds, which the authors term the 
“Arash-band.” The Arash-bands are then used the feature vector input 
into a support vector machine for binary classification of normal versus 
pathologic. Determining the Arash-band is a manual procedure that 
must be done for each specific pathology. 

1.3. Multiclass classification using frequency spectrum image encodings 

Our study aims to provide a novel, multiclass deep learning model 
for classifying pediatric heart sounds by introducing the Markov tran
sition field (MTF) and Gramin Angular Field (GAF) frequency spectrum 
image encoding as input to the vision transformer computer vision 
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model. The MTF and GAF frequency spectrum image encodings repre
sent two new preprocessing methods for producing a two-dimensional 
image representation of sound from the one-dimensional (i.e., univari
ate) audio signal. The first step for both preprocessing methods is to 
apply a Fourier Transform to the univariate timeseries signal to obtain 
the frequency spectrum. The frequency spectrum represents the audio 
signal in terms of its component frequencies with amplitude conveyed 
on the y-axis and frequency convey on the x-axis. A two-dimensional 
image representation is then derived from the audio frequency spec
trum via a MTF or a GAF [45]. While the MTF and GAF were originally 
developed by Wang et al., for spatially encoding timeseries data (i.e., 
univariate sequence data indexed by time), our contribution is to show 
that the MTF and GAF can be extended to univariate sequence data 
indexed in the frequency domain for audio classification. The MTF treats 
univariate sequence data as a first-order Markov chain and depicts the 
transition probabilities for all pairwise sets of discretized values. The 
GAF visualizes a Gram matrix derived from polar encoded univariate 
sequence data. For computer vision tasks such as this one, CNNs have 
been the de facto standard. For example, Wang et al. employed tiled 
CNN for classifying MTF and GAF image representation of timeseries 
data. We propose using the Vision Transformer (ViT) [47] for classifying 
MTF and GAF image representations of the frequency spectrum for pe
diatric heart sound classification. Fig. 1 shows a schematic of our pro
posed method. We benchmark our results against a ResNet-50 CNN with 
spectrogram images as the input. 

2. Material and methods 

2.1. Data collection 

We prospectively enrolled children under age 18 being evaluated by 
the Division of Pediatric Cardiology at two affiliate sites: NewYork- 
Presbyterian Hospital and NewYork- Presbyterian Queens Hospital. 
Parents provided consent to a de-identified recording of their child's 
heart sound. Demographic data were not collected in order to maintain 
the privacy of the child. Due to the rarity of some pathologies presenting 
to our institution, collecting demographic data such as age, and identi
fying the center of treatment could potentially reveal the patient's 
identity. Auscultated heart sounds were recorded with a 3 M Littmann 
Core digital stethoscope at a sampling rate of 4000 Hz. A label of 
“normal”, “innocent”, or “pathologic” was given by board-certified pe
diatric cardiologists. All patients referred to our pediatric cardiology 
center receive an echocardiogram (the gold standard) to confirm or deny 
the presence of pathology. We also supplemented our collected sounds 
with additional “normal” and “pathologic” sounds from the CirCor 
DigiScope dataset, a publicly available database of pediatric heart 
sounds collected in Brazil [48]. 

Our study included a total of 138 patients, 73 patients from our own 
data collection and 65 patients from CirCor DigiScope dataset. Distri
bution of heart sounds by dataset is shown in Table 1. Each recording 
varied between 15 and 60 s long. We split each recording into 5 s clips to 
maximize the number of samples. To prevent data leakage, the training, 
validation, and testing splits were done on the patient level, meaning 
samples sourced from the same patient would appear in the same split. 
The final dataset included 742 pediatric heart sounds in total: 366 
normal heart sounds, 175 innocent murmurs, and 216 pathological 

Fig. 1. Schematic of our proposed methods. We benchmark our results against a) a ResNet-50 CNN trained on spectrogram images. The first step of both methods is 
to apply the Fourier Transform (FT) to the auscultated timeseries data to produce the frequency spectrum. Then an image representation of the frequency spectrum is 
generated. In b) Method 1, the frequency spectrum is quantized and binned into discrete states. Viewing the binned frequency spectrum as a first-order Markov chain, 
each bin represents a distinct state. The Markov Transition Field (MTF) visualizes the Markov transition probability matrix as an image. In c) Method 2, the frequency 
spectrum is mapped onto the Polar coordinate system. The Gram matrix is calculated from the polar coordinate encoded frequency spectrum and the Gramian 
Angular Field (GAF) visualizes the Gram matrix as an image. The image representations are then used to train a Vision transformer (ViT) model which consists of a 
sequence of 10 transformer encoders followed by one fully connected layer. The final activation function used was either a sigmoid or softmax activation depending 
on the task being binary or multiclass classification. 
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murmurs. Innocent murmurs included Still's murmur, flow murmurs, 
and venous hums. Pathologic murmurs included ventricular septal 
defect (VSD), mitral regurgitation, mitral stenosis, pulmonary stenosis, 
pulmonary regurgitation, Tetralogy of Fallot (TOF), aortic stenosis, 
aortic regurgitation, and subaortic stenosis. Distribution of murmur type 
/ underlying diagnosis is shown in Table 2. Of note, pathologic heart 
sounds from CirCor DigiScope were diastolic murmurs that were 
otherwise unspecified. 

Three different classification problems are studied: binary classifi
cation of pediatric heart sounds as murmur absent vs murmur present 
(innocent and pathologic), binary classification of pediatric heart mur
murs as innocent versus pathologic given prior information that a 
murmur is present (i.e., the normal sounds were excluded in this case 
study), and multiclass classification of pediatric heart sound as normal, 
innocent murmur, and pathologic murmur. 

2.2. Preprocessing 

We preprocess our one-dimensional audio signal timeseries data into 
two-dimensional image representations to spatially encode the audio 
features. Specifically, we study the Mel-spectrogram, Markov transition 
field (MTF), and the Gramian angular field (GAF) for spatially encoding 
the audio features [46]. A spectrogram depicts the spectrum of fre
quencies of a signal as it varies with time. The x-axis represents time, the 
y-axis represents frequency, and amplitude of a particular frequency 
component at a given point in time is represented by the intensity of 
colour. The spectrograms are generated from the pediatric heart sounds 
using short-time Fourier transforms as follows. First, the audio signals 
are windowed using a Hann window of size 512 and a hop length of 256. 
A 512-point fast Fourier transform is applied to each window to generate 
a spectrogram. The Mel-scaled, dB-scaled spectrograms are generated by 
logarithmic rescaling of the amplitude and frequency axis. The ampli
tude axis is converted to the dB scale. The frequency axis is transformed 
onto the Mel scale, characterized by Eq. (1), 

Mel = 2595*log
(

1+
f

500

)

(1)  

where f is frequency in Hz. The resulting Mel-scaled, dB-scaled spec
trograms resized to be 100 × 100 (time resolution x frequency resolu
tion) in size using bicubic interpolation. Here, brighter colors 
correspond to greater intensity or amount of a given frequency 
component, and darker colors correspond to lower intensity or amount. 

The MTF treats one-dimensional sequence data as a first-order 
Markov chain and depicts the transition probabilities for all pairwise 
sets of discretized values. For our pediatric heart sounds, we generate 
MTF image representations of the audio signal in the frequency domain. 
First, we apply the Fourier transform to the pediatric heart sound 
timeseries data to obtain the frequency spectrum. The frequency spec
trum is discretized into Q = 5, 10, and 15 distinct bins along the different 
possible values that can be assumed, with the first and last bin corre
sponding to the highest and lowest possible frequency value ranges, 
respectively. We use a quantile binning strategy so that each bin con
tains the same number of points. Viewing the discretized frequency 
spectrum as a first-order Markov chain, each bin represents a distinct 
state. A Q x Q Markov transition matrix is computed by quantifying the 
number of state transitions between all pairwise sets of states. (i.e. the 
diagonal of the Markov transition matrix represents self-transition 
probabilities). Mathematically, this can be stated as follows. Let F =
{
f0, f1, f2,…fi…fN} represent the discretized points over which the fre

quency spectrum spans N timestamps such that the frequency at time ti 
with is given by the value fi. Each value fi is mapped to a bin or state qj, 
where j ∈ [1,Q]. The QxQ Markov transition matrix M is defined by Eq. 
(2): 

M =

⎡

⎢
⎢
⎣

m1,1 = P(fi ∈ q1|fi− 1 ∈ q1) … m1,Q = P
(
fi ∈ q1|fi− 1 ∈ qQ

)

m2,1 = P(fi ∈ q2|fi− 1 ∈ q1) … m2,Q = P
(
fi ∈ q2|fi− 1 ∈ qQ

)

⋮ ⋱ ⋮
mQ,1 = P

(
fi ∈ qQ|fi− 1 ∈ q1

)
… mQ,Q = P

(
fi ∈ qQ|fi− 1 ∈ qQ

)

⎤

⎥
⎥
⎦

(2) 

where mi,j represents the frequency count with which a frequency 
value in bin qj is followed by a frequency value in the bin qi. Transition 
probabilities are derived by normalizing the Markov transition matrix: 
∑Q

i=1
∑Q

j=1mi,j = 1. Finally, the MTF is a visual depiction of the Markov 
transition probabilities where brighter colors correspond to higher 
transition probabilities and darker colors correspond to lower transition 
probabilities. The resulting MTF images are resized to be 100 × 100 
using bicubic interpolation. 

The GAF visualizes a quasi-Gram matrix derived from one- 
dimensional sequence data. For our pediatric heart sounds, we 
generate GAF image representations of the audio signal in the frequency 
domain. A Gram matrix is a matrix of all possible pairwise sets of inner 
products. The term “quasi-Gram matrix” is used here because the 
resulting matrix that is visualized is a version of the Gram matrix that 
uses a modified definition of the inner product as explained below. First, 
we apply the Fourier transform to the pediatric heart sound timeseries 
data to obtain the frequency spectrum. The Gram matrix calculates inner 
products of vectors in a 2D space; therefore, the frequency spectrum is 
first mapped onto the Polar coordinate system. Again, let F =

{
f0, f1, f2,

…fi…fN} represent the discretized points over which the frequency 
spectrum spans N timestamps such that the frequency at time ti with is 
given by the value fi. The frequency spectrum is mapped onto Polar 
coordinate system according to Eq. (3): 
⎧
⎨

⎩

θi = cos− 1(fi)

r =
ti
N
, i ∈ N

(3) 

Now in 2D space, the Gram matrix can be derived. One of the limi
tations of the inner product in 2D polar space is that the norm of each 

Table 1 
Distribution of heart sound samples by dataset.  

Heart sounds CirCor DigiScope 
(N = 340) 

NewYork-Presbyterian 
(N = 402) 

Normal 305 (90 %) 61 (15 %) 
Innocent 0 (0 %) 175 (44 %) 
Pathologica 35 (10 %) 181 (45 %)  

a Pathologic sounds from CirCor DigiScope unspecified diastolic murmurs. 

Table 2 
Distribution of prospectively collected heart sound samples by diagnosis.  

Diagnosis Total (N = 402) 

Normal 61 
Innocent 175 
Still's murmur 141 (81 %) 
Flow murmur 24 (14 %) 
Venous hum 10 (5.7 %) 
Pathologic 181 
Ventricular septal defect 57 (31 %) 
Mitral regurgitation 35 (19 %) 
Aortic stenosis 27 (15 %) 
Mitral valve prolapse 12 (6.6 %) 
Tetralogy of Fallot (pulmonary stenosis, pulmonary 

regurgitation) 
9 (5.0 %) 

Sub-Aortic membrane with aortic stenosis 8 (4.4 %) 
Mitral stenosis 7 (3.9 %) 
Tricuspid regurgitation 6 (3.3 %) 
Pulmonary stenosis, pulmonary regurgitation, unspecified 5 (2.8 %) 
Pulmonary stenosis 5 (2.8 %) 
Sub-Aortic Stenosis 5 (2.8 %) 
Hypoplastic left heart syndrome with aortic insufficiency 5 (2.8 %)  
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vector is adjusted for the frequency dependency, meaning the inner 
product will be biased towards the higher frequency component. To 
address this issue, the original authors proposed using either a trigo
nometric sum or difference between each vector pair. We study both 
variations where the final matrix that is derived uses either the trigo
nometric difference of two vector pairs sin

(
θi − θj

)
or the trigonometric 

summation of two vector pairs cos
(
θi + θj

)
, where i,j ∈ N (hence the term 

“quasi-Gram matrix”). The NxN quasi-Gram matrix G is defined by Eq. 
(4): 

G =

⎡

⎢
⎢
⎣

< f1, f1 > ⋯ < f1, fN >

< f2, f1 > … < f1, f1 >

⋮ ⋱ ⋮
< fn, f1 > … < fn, fn >

⎤

⎥
⎥
⎦ (4)  

where the inner product < u, v > is redefined to be < u, v >=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − u2

√
•

v − u •
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − v2

√
for the trigonometric difference of two vectors or < u,

v >= u • v −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − u2

√
•

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − v2

√
for the trigonometric summation of two 

vectors. The full mathematical derivation for how to arrive at this 
modified inner product definition for the trigonometric difference of two 
vector pairs is shown in Appendix A. The modified inner product defi
nition for the trigonometric summation of two vector pairs is derived 
analogously. Finally, the GAF visualizes this quasi-Gram matrix with 
brighter colors corresponding to larger inner products and darker colors 
corresponding to smaller inner products. The resulting GAF images are 
resized to be 100 × 100 using bicubic interpolation. All image repre
sentations (spectrograms, MTF, GAF) are normalized prior to input into 
the model into the range [− 1,1]. 

2.3. Models 

We study the ResNet-50 convolutional neural network (CNN) and a 
vision transformer (ViT) for classifying the pediatric heart sounds based 
on the preprocessed image representations. Briefly, the ResNet-50 con
sists of 5 blocks, with each block consisting of a convolutional layer, 
batch normalization layer, ReLu activation layer, a max pooling layer, 
and residual connections that allow activations from earlier layers to be 
propagated down to deeper layers [46]. The final output from the last 
layer is reshaped into a flattened feature vector using global max pool
ing, which is fed into a fully connected layer for classification. In the case 
of binary classification, the final fully connected layer consists of a single 
node with sigmoid activation function. In the case of multi-class classi
fication, the fully connected layer consists of three nodes with softmax 
activation function. The number of parameters for the ResNet-50 CNN is 
23.6 M. The model is trained using an adaptive moment estimation 
(Adam) optimizer at a learning rate of 1 × 10− 3 over the binary cross 
entropy loss function in the case of binary classification and over the 
categorical cross entropy loss function in the case of multi-class classi
fication. A batch size of 64 is used. We investigate the ResNet-50 model 
performance with both randomly initialized weights and with transfer 
learning using ImageNet pretrained weights. 

For this ViT model, first the input image is tokenized into 10 by 10 
patches [47]. The patches are flattened and linearly projected (i.e., 
multiplied by a learnable weight matrix) into a feature vector. A posi
tional encoding is added to each linear projected patch; the positional 
encoding is a learnable embedding. The linearly projected patches with 
their corresponding positional encodings are fed into a sequence of 10 
transformer encoder layers [49]. Each transformer encoder layer is 
comprised of 2 subcomponents. The first subcomponent consists of a 
layer normalization followed by the multi-headed self-attention layers. 
For the ViT in this study, we use 6 attention heads. The second sub
component of each transformer encoder consists of another layer 
normalization followed by a 2-layer fully connected network using ReLU 
activation function. Skip or residual connections are used to propagate 
feature vector representations between each subcomponent of each 
transformer encoder layer. The final output from the last transformer 

encoder layer is reshaped into a flattened feature vector, which is then 
fed into a fully connected layer for classification. In the case of binary 
classification, the final fully connected layer consists of a single node 
with sigmoid activation function. In the case of multi-class classification, 
the fully connected layer consists of three nodes with softmax activation 
function. The number of parameters for the ViT-B16 is 87.5 M. The 
model is trained using Adam optimizer at a learning rate of 1 × 10− 3 

over the binary cross entropy loss function in the case of binary classi
fication and over the categorical cross entropy loss function in the case 
of multi-class classification. A batch size of 64 is used. We investigate the 
ViT-B16 model performance with both randomly initialized weights and 
with transfer learning using ImageNet pretrained weights. 

All code was written in Google Colab notebooks using Python version 
3.10.12 and Pytorch version 2.1.0 + cu118. Model training is completed 
on A100 GPUs. Generating the various frequency spectrum image 
encodings is compute intensive and requires at least 25GM CPU RAM. 

2.4. Data splitting and training procedure 

For training and evaluating the models, we use 5-fold cross- 
validation. The dataset is split into 5 equal folds. For each iteration, 
one fold serves as the test set (20 %) and the remaining four parts serves 
as the training set (80 %). Within the training set, 15 % of the data is 
randomly held out to serve as the validation set and remaining 65 % is 
utilized to directly train the model. Early stopping is us employed such 
that training is terminated if the validation loss does not improve after 
20 epochs. The model weights corresponding with the lowest validation 
loss is used for evaluation on the test set. This procedure is repeated until 
each fold serves as the testing set exactly once. 

3. Results 

3.1. Dataset 

Tables 1 and 2 display the quantity of each diagnosis type included in 
our dataset used to train and evaluate our models. 

3.2. Frequency spectrum image encodings illustrative examples 

Fig. 2 displays illustrative examples of the Mel-spectrogram, MTF, 
and GAF image representations for various pediatric heart sounds. 
Additional examples can be found in the supplemental information 
(Appendix B). 

3.3. Murmur present versus murmur absent binary classification 

Fig. 3 displays the five-fold cross-validation ROC and PR curves for 
murmur absent versus murmur present (innocent or pathologic) binary 
classification for the ResNet-50 models and the ViT-B16 models using 
transfer learning with ImageNet pretrained weights trained on each 
image representation: Mel-spectrogram, GADF, and MTF with a bin 
count of 10, respectively. Table 3 lists the mean area under the receiver- 
operating characteristic curve (AuROC) and mean area under the 
precision-recall curve (AuPRC) for each model and preprocessing com
bination, with and without transfer learning using ImageNet pretrained 
weights. The AuROC and AuPRC values for each individual fold and 
additional experiments investigating the Gramian angular summation 
field, MTF with bin counts of 5 and 15, along with models initialized 
using random weights, can be found in Appendix C. 

3.4. Innocent versus pathologic murmur binary classification 

Fig. 4 displays the five-fold cross-validation ROC and PR curves for 
innocent versus pathologic murmur binary classification given prior 
information that a murmur exists (i.e. normal heart sounds were 
excluded from the dataset) for the ResNet-50 models and the ViT-B16 
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models using transfer learning with ImageNet pretrained weights 
trained on each image representation: Mel-spectrogram, GADF, and 
MTF with a bin count of 10, respectively. Table 4 lists the mean AuROC 
and mean AuPRC for each model and preprocessing combination, with 
and without transfer learning using ImageNet pretrained weights. The 
AuROC and AuPRC values for each individual fold and additional ex
periments investigating the Gramian angular summation field, MTF with 
bin counts of 5 and 15, along with models initialized using random 

weights, can be found in Appendix C. 

3.5. Innocent versus pathologic versus no murmur multiclass classification 

Fig. 5 displays the five-fold cross-validation ROC and PR curves 
extended to one-vs-rest multiclass classification (innocent vs pathologic 
vs none) for the ResNet-50 models and the ViT-B16 models using 
transfer learning with ImageNet pretrained weights trained on each 

Fig. 2. The Mel-spectrogram (left), Markov transition field (middle), and Gramian angular field (right) image representations for a) normal pediatric heart sound, b) 
Still's murmur (innocent), c) mitral regurgitation (pathologic), and d) pulmonary stenosis and regurgitation due to Tetralogy of Fallot (pathologic). 
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image representation: Mel-spectrogram, GADF, and MTF with a bin 
count of 10, respectively. Tables 5, 6, 7 list the mean AuROC and mean 
AuPRC for each model and preprocessing combination, with and 
without transfer learning using ImageNet pretrained weights, for when 
pathological, innocent, or normal is treated as the positive class, 
respectively. The AuROC and AuPRC values for each individual fold and 
additional experiments investigating the Gramian angular summation 
field, MTF with bin counts of 5 and 15, along with models initialized 
using random weights, can be found in Appendix C. 

4. Discussion 

4.1. Frequency spectrum image encodings 

Using computer vision models to classify spectrogram image repre
sentations of sound has been the state-of-the-art method in audio 

classification. [38,50–52] In our study, we present two novel methods 
for classifying audio data: generating Markov transition field (MTF) and 
Gramian angular field (GAF) 2D image representations from an audio 
signal's 1D frequency spectrum for input into a neural network. The MTF 
views the 1D frequency spectrum as a first-order Markov chain and vi
sualizes the transition probabilities between all pairwise set of frequency 
states of the (discretized) audio signal. The GAF visualizes a quasi-Gram 
matrix of all pairwise set of vectors after mapping the 1D frequency 
spectrum into polar coordinates. Convolutional neural networks (CNNs) 
have long been the de factor standard for computer vision tasks 
including spectrogram classification. In our study, we also explore how 
the newer vision transformer model, which implements the self- 
attention mechanism, performs in classifying image representations of 
sound, benchmarking the results against the ResNet-50 CNN. 

We find that the MTF and GAF image representations either perform 
comparably or outperform the spectrogram image representation when 

Fig. 3. Binary classification of pediatric heart sounds as murmur absent or murmur present (innocent or pathologic). Five-fold cross-validation ROC and PR curves 
are shown for the a) ResNet-50 model pretrained on ImageNet (left) and the b) ViT-B16 model pretrained on ImageNet (right). Each model is trained on each image 
representation: the Mel-spectrogram (top), the Gramian angular difference field (middle), and the Markov transition field (MTF) with a bin count of 10 (bottom). For 
the ROC curves, the line of no-discrimination is shown as a dotted red line, and for both curves ±1 standard deviations are shown as the gray shaded region. The 
“murmur present” class is treated as the positive class. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 3 
Summary statistics for murmur present versus murmur absent binary classification.  

Preprocessing Transfer learning with ImageNet 
pretrained weights 

Model architecture 

ResNet-50 ViT-B16 

Mean AuROC Mean AuPRC Mean AuROC Mean AuPRC 

Mel-Spectrogram 
No 0.90 ± 0.06 0.84 ± 0.11 0.92 ± 0.04 0.81 ± 0.09 
Yes 0.93 ± 0.04 0.84 ± 0.06 0.94 ± 0.02 0.86 ± 0.03 

Gramian 
Angular 
Difference 
Field 

No 0.88 ± 0.06 0.81 ± 0.15 0.90 ± 0.03 0.82 ± 0.06 

Yes 0.92 ± 0.03 0.78 ± 0.07 0.74 ± 0.03 0.63 ± 0.07 

Markov 
Transition 
Field 
(Bins = 10) 

No 0.94 ± 0.05 0.77 ± 0.10 0.92 ± 0.04 0.83 ± 0.05 

Yes 0.92 ± 0.03 0.84 ± 0.07 0.93 ± 0.01 0.85 ± 0.02  
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used to train the vision transformer (ViT) model. The spectrogram rep
resentation, which depicts frequency on the y-axis as it varies with time 
on the x-axis, inherently has a time-frequency resolution tradeoff. 
Higher frequency resolution results in less time resolution and vice 
versa. In contrast, the MTF and GAF image representation are generated 
from the audio signal in the frequency domain. Thus, the MTF and GAF 
image representation offer full frequency resolution at the expense of 
zero-time resolution. For the case of pediatric heart sound classification, 
this is beneficial: the frequency content is what strictly determines 
which class a heart sound belongs to (normal vs innocent murmur vs 
pathologic murmur), rather than when certain frequencies occur. 

For cases such as deriving semantic information from speech, the 
order of the frequency components absolutely matters. For heart sound 
classification, however, temporal information is not important in 
determining the class to which the heart sound belongs, given the 
rhythmic nature of heart sounds, which has repeating frequency com
ponents (i.e., S1 and S2). Thus, the spectrogram representation has a lot 

of redundancy as a result of preserving temporal information due to the 
cyclic nature of heart sounds. The vast majority of pediatric heart 
sounds, regardless of class, will have an S1 and S2 component, which is 
not useful for differentiating between these heart sounds. In the spec
trogram representation, repeating S1 and S2 frequency components 
visually occupies multiple regions of the image representation. Due 
natural variances such as recording start times and variations in heart 
rate, the regions occupied by S1 and S2 frequency components are 
different from sample to sample, which likely hinders the performance 
of the computer vision models. The MTF and GAF give full frequency 
resolution with no temporal information. Higher frequency resolution in 
and of itself likely improves model performance. Additionally, the S1 
and S2 frequency components will more consistently occupy similar 
regions in the image representation; thus, the computer vision model 
will have an easier time learning to ignore certain regions while focusing 
on other regions of higher importance (i.e., the ones that provide 
discriminatory information). We find that transfer learning with 

Fig. 4. Binary classification of pediatric heart sounds as innocent versus pathologic murmur. Five-fold cross-validation ROC and PR curves are shown for the a) 
ResNet-50 model pretrained on ImageNet (left) and the b) ViT-B16 model pretrained on ImageNet (right). Each model is trained on each image representation: the 
Mel-spectrogram (top), the Gramian angular difference field (middle), and the Markov transition field (MTF) with a bin count of 10 (bottom). For the ROC curves, the 
line of no-discrimination is shown as a dotted red line, and for both curves ±1 standard deviations are shown as the gray shaded region. The “pathologic murmur” 
class is treated as the positive class. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Summary statistics for innocent murmur versus pathologic murmur binary classification.  

Preprocessing Transfer learning with ImageNet pretrained weights Model architecture 

ResNet-50 ViT-B16 

Mean AuROC Mean AuPRC Mean AuROC Mean AuPRC 

Mel-Spectrogram 
No 0.66 ± 0.15 0.63 ± 0.12 0.72 ± 0.06 0.58 ± 0.10 
Yes 0.72 ± 0.15 0.66 ± 0.23 0.74 ± 0.07 0.64 ± 0.12 

Gramian 
Angular 
Difference 
Field 

No 0.72 ± 0.06 0.58 ± 0.10 0.71 ± 0.10 0.71 ± 0.18 

Yes 0.75 ± 0.14 0.68 ± 0.09 0.68 ± 0.08 0.62 ± 0.10 

Markov 
Transition 
Field 
(Bins = 10) 

No 0.48 ± 0.14 0.48 ± 0.08 0.52 ± 0.12 0.59 ± 0.10 

Yes 0.62 ± 0.10 0.63 ± 0.13 0.68 ± 0.08 0.68 ± 0.16  
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Fig. 5. One-vs-rest multiclass classification of pediatric heart sounds as innocent murmur vs. rest, pathologic murmur vs. rest, and no murmur vs. rest. Five-fold 
cross-validation ROC and PR curves are shown for the a) ResNet-50 model pretrained on ImageNet (left) and the b) ViT-B16 model pretrained on ImageNet 
(right). Each model is trained on each image representation: the Mel-spectrogram (top), the Gramian angular difference field (middle), and the Markov transition 
field (MTF) with a bin count of 10 (bottom). For the ROC curves, the line of no-discrimination is shown as a dotted black line, and ±1 standard deviations are shown 
as the gray shaded region. The ROC and PR curves are red, green, blue for when pathological, innocent, or normal is treated as the positive class, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Summary statistics for one-vs-rest multiclass classification with pathologic murmur as the positive class.  

Preprocessing Transfer learning with ImageNet pretrained weights Model architecture 

ResNet-50 ViT-B16 

Mean AuROC Mean AuPRC Mean AuROC Mean AuPRC 

Mel-Spectrogram No 0.85 ± 0.06 0.56 ± 0.25 0.87 ± 0.03 0.45 ± 0.09 
Yes 0.87 ± 0.04 0.52 ± 0.19 0.89 ± 0.06 0.59 ± 0.27 

Gramian 
Angular 
Difference 
Field 

No 0.71 ± 0.12 0.31 ± 0.11 0.62 ± 0.11 0.25 ± 0.06 

Yes 0.86 ± 0.07 0.54 ± 0.22 0.88 ± 0.04 0.55 ± 0.18 

Markov 
Transition 
Field 
(Bins = 10) 

No 0.85 ± 0.05 0.46 ± 0.11 0.85 ± 0.05 0.42 ± 0.14 

Yes 0.85 ± 0.05 0.47 ± 0.10 0.88 ± 0.05 0.53 ± 0.13  
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ImageNet pretrained weights do not afford any significant boost in 
performance compared to random weight initialization, consistent with 
the idea that the inductive biases learned from natural images do not 
transfer to audio data image representations. 

We find that the GAF is a better image representation than the MTF 
for pediatric heart sound classification. We can attribute this to that fact 
that generating the MTF is a subjective process while generating the GAF 
is a bijective process. In other words, multiple different sounds can result 
in the same MTF image, but a GAF image representation will correspond 
to one and only one sound. The larger inverse image space of MTF likely 
hinders its performance relative to GAF. In the main manuscript we 
present the results from the Gramian angular difference field and the 
MTF with a bin count of 10. We find that performance does not signif
icantly change when using variations on these image representations 
such as the Gramian angular summation field and the MTF with bin 
counts of 5 and 15 (Appendix C). 

The strengths of using the GAF and MTF image representations of 
pediatric heart sounds is that it captures differences in the frequency 
domain dynamics which holds key diagnostic information, it is trans
lation invariant (i.e. robust to shifts in time and phase of the heart sound 
signals which may vary in timing and intensity), and it affords dimen
sionality reduction compared to the raw signal which can reduce the 
computational complexity and memory requirements of models. The 
weaknesses of such encodings are that they are sensitive to hyper
parameter choice (i.e. number of bins) which would need to be fine- 
tuned for a given signal and these image representations may struggle 
to generalize to unseen variations in murmurs or background noise 
patterns if the training data is limited in diversity. 

4.2. Model architectures 

Finally, we find that the ViT consistently outperforms the ResNet-50 
across all three image representations. The convolution operator ag
gregates information via spatial sliding windows or kernels which use 
the same learned weights as it slides across an image. This architecture 
structurally introduces two important inductive biases inherent to CNN: 
translational equivariance and locality. Pooling layers, used in 
conjunction with convolutional layers in our models, help the model 
achieve translational invariance. Translational equivalence and invari
ance mean that an object can be detected irrespective of its location in 
the image. The locality bias is the notion that closely spaced pixels are 
more correlated than pixels that are far away. 

While these image representations of sound (spectrograms, MTF, 
GAF) and natural images are both images from a data structure point of 
view (i.e., a grid of pixel values), the two images represent fundamen
tally different natural phenomena. The inductive biases of translational 
invariance and locality structurally built into the CNN architecture are 
not as suitable for processing and interpreting image representations of 
sound. While translation invariance is a good assumption for natural 
images whose axes convey a measure of physical distance (i.e., a cat in 
the upper left corner is the same as a cat in the lower right corner), the 
same is not true for these images that depict frequency or frequency 
derived information along their axes. For example, a spectrogram con
veys time on the x-axis and frequency on the y-axis. It may be a fair 
assumption that translational invariance applies to the time axis (i.e., a 
sound event happening at 5 s is the same as one happening at 10 s), but it 
does not make much sense to uphold translational invariance to the 
frequency axis because semantic meaning is encoded in the frequency 
domain. Furthermore, the spectral properties of sound are non-local. 
The pitch of a sound is determined by the fundamental frequency, 

Table 6 
Summary statistics for one-vs-rest multiclass classification with innocent murmur as the positive class.  

Preprocessing Transfer learning with ImageNet pretrained weights Model architecture 

ResNet-50 ViT-B16 

Mean AuROC Mean AuPRC Mean AuROC Mean AuPRC 

Mel-Spectrogram 
No 0.89 ± 0.16 0.54 ± 0.19 0.89 ± 0.16 0.54 ± 0.19 
Yes 0.83 ± 0.04 0.49 ± 0.18 0.83 ± 0.04 0.49 ± 0.18 

Gramian 
Angular 
Difference 
Field 

No 0.59 ± 0.15 0.28 ± 0.13 0.59 ± 0.15 0.28 ± 0.13 

Yes 0.79 ± 0.12 0.48 ± 0.23 0.79 ± 0.12 0.48 ± 0.23 

Markov 
Transition 
Field 
(Bins = 10) 

No 0.73 ± 0.08 0.36 ± 0.13 0.73 ± 0.08 0.36 ± 0.13 

Yes 0.78 ± 0.06 0.41 ± 0.09 0.78 ± 0.06 0.41 ± 0.09  

Table 7 
Summary statistics for one-vs-rest multiclass classification with no murmur as the positive class.  

Preprocessing Transfer learning with ImageNet pretrained weights Model architecture 

ResNet-50 ViT-B16 

Mean AuROC Mean AuPRC Mean AuROC Mean AuPRC 

Mel-Spectrogram No 0.89 ± 0.08 0.95 ± 0.24 0.89 ± 0.08 0.95 ± 0.24 
Yes 0.91 ± 0.03 0.96 ± 0.26 0.91 ± 0.03 0.96 ± 0.26 

Gramian 
Angular 
Difference 
Field 

No 0.76 ± 0.09 0.85 ± 0.29 0.76 ± 0.09 0.85 ± 0.29 

Yes 0.92 ± 0.05 0.95 ± 0.28 0.92 ± 0.05 0.95 ± 0.28 

Markov 
Transition 
Field 
(Bins = 10) 

No 0.92 ± 0.02 0.95 ± 0.28 0.92 ± 0.02 0.95 ± 0.28 

Yes 0.92 ± 0.05 0.95 ± 0.25 0.92 ± 0.05 0.95 ± 0.25  
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while the quality or timbre of a sound is determined by its harmonics 
(the nth harmonic has a frequency Fn = nF1,where F1 is the fundamental 
frequency). The fundamental frequency and its harmonics are not 
locally grouped despite originating from the same sound source. For 
example, if the fundamental frequency is 100 Hz, then its harmonics are 
200 Hz, 300 Hz, etc. The locality bias, again while useful for natural 
images, is not a good inductive bias for image representations of sound 
because the frequencies associated with a given sound event are non- 
locally distributed. 

The ViT, by using the self-attention mechanism, structurally lack 
these two inductive biases of translational invariance and locality, 
which are usually quite useful biases for natural images. Typically, the 
ViT are known to be “data hungry” because ViT must learn these 
inductive biases from the data itself; however, for image representation 
of sound, it makes good sense to disregard these biases as they do not 
pertain to these images. Since the ViT is not structurally constrained to 
the inductive biases of translational invariance and locality like the 
CNN, the model can explore the parameter space more freely to find a 
better set of generalizable rules for classifying image representations of 
sound. Furthermore, the vision transformer has a global receptive field; 
it can more easily model non-locally distributed spectral properties. This 
explains the superior performance of the ViT over the convolution-based 
neural networks in classifying image representations of pediatric heart 
sounds. 

4.3. Strengths 

The first strength of our study is our novel technical approach to 
classifying pediatric heart sounds, which performs comparably or out
performs current state-of-the-art methods. Our presented algorithm may 
generalize to various other bioacoustics signals and such use cases 
warrants investigation. The second strength of our study is our original, 
curated dataset that includes a large number and variety of innocent 
murmurs validated by echocardiogram. Many of the existing studies 
[14–20] do not include innocent murmurs in their dataset used to train 
their models. While one group of authors [7] does examine the Still's 
murmur, the most common innocent murmur, their study is limited by 
the binary classification of Still's versus all other types. The classification 
of normal heart sounds, pathological murmurs, and other innocent 
murmurs into a broad non-Still's class is not clinically relevant. By 
contrast, our study's database was able to include the three most com
mon types of innocent murmurs: Still's murmur, flow murmurs, and 
venous hum. 

Additionally, we are the first to demonstrate multiclass classification 
of pediatric heart sounds into three classes: innocent murmurs, patho
logic murmurs, and no murmur. We note that since the meaningful 
clinical end point is decreasing the number of innocent murmur re
ferrals, having a multiclass output of innocent versus pathologic versus 
normal would not change management relative to a binary classifier of 
pathologic versus non-pathologic (i.e. grouping the normal heart sounds 
and innocent murmurs together in one class). However, even though 
classifying an innocent murmur as normal heart sound (and vice versa) 
does not change clinical management, it still technically represents an 
incorrect classification. Our multiclass output creates a more interpret
able and explainable model which can facilitate further model 
improvement and refinement in the downstream model development 
cycle as well as enhance clinician trust and therefore adoption. Addi
tionally, a multiclass model has implications for medical education as if 
can help trainees learn to differentiate innocent murmurs from 
pathologic. 

4.4. Limitations 

The main limitation of our study is the volume of data collected. 
Training on a limited dataset can lead to overfitting and poor general
ization. We attempted to overcome this limitation by collecting data 

from two demographically distinct locations to create a more heterog
enous dataset. We prospectively collected predominantly innocent and 
pathological murmurs from two affiliated sites in New York City and 
supplemented our dataset with additional sounds from the CirCor 
Digiscope dataset, a publicly available dataset of pediatric heart sounds 
from Brazil [48]. By the same token, because our data is only sourced 
from New York City and Brazil, our model may not generalize to other 
regions with different demographic and environmental factors. Outside 
of the CirCor Digiscope database, existing publicly available heart sound 
databases have an adult focus [53,54]. Adult heart sounds are not 
applicable for pediatric heart sound classification. Children have much 
higher heart rates, and therefore shorter diastolic period relative to adult 
heart sounds, which impacts the interpretation. Furthermore, the 
physiology underlying murmurs in children differs greatly from that in 
adults. We attempted to create a comprehensive dataset that reflects the 
range of innocent and pathological pediatric murmurs potentially 
encountered in clinical practice. While our dataset captures the vast 
majority of common innocent and pathologic pediatric murmurs, our 
dataset is most notably missing atrial septal defects and peripheral 
pulmonic stenosis. However, it is worth noting that these two murmurs 
have similar qualities to pulmonic stenosis, which is included in our 
dataset, but a larger dataset that includes these congenital heart defects 
would potentially increase our model's generalizability. Additionally, 
our data was collected under quiet, controlled conditions (i.e. outpatient 
pediatric offices). Our models may not generalize to other care settings 
that may have variations in ambient noise levels or recording techniques 
such as emergency rooms, inpatient floors, or specialized pediatric 
clinics. 

Atrial septal defects are the second most common congenital heart 
defect in children; they frequently go undiagnosed until adulthood, as 
they are often asymptomatic [55]. The characteristic murmur is a soft 
systolic murmur, similar to common innocent murmurs, albeit with a 
distinct splitting of the second heart sound. While small defects may 
spontaneously resolve, large ones can cause complications such as dys
rhythmias, pulmonary hypertension, or in severe cases right-sided heart 
failure. Therefore, it is important for a deep learning algorithm to 
distinguish between this common defect versus innocent murmurs. Pe
ripheral pulmonic stenosis is a subtype of pulmonary stenosis, the fifth 
most common congenital heart defect [56]. Peripheral pulmonic ste
nosis is a common murmur in infants and is caused by a narrowing in a 
distal branch of the pulmonic artery. While other types of pulmonary 
stenosis (i.e., valvular and sub-valvular pulmonary stenosis) are patho
logic and often require intervention, peripheral pulmonic stenosis is 
considered an innocent murmur with a benign clinical course [57]. It is 
also important to note that our dataset is intended to reflect what can be 
encountered in the general pediatric office, so murmurs that would be 
encountered in the perinatal period or in the neonatal intensive care unit 
(i.e., patent ductus arteriosus, coarctation of the aorta) are not included. 
Our dataset is also missing certain types of critical congenital heart 
defects, such as truncus arteriosus, transposition of the great arteries, 
total anomalous pulmonary vein return, and Ebstein's anomaly, but each 
of these pathologies make up 1 to 3 % of congenital heart disease with 
incidences as low as <1 in 100,000 [58–61]. A larger, more compre
hensive data set will likely result in better and more generalizable 
models. However, for practical purposes, each of these rarer lesions will 
require specialized pediatric cardiology evaluation for precise diagnosis. 
The greater value to the population of deep learning-based evaluation of 
heart murmurs will be the identification of innocent murmurs, which do 
not require subspecialty referral, from pathologic murmurs, which do 
require investment in subspecialty care. 

4.5. Conclusion and future directions 

In summary, we presented two novel methods for pediatric heart 
sound classification. Our methodology involves creating either an MTF 
or GAF image representation of the heart sound's frequency spectrum 
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and using the image-based representation of sound to train a ViT. We 
find that this methodology outperforms the current state-of-the-art of 
using a CNN trained on spectrogram images as well as a ViT trained on 
spectrogram images. Our deep learning model has application in both 
resource-rich and resource-limited settings. Resource-rich areas may 
benefit more from preventing over-referrals of innocent murmurs and 
over-utilization of echocardiography for common benign murmurs. 
Resource-limited areas that may lack easy access to subspecialists or to 
echocardiography may benefit more from the use of this model to detect 
pathological murmurs. 

The best way to combat poor generalization is through curating a 
larger, more diverse dataset. Future work should involve optimizing our 
model on an expanded dataset to include examples of innocent and 
pathologic sounds missing from our data set. With an expanded dataset, 
it may also be possible to achieve more granular multiclass classification 
of pediatric heart sounds (i.e., distinguishing aortic stenosis from mitral 
regurgitation). From a clinical perspective, it would be interesting to 
have a breakdown of model performance by individual pathology and 
should be investigated in future work. Most importantly, the meaningful 
clinical endpoint is decreasing the number of innocent murmur referrals. 
Thus, to ascertain the true clinical benefit, a prospective, multicenter 
study should be conducted to study how a pediatricians decision making 
is affected by our models' predictions and if the number of innocent 
murmur referrals is decreased as a result. 
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