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A B S T R A C T   

Coronary artery calcification (CAC) measurement is a valuable predictor of cardiovascular risk. However, its 
measurement can be time-consuming and complex, thus driving the desire for artificial intelligence (AI)-based 
approaches. The aim of this review is to explore the current status of CAC volume measurement using AI-based 
systems for the automated prediction of cardiovascular events. We also make proposals for the implementation of 
these systems into clinical practice. Research to date on applying AI to CAC scoring has shown the potential for 
automation and risk stratification, and, overall, efficacy and a high level of agreement with categorisation by 
trained clinicians have been demonstrated. However, research in this field has not been uniform or directed. One 
contributing factor may be a lack of integration and communication between computer scientists and cardiol-
ogists. Clinicians, institutions, and organisations should work together towards applying this technology to 
improve processes, preserve healthcare resources, and improve patient outcomes.   

1. Introduction 

Cardiovascular disease (CVD), including ischaemic heart disease and 
stroke, is the leading cause of death and disease burden worldwide, with 
over 500 million incident cases and 18 million deaths reported in 2019 
[1]. An important indicator of CVD is increasing coronary artery calci-
fication (CAC), which is concurrent with developing atherosclerosis to 
the point that its extent is predictive of cardiovascular events over time 
[2]. CAC is increasingly prevalent with age, more prominently in men 
[2–5]. CAC can be an asymptomatic condition without clinical mani-
festations, but CAC has been independently associated with CVD. This 
association is sufficiently strong that calculating a CAC score has been 
suggested to be a more accurate tool for cardiovascular risk stratification 
than the common Framingham risk score or other measures such as C- 
reactive protein level or carotid intima-media thickness [6]. Therefore, 
given its association with major cardiovascular events in asymptomatic 
individuals and its long-term nature (versus one-time variable measures 
such as blood pressure or cholesterol values, which can show differing 
results at different time points or under different circumstances), CAC 

volume measurement is currently used as a predictor of cardiovascular 
risk [6]. 

Coronary calcium quantification was first studied using electron 
beam computed tomography (CT), which was later supplanted by mul-
tidetector CT. A means of quantification of this coronary calcium volume 
was needed for standardised comparison and evaluation; thus, the 
Agatston score was developed. This score is calculated by summing le-
sions weighted by density and multiplied by a factor determined by 
maximum plaque attenuation [7,8]. Since its development, the Agatston 
score has been subsequently refined and supplemented by alternative 
measures, such as calcium volume score and relative calcium mass score 
[9]. 

Although CAC measurement is clinically useful, the effort required 
has driven the desire for the development of artificial intelligence (AI)- 
based CAC measurement tools. In busy clinical settings, time-consuming 
or complicated measurements are commonly omitted, sometimes to the 
detriment of patient care [10]. Additionally, coronary calcification is 
often heterogenous, meaning that scoring obtained from a specific vessel 
may underestimate the true risk of events, as calcification may be 
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localised in a single vessel or plaque, or distributed throughout coronary 
vessels; location of calcium within the coronary arteries (e.g., proximal 
vs. distal) may have important effects on outcomes [8]. Some semi- 
automated methods for CAC quantification have begun to be devel-
oped and put into clinical use to address these issues, but they remain 
complicated [11,12]; in semi-automated CAC quantification by work-
station (WS), WS identifies candidates for CAC. However, these candi-
dates include pleural calcification, pericardial calcification, and 
calcification of the aortic/mitral valves. Users, usually radiological 
technologists but sometimes cardiologists or radiologists, must decide 
whether to adopt or reject each case themselves on a case-by-case basis. 
To reduce decision errors, training of these personnel is mandatory. Both 
this manual process and the required training are time-consuming, 
supporting the use of AI for CAC quantification. 

Novel, AI-based tools for CAC scoring that can provide reliable 
measurement without additional effort from clinical staff or inconve-
nience for patients have the potential to overcome these obstacles [13]. 
The advantages of using AI to complete CAC classification tasks establish 
a rationale for its implementation. CAC score calculation requires time- 
consuming drawing of contours of identifying regions of interest by 
clinicians [14], and reliably replacing this labour with machine tasks 
would represent great savings in time, money, and human resources. 

Generally, AI is defined as the use of computers to replicate human 
cognitive functions [15,16]. In healthcare settings, these functions 
include natural language processing to interpret unstructured data, such 
as clinical notes or patient statements, and machine learning to interpret 
structured data, such as medical images or genetic information. The 
nature of CAC measurements, which are based on medical images, 
means that this review will focus on the latter—machine learning. 
Current applications of AI in healthcare have largely focused on the 
interpretation of medical imaging; some successful examples of this 
include using AI to identify skin cancer subtypes, detect cerebral aneu-
rysm and guide treatment decisions for cerebral infarction [15,17], and 
in the prediction of osteoporosis and fragility fractures [18–21]. Subsets 
and classifications of machine learning that are most notably being 
applied to CAC measurement include supervised learning, unsupervised 
learning, and deep learning (Fig. 1) [22]. 

Given these successes, it is clear that the future of CAC measurement 
and risk assessment will likely involve the integration of AI processes to 
some extent, dependent on their iterative refinement through research 
and the will of multidisciplinary teams of researchers and clinicians to 
adopt them. The aim of this article, therefore, is to review the current 

status of CAC volume measurement using AI-based systems for the 
automated prediction of cardiovascular events, and to make proposals 
for implementation of these systems into clinical practice to guide the 
detection and management of CVD. 

2. Image acquisition and deep-learning algorithms 

Currently, there exist several imaging modalities used to evaluate the 
heart. In clinical practice these include CT, magnetic resonance (MR) 
imaging, nuclear medicine (single photon emission CT, positron emis-
sion tomography), and ultrasound. Each of these has its drawbacks: MR 
and nuclear medicine are time-consuming for scanning and unsuitable 
for large-scale screening; ultrasound has the problem of interobserver 
reproducibility [8,10]. CT offers greater accessibility than other mo-
dalities and higher reproducibility than ultrasound. 

Of notable applicability to CT, one particularly useful area of 
advancement in the AI field is the invention of artificial neural networks. 
These consist of many individual artificial ‘neurons’, emulating biolog-
ical neurons in their reactions to specific inputs (that is, becoming 
activated or not, similar to the binary system of ones and zeroes used in 
computing) and modifying the connections between themselves via a 
training process [23]. This allows for increasingly accurate assessments 
and the ability to complete progressively complex tasks with greater 
speed. 

In relation to clinical and radiological images, AI using these neural 
networks can be taught to classify images into defined categories if 
trained to identify specific pathological features on those images 
extracted by expert personnel [24], allowing classification into (for 
example) ranges of CAC scores (Fig. 2). The more extensive the training, 
the more precisely each of the characteristics can be weighted to predict 
outcomes with little prediction error. 

Convolutional neural networks (CNNs) identify associations between 
complex input variables (in this case, medical images) and outcomes. 
They are made up of layers of nodes, each with an assigned threshold 
value; if the output of the node is above the threshold, the node is 
activated and sends the signal to the next layer of the network. CNNs are 
specifically applicable to medical imaging because of their ability to 
classify images into a preset category. With training, the network learns 
the best filters to apply to identify the image features that correspond to 
the specific categories [25]. 

Fig. 1. A proposed classification of machine learning.  
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3. Current and ongoing research 

The application of AI to medical imaging analysis has been a pro-
ductive area of research in recent years. In 2018, an AI system that can 
diagnose diabetic retinopathy via images of the eye produced by a 
retinal camera became the first device that uses AI processes to be 
approved by the US Food & Drug Administration [26]. Multiple studies 
have used AI to analyse coronary CT imaging of various modalities for 
purposes other than CAC scoring, such as for classifying pericardial ef-
fusions [27]; these are well reviewed in Maragna et al. [10]. Some ex-
amples of these studies are in characterisation of epicardial adipose 
tissue (EAT) and pericoronary adipose tissue, where AI-powered solu-
tions have been shown to correctly quantify EAT based on non-contrast 
cardiac CT [28,29]. 

A number of studies have applied AI specifically to CAC scoring 

[30–33]. One major goal of CAC scoring is to identify patients with 
stable coronary artery disease (CAD). The relationship between CAC and 
stable CAD is well established, notably that patients with a CAC score of 
zero rarely demonstrate obstructive CAD, showing better prognosis than 
their counterparts [34]; however, whether CAC quantification can 
reliably differentiate non-obstructive from obstructive CAD remains 
controversial [35]. Although evidence of a risk-reducing association 
with zero CAC in symptomatic patients is being accumulated, no large- 
scale studies have shown that it could be considered a gatekeeper across 
the range of pre-test probability of CAD [34]. 

An overview of the published studies to date is presented in Table 1. 
Notably, Lee et al. demonstrated high accuracy of AI in calculating CAC 
scores in a large sample using three CT cohorts and used AI to correctly 
assign cardiovascular risk stratification 93.9% of the time [36]. The use 
of a deep-learning method for calcium scoring has also been validated 

Fig. 2. Architecture of a deep-learning calcium scoring algorithm. This algorithm consists of two neural networks. The first CNN has a large FOV and detects 
candidate calcifications (voxels) on the image, labelling them on the basis of their anatomic location. The second CNN has a smaller FOV and detects true calcified 
voxels among candidates detected by the first CNN. Reproduced from “INNERVISION 38 (4) 2023” in Japanese with permission from Toshihide Yamaoka [93]. CNN, 
convolutional neural network; LAD, left anterior descending artery. 

Table 1 
Application of artificial intelligence in automatic coronary calcium scoring.  

Study Patient group Standard Validation ICC Cohen’s 
kappa 

Accuracy 

Wolterink et al., 
2016 [82] 

Patients with both CT angiography and calcium scoring 
CT (N = 250) 

CSCT, CCTA Internal 0.944 0.83 0.83 

Cano-Espinosa, 
2018 [32] 

Non-ECG-gated chest CT scans (N = 1000) Manually computed Agatston score Internal 0.932 NR 0.76 

De Vos et al., 2019 
[38] 

Cardiac CT (n = 903) and chest CT scans (N = 1687) Manually computed Agatston score External 0.98 0.95 0.99 

Fischer et al., 
2020 [14] 

Coronary CT angiography (N = 194) Manual calcium detection External N/A 0.85 0.903 

Martin et al., 2020 
[33] 

Consecutive CT imaging patients (N = 511) Manually scored CAC External 0.985 NR 0.932 

Van Velzen et al., 
2020 [37] 

Various nonenhanced CT from 6 datasets (N = 7240) Semiautomatically labelled CAC and 
TAC 

External 0.84–0.99 0.90 NR 

Kamel et al., 2021  
[30] 

Patients who underwent cardiac CT and chest 
radiography within the same year (N = 1689) 

Total and per-vessel Agatston scores Internal NR NR 0.73 

Lee et al., 2021  
[36] 

Previous cohorts of asymptomatic, symptomatic and 
valve disease in 4 CT models 

Manually segmented CAC scoring External 0.99 0.94 NR 

Van Assen et al., 
2021 [39] 

Dedicated CAC CTs (N = 95) and chest CT only (N = 168) Manually calculated Agatston score External 0.921 0.74 0.7 

Zeleznik et al., 
2021 [44] 

Cardiac-gated and non-gated CT from multiple 
asymptomatic and stable/acute chest pain cohorts (N =
5521) 

Manual segmentations by expert CT 
readers 

External 0.795 0.71 0.92 

Watanabe et al., 
2022 [40] 

Dedicated CAC CTs (n = 315) Calcification volume conventionally 
measured via workstation 

External 0.81–0848 0.75–0.80 0.946 

Xu et al., 2022  
[31] 

144 chest CT scans CAC score manually measured on 
designated calcium scoring CT 

External 0.90–0.94 0.72–0.82 NR 

CAC, coronary artery calcium; CCTA, coronary computed tomography angiography; CSCT, cardiac calcium scoring computed tomography; CT, computed tomography; 
ICC, Intra-class correlation coefficient; κ, Cohen’s linearly weighted kappa; NR, not reported; TAC, thoracic aorta calcification. 
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across a variety of CT protocols, showing good agreement with manual 
scoring [37]. 

CNNs were used in two separate studies to accurately identify cal-
cifications in cardiac and chest CTs, extending automatic assessment of 
calcification scores to non-ECG-gated CT scans [38,39]. Watanabe et al. 
compared AI-obtained CAC volume scores versus commercially avail-
able workstations and Agatston score, with good correlation [40]. 
Fischer et al. used recurrent neural networks in a deep-learning algo-
rithm to detect and quantify coronary artery calcium from coronary CT 
angiography in a cohort of patients with a wide range of calcification 
(including none); sensitivity, specificity, and diagnostic accuracy were 
generally good but were observed to be increased with better-quality 
data sets [14]. Furthermore, Dobrolińska et al. used CNNs to classify 
motion-contaminated images and assign CAC scores in four artificial 
plaques. Although these scores were not systematically compared with 
those of human observers, the results show the potential to avoid one of 
the limitations of machine-scored processes [41]. 

In related work, Commandeur et al. recently combined CAC score 
and EAT quantification into a machine-learning algorithm to predict 
outcomes such as myocardial infarction or cardiovascular death in an 
analysis of a large population (N = 1912) with a long duration of follow- 
up (14.5 ± 2 years). This algorithm proved to be more accurate in 
predicting these events than were either established clinical risk scores 
or CAC scores [42]. Another recent study showed that a comprehensive 
machine-learning model incorporating some 77 variables (including the 
CAC score, the number, volume, and density of CAC plaques, and 
extracoronary scores) was superior to ASCVD risk, CAC score, and a 
machine-learning model fitted using CT variables alone in the prediction 
of both CVD- and coronary heart disease-related death [43]. Zeleznik 
et al. found a deep learning-based calcium score to be strongly associ-
ated with cardiovascular risk in a retrospective study of patients from 
primary prevention cohorts (N = 20,084) across a broad spectrum of 
clinical scenarios [44]. These studies indicate how machine learning 
may allow the leveraging of all data within the CACS scan to improve 
risk prediction beyond the capabilities of the CACS itself. 

Intriguingly, research has been carried out using scans conducted for 
other clinical purposes. For example, a study from the Netherlands was 
conducted using low-dose CT scans from trials of lung screening, 
demonstrating reliable cardiovascular risk assessment based on the lung 
cancer screening scans [45]; another study from the same institution 
applied deep-learning algorithms using a set of radiotherapy-planning 
scans from breast cancer patients [46]. The success of these efforts 
suggests that in some patients and situations, CAC scoring can be 
generated using scans undertaken for other reasons and applied to risk 
prediction for patients who have yet to develop any cardiovascular 
symptoms. 

Of note, there are some notable differences in the accuracy reported 
by the various studies presented in Table 1. Possible reasons for this 
include differences in the competing AI technologies used or the training 
sets applied, or more prosaic reasons such as study design or patient 
cohorts; most likely these differences are related to the use of internal 
versus external validation cohorts, which are known to substantially 
affect the performance of machine-learning models [47]. Overall, 
however, the reported accuracy rates are generally high and can only be 
expected to improve with consistent application. A potential advantage 
is that there are several kinds of large cohorts that may be applied in AI 
analysis. This means that, if permitted, replication studies could be 
conducted with different AIs. Conversely, it should be noted that 
training data sets include some degree of uncertainty, which may 
introduce some skewness in specific cases; furthermore, when cohorts 
are analysed by different AIs as noted above, reproducibility is not 
guaranteed. 

AI technology has been successfully used for automatic patient 
positioning [48] and image reconstruction (allowing for high-quality 
image reconstruction at fast speeds with low radiation doses) [49,50], 
as well as for CAC quantification. Still-newer proposed techniques 

employ three-dimensional encoder-decoder neural network architec-
tures to generate CT-like volumes from single- and dual-view topograms 
[51]. Together, these techniques allow CT to be applied to CAC quan-
tification to potentiate and simplify mass screening. 

In addition to the potential of AI for direct CAC measurement, there 
exist further applications of algorithms for calcium scoring currently 
being explored, notably the possibility to create virtual non-contrast 
(VNC) non-iodine reconstruction from coronary CT angiography data. 
Dual-energy CT creates VNC images from contrast-enhancing scans 
using iodine-containing contrast agents; VNC images are calculated 
using a virtual non-iodine (VNI) reconstruction algorithm [52]. Several 
studies have shown the feasibility of CACS using VNC images, with 
generally good agreement with standard scoring techniques [53–55]. 
This approach could reduce the necessary dose of radiation by allowing 
the omission of native scans. Dual-energy CT can create mono-energetic 
images, as well; the use of these can reduce beam-hardening artefacts. 

Photon-counting CT (PCCT) is an emerging technology in CT that 
may represent the next major milestone in that field [56,57]. Briefly, a 
PCCT system counts the exact number of incoming X-ray photons and 
measures their energy individually. Therefore, PCCT effectively filters 
out electronic noise, with resulting improvement in signal-to-noise ratio 
[58]. PCCT uses energy-resolving detectors, thereby enabling scanning 
at multiple energies, which can produce VNC images using a lower ra-
diation dose than dual-energy CT. The images generated using PCCT 
additionally have higher spatial resolution than those produced by dual- 
energy CT, and studies to date show the possibility of superior perfor-
mance using a VNI algorithm with PCCT [59] that may be improved 
upon further still by adjusting virtual mono-energetic image and itera-
tive reconstructions [60–62]. 

Numerous studies have thus been conducted on different aspects of 
using AI to analyse CAC in a variety of settings, including the use of plain 
chest CT, low-dose CT for lung cancer screening, and source data of CT 
angiography. Re-evaluations of analytic algorithms and training data-
sets have also been conducted. These studies and their generally 
favourable results show the great potential of this emerging technology. 
However, most are isolated reports, and the emerging information lacks 
coherency and clearly defined applicability in the current clinical sce-
nario of CAD. A specific gap in the evidence base is the lack of repro-
ducibility when different AIs or methods are applied. To date, there is no 
established common ground for comparing the performance of sepa-
rately trained AIs. 

4. Implementation 

Efficient implementation of these imaging biomarkers into clinical 
practice by the average practicing physician to guide detection and 
management of CVD will require planning and foresight. The proposals 
we present here provide a framework, although some aspects remain to 
be further clarified by ongoing or future research. 

4.1. Training and optimisation 

An important first step is the introduction of well-chosen training 
sets. A specific benchmark dataset for the heart already exists, but it 
consists of MR imaging and is not appropriate for CAC measurement 
[63]. Benchmark testing is mandatory for comparison of AIs. An 
example would be the LUNA16 (LUng Nodule Analysis) dataset for lung 
segmentation comprising 1186 lung nodules annotated in 888 CT scans) 
[64]. If appropriate datasets do not yet exist, scientific societies and 
medical professional associations should take the lead in establishing 
them [65]. 

Approaches to optimisation during training of the neural networks 
include Adam, optimiser and classical stochastic gradient descent. These 
are types of algorithms that help neural networks more accurately assign 
weights to specific inputs, resulting in faster and more accurate cate-
gorisation. Adam is an optimisation algorithm specially designed for 
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deep neural networks that is being increasingly used; however, in some 
cases it is less effective than stochastic gradient descent. 

4.2. Image requirements 

For AI analysis, CT images must have a high contrast-to-noise ratio 
(CNR) and high spatial resolution. This must be balanced with the need 
to minimise radiation dose. New deep-learning image reconstruction 
techniques may assist in this, and they are already being used in routine 
CT scanning [66], although adaptation of dose levels and image 
reconstruction methods is mandatory [67,68]. 

However, van Velzen et al. demonstrated that AI methods adapted 
well to the addition of novel CT types in a single combined deep-learning 
model [37]. This may indicate that the type of image is not the most 
important characteristic, and that multiple types of CT imaging can be 
successfully processed. 

4.3. Integration into other standard workflows 

AI approaches may be applicable for CAC score assessment during 
chest CT for angiography [69] or for other reasons, such as lung-disease 
screening [31,70], eliminating the need for additional radiation expo-
sure. Lung cancer screening, as recommended by the United States 
Preventive Services Task Force [71], may be an ideal opportunity for 
this, given the close associations among smoking, lung cancer, and CAD 
[72]. An example of this type of opportunistic screening was the recent 
NOTIFY-1 project, which used a validated deep-learning algorithm 
(with radiologist confirmation) to identify incidental CAC among pa-
tients with a prior non-gated chest CT. This led to more statin pre-
scriptions and CAD testing in the patients randomised to notification of 
their primary care physician versus those randomised to continued usual 
care [73]. 

4.4. Patient selection 

Certain patient characteristics may indicate obvious candidates for 
CAC screening using AI. The ACC/AHA Guidelines note that for patients 
with borderline or intermediate estimated 10-year risk of atherosclerotic 
cardiovascular disease, CAC assessment is a reasonable tool to reclassify 
that risk as higher or lower [74]. Adults with obesity may also be among 
candidates for CAC screening using AI, because of their higher risk of 
coronary atherosclerosis [75,76]. One combined approach could be to 
set a threshold incorporating the Brinkmann index (a measure of ciga-
rette smoking) and the body mass index (obesity) [77] to identify pa-
tients well suited for analysis using AI. As noted above, however, the 
apparent ability to easily risk-stratify scans obtained during other pro-
cesses, such as lung cancer screening, means that patients should not be 
excluded from AI analysis because they lack these characteristics or risk 
factors. 

4.5. Implementation barriers and potential issues 

In 2020, Bates et al. identified three impediments to rapid adoption 
of AI interventions, namely methodological issues in evaluating those 
interventions, lack of reporting standards for assessment of model per-
formance, and issues at the institutional level [78]. External validation is 
a notable area that the authors found to be lacking in the development of 
most models; this will need to be resolved before models can be widely 
adopted. The future evaluation of AI models should also include external 
validation to avoid degradation of a model’s performance when it is 
introduced into new areas. At the institutional level, the method of 
integrating AI is also important, whether it be for clinical decision 
support at the point of care, as part of a data-driven risk dashboard such 
as with laboratory results, or simply to flag patients for further evalua-
tion or action. 

Nevertheless, whatever approach or combination of approaches is 

used, it is important that any implementation plan does not automati-
cally accept the results of AI analysis without scrutiny. Practical 
methods for human backup will need to be developed, including mea-
sures to flag patients for human review. 

One issue that should be addressed is the so-called ‘black-box prob-
lem’, whereby it is unclear how an AI reaches a conclusion. Neural 
networks are very complex, and their individual steps are not necessarily 
understandable to people not trained in computer science. As a result, 
implementing AI may require a decision between an easily interpretable 
model that is less accurate versus a black box that is more accurate or 
efficient. A recent review by Petch et al. explores these issues in more 
detail and suggests a ‘rule of thumb’ framework around making de-
cisions on when using black-box models may be appropriate [79]: in 
general, models should be developed using both interpretable and black- 
box methods, then assessed to determine if there is a difference in ac-
curacy between the two. If not, the interpretable model should be used. 
If the black-box model is determined to be more accurate, the stakes of 
the decision should be considered; for lower-stakes decisions, a small 
improvement can justify the use of a black-box model, while for high- 
stakes decisions, the improved accuracy should translate to improved 
clinical outcomes of morbidity or mortality to justify its use. 

There are also some potential privacy and ethical issues related to AI 
that need to be considered. As ever, the security of patient data must be 
paramount. Maintaining part of the dataset on cloud services could 
result in data security breaches, whereby data could be used to infer 
sensitive information and violate patient privacy. Additionally, the pa-
rameters of neural networks could reveal information on the training set 
when being used to train neural networks. Potential approaches to avoid 
these issues include integrating a differential privacy projection in the 
input layer or using encryption mechanisms when data are transferred. 
Yang et al. provide a useful overview of these considerations in the era of 
large biomedical datasets [80]. 

The characteristics of CAC scoring using AI suggest possible ap-
proaches in lower-resource or non-specialist settings, perhaps incorpo-
rating telemedicine or remote/centralised processing (Table 2). No 
major training of on-site staff is necessary, as the role of staff is limited to 
checking for appropriate segmentation of CAC and the validity of the 
results. A lack of resources, therefore, should not present an insur-
mountable barrier to implementation. 

AI has the potential to predict cardiovascular risk precisely from 
several kinds of CT images, including non-ECG-gated chest CT, low-dose 
screening CT for lung cancer, and contrast-enhancing CT. Integration of 
AI into real-world practice will preserve clinical resources and improve 
patient outcomes. However, we cannot yet evaluate and compare as-
pects of the performance of several different AIs on common ground. 
Common benchmark datasets should be built, and guidelines for ideal 
training datasets should be produced by medical science societies to fill 
this important gap. 

5. Future directions 

As this field rapidly develops, further research is needed to address 
the gaps in the literature, both in terms of developing AI capabilities and 
applying them to the clinical setting. In this evolving field, new areas for 
exploration are emerging using a variety of different approaches before 
a critical mass of sufficient data accumulates in any specific area. 
Research protocols will therefore require standardisation to allow data 
from multiple studies to be amalgamated. Thus, it will be critical to build 
common datasets, similar to the LUNA16 lung cancer nodule analysis set 
aimed at CT detection of lung cancer locations and the reduction of false 
positives, to evaluate and compare AI approaches, including both ECG- 
gated and non-gated image sets of the same patients. It will also be 
important to determine requisites of image quality for AI analysis to 
assist in providing standardisation across fields. 

T. Yamaoka and S. Watanabe                                                                                                                                                                                                               

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en julio 19, 2023. 
Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



European Journal of Radiology 164 (2023) 110855

6

5.1. Identification and validation of image parameters 

Modulation transfer function (MTF) is used in the evaluation of 
spatial resolution. Spatial resolution is usually substituted by voxel size, 
which is defined as the size of the field of view (FOV), the number of the 
matrix and slice thickness (0.5 mm to 10 mm). For example, at 320 mm 
of FOV, 512*512 of matrix and 3 mm thickness, the voxel size is 
calculated as 0.625 mm (320 mm /512 pixel) × 0.625 mm × 3 mm. The 
larger the voxel, the lower the sharpness (resolution) of the image. 
However, CT images are generated with several kernels (reconstruction 

algorithms); for example, the soft tissue algorithm is weighted based on 
contrast among anatomical structures, while bone kernel is weighted 
based on the borders between structures. Images of the identical voxel 
may therefore have different MTF. 

Contrast-to-noise ratio indicates noise level; for example, the images 
of the bone kernel have more noise than those of the soft tissue kernel. 
The previous reports by van Assen and Watanabe discuss the same CNN 
AI (Siemens AI-Rad Companion Chest CT), but their studies obtained 
slightly different results [39,40]. This may be because differences in 
MTF and/or CNR affected the results of the analysis. 

Similarly, establishment of diagnostic reference levels (DRL) is one of 
the steps in the overall process of optimisation. The International Atomic 
Energy Agency defines the DRL as a level used in medical imaging to 
indicate whether, in routine conditions, the dose to the patient or the 
amount of radiopharmaceuticals administered in a specified radiological 
procedure for medical imaging is unusually high or unusually low for 
that procedure [81]. DRLs, which are general guidelines for clinical 
operations and do not apply directly to individual patients and exami-
nations, are practical tools to promote optimisation that were first suc-
cessfully implemented in relation to conventional radiography in the 
1980 s, and subsequently developed for other modalities in the 1990 s. 
Research is needed to establish DRLs for imaging that will be subjected 
to AI quantification and risk stratification of CAC scores. 

5.2. Cooperation and other human factors 

The widening scope of AI techniques has not fully resulted in their 
clinical implementation. To date, there has been limited cross- 
disciplinary work between computer science and the clinic, which per-
sists as an important barrier to implementation. This may require a shift 
in mindset among clinicians and the gradual establishment of trust in 
complex systems that may appear inscrutable at first. It will be necessary 
to convince physicians and radiologists that implementing AI will aid 
them in their jobs rather than serve to replace them. 

Given the lack of large-scale clinical testing to date, along with the 
limited validation of various AI software approaches, further research is 
required to address these gaps. However, as experience to date has 
shown, mere accumulation of volumes of disparate data is not sufficient 
to move the field forward; coordinated effort will be required to address 
the research gaps in an efficient manner. Researchers are strongly 
encouraged to report and publish their experiences in effectively inte-
grating these processes into clinical practice, as well as when they 
encounter barriers that impede or prevent effective integration. Future 
research should focus on improving patient outcomes in various real- 
world situations. Additionally, for more effective use of AI, indications 
for AI analysis should be discussed and developed, and the profiles of 
patients suitable for AI analysis should be clarified. 

6. Conclusions 

The research to date on applying AI to CAC scoring shows the po-
tential for automated scoring and CVD risk stratification. Overall, this 
body of research has shown its efficacy and a high level of agreement 
with categorisation by trained clinicians. However, as yet, the research 
in this field has not been uniform or directed. One factor that may have 
contributed to this is a lack of integration and communication between 
computer scientists and practicing cardiologists, and gaps in our un-
derstanding of the application of AI processes persist. Specifically, 
conducting large cohort studies will be necessary to realise the potential 
benefits of CAC measurement by AIs. Furthermore, the specific in-
dications for use of AIs should be discussed, developed, and dissemi-
nated. Approaches to fill these gaps should include the establishment of 
guidelines for training datasets (including, for example, CT vendor, 
kernel, radiation dose, MTF, CNR, gating versus non-gating, male:fe-
male ratio, age) to avoid the potential for skewness. It will also be crucial 
to establish a common benchmark dataset (thereby establishing official 

Table 2 
Recommendations for implementation of AI in CAC scoring.  

Category Recommendations 

AI training  • Training sets should include large datasets 
that are representative of the full disease 
spectrum, include different scanning 
platforms, and well represent the population 
(sex, age and race) in which they are to be 
deployed  

• Validated with common, well-established 
benchmark datasets (if organised and 
available)  

• Training approaches should include 
integrated optimisation via Adam or 
stochastic gradient descent models 

Workstream integration  • In daily clinical practice, candidate patients 
should be identified on quality assurance for 
images, with selected exams analysed with 
AI  

• In regular health check-ups that include CT, 
exams of people in higher risk groups 
(smokers, obese, or elderly persons) should 
automatically be analysed with AI 

Technical recommendations  • An image reconstruction algorithm (kernel) 
should be chosen that has a combination of 
high CNR and high MTF  

• Artificial intelligence reconstruction should 
be used to reduce image noise and radiation 
exposure dose  

• Iterative reconstruction may be 
inappropriate  

• Photon-counting CT is preferable, if 
available, to reduce radiation dose 

Staff training  • Doctors: AI results should be validated to 
determine whether segmentation of CAC is 
correct or not  

• Radiographers: To identify candidate 
patients in daily practice, training 
radiographers (staff for quality assurance of 
images) to recognise CAC is important 

Patient identification in health 
check-ups or mass screening 

• Smokers and ex-smokers with a high Brink-
mann index  

• Obese patients with high BMI (over a 
threshold such as 30) [83]  

• Preoperative patients aged over a threshold 
such as 50 years [84]  

• Type 2 diabetes mellitus patients [85–88]  
• Haemodialysis patients [89]  
• Hyperuricemia [90–92]  
• Patients with coronary stent or implantation 

of arrhythmia device are not suitable for AI 
analysis, because of the risk of inappropriate 
segmentation 

Errors and discrepancies  • AI results should include calculated results 
with annotated images indicating 
segmentation results for validation 

Privacy and ethics  • If an AI system requires connection to an 
outside network service, the network should 
be sufficiently secured  

• Additionally, data that use an outside 
service must be anonymised 

AI, artificial intelligence; BMI, body mass index; CAC, coronary artery calcium; 
CNR, Contrast-to-noise ratio; CT, computed tomography; MTF, modulation 
transfer function. 
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external validation data) with which to compare AI performance. 
The pace of new research in this field and its obvious utility and 

potential applications mean that integration of AI into cardiovascular 
imaging and risk stratification processes is likely a matter of time rather 
than a question of possibility. For this reason, we have proposed some 
general guidelines for implementation with which we hope to ensure its 
consistency, efficacy, and efficiency, leading to better management and 
improved long-term patient outcomes. We believe that clinicians, in-
stitutions, and organisations should work together toward applying this 
technology to improve processes, preserve healthcare resources, and 
improve patient outcomes in this disease, which has such a substantial 
global burden. 
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