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A B S T R A C T   

Local mechanical stimuli in the bone microenvironment are essential for the homeostasis and adaptation of the 
skeleton, with evidence suggesting that disruption of the mechanically-driven bone remodelling process may lead 
to bone loss. Longitudinal clinical studies have shown the combined use of high-resolution peripheral quanti
tative computed tomography (HR-pQCT) and micro-finite element analysis can be used to measure load-driven 
bone remodelling in vivo; however, quantitative markers of bone mechanoregulation and the precision of these 
analyses methods have not been validated in human subjects. Therefore, this study utilised participants from two 
cohorts. A same-day cohort (n = 33) was used to develop a filtering strategy to minimise false detections of bone 
remodelling sites caused by noise and motion artefacts present in HR-pQCT scans. A longitudinal cohort (n = 19) 
was used to develop bone imaging markers of trabecular bone mechanoregulation and characterise the precision 
for detecting longitudinal changes in subjects. Specifically, we described local load-driven formation and 
resorption sites independently using patient-specific odds ratios (OR) and 99 % confidence intervals. Conditional 
probability curves were computed to link the mechanical environment to the remodelling events detected on the 
bone surface. To quantify overall mechanoregulation, we calculated a correct classification rate measuring the 
fraction of remodelling events correctly identified by the mechanical signal. Precision was calculated as root- 
mean-squared averages of the coefficient of variation (RMS-SD) of repeated measurements using scan-rescan 
pairs at baseline combined with a one-year follow-up scan. We found no significant mean difference (p <
0.01) between scan-rescan conditional probabilities. RMS-SD was 10.5 % for resorption odds, 6.3 % for for
mation odds, and 1.3 % for correct classification rates. Bone was most likely to be formed in high-strain and 
resorbed in low-strain regions for all participants, indicating a consistent, regulated response to mechanical 
stimuli. For each percent increase in strain, the likelihood of bone resorption decreased by 2.0 ± 0.2 %, and the 
likelihood of bone formation increased by 1.9 ± 0.2 %, totalling 38.3 ± 1.1 % of strain-driven remodelling 
events across the entire trabecular compartment. This work provides novel robust bone mechanoregulation 
markers and their precision for designing future clinical studies.   

1. Introduction 

The bone remodelling process is a complex mechanism that enables 
structural adaptation to align with physiological loading conditions, 
such as gravitational loading or muscle forces, thereby minimising the 

risk of bone fractures [1]. At the cellular level, this process is orches
trated by osteocytes, which sense local mechanical forces and signal 
bone-forming cells in regions where mechanical stimulations are high, 
and bone-resorbing cells in areas where the stimulus is low [2–4]. This 
mechanoregulated exchange of old bone for newly formed material 
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reduces fatigue damage and promotes skeletal strength [5]. However, 
the ageing skeleton is believed to respond less effectively to mechanical 
stimuli, such as loading induced by physical exercise [6–8]. The 
discordant mechanoregulation of bone due to ageing and disease may be 
attributed to decreased osteoblast activity and increased apoptosis 
[9,10], increased osteoclast number [11], or declining osteocyte density 
[12,13]. This loss of mechanoregulative response may also occur from 
various chronic diseases, including diabetes mellitus [14]. Previous 
biological observations may explain the loss of bone volume, quality, 
and strength ex vivo, but they do not give conclusive proof of potentially 
dysregulated mechanoregulation in living bone tissue. Therefore, ap
proaches for monitoring in vivo bone microstructure at high resolution 
are necessary to explore the effects of ageing and diseases on bone 
remodelling in humans. 

High-resolution peripheral quantitative computed tomography (HR- 
pQCT) can non-invasively assess individual trabecular structures in vivo 
in humans with nominal resolution ranging from 61 μm to 82 μm 
achieving spatial resolutions between 95.2 μm and 142.2 μm in vivo 
[15,16]. Acquisition of longitudinal images can even allow for the 
quantification and visualisation of remodelling sites [17]. When HR- 
pQCT is combined with micro-finite element (micro-FE) analysis, the 
local mechanical environment can be simulated and linked to remod
elling events (i.e. mechanoregulation). Previous clinical studies 
exploring mechanoregulation in humans [18–21] have demonstrated 
relationships between local strains induced by normal physiological 
activity and bone remodelling, showing promise for HR-pQCT-based 
mechanoregulation to investigate the effects of disease, ageing, or 
intervention on the skeleton's ability to adapt to mechanical stimuli. 
However, the resolution of HR-pQCT is in the same order of magnitude 
as the depth of individual remodelling sites (between 5 and 116 μm) 
[22,23]. To overcome the current limitation of imaging resolution, 
image filtering protocols are necessary to remove noise and image ar
tefacts that can overshadow these subtle changes [17]. 

The studies by Christen et al. and Mancuso et al. have estimated the 
precision of analysing bone remodelling sites derived from same-day 
repeat scans and reported a broad range of measurement precision 
ranging from 2.5 % [17] to 11 % [18]. Image noise and motion artefacts 
during scanning can confound the precision of longitudinal bone 
microstructure assessment [17]. To reduce false detections, previous 
studies have proposed noise-filtering protocols [17]. However, with the 
recent advancements from a nominal resolution of 82 μm to 61 μm in 
second-generation XtremeCT scanners, previous filtering methods must 
be revised to account for differences in image resolution, artefacts, and 
noise. Importantly, these assessments only considered the overall rate of 
false detections without considering the variations in the spatial location 
of the bone remodelling sites. Previous imaging-based assessments of 
bone mechanoregulation [19,24,52] correlate the mechanical signal 
with local remodelling events voxel-by-voxel. Therefore, the spatial 
variance of these remodelling sites may have a significant impact on the 
quantification of remodelling sites relative to local mechanical strains 
and needs to be assessed using longer follow-up scans during which true 
remodelling events take place. A major challenge with assessing bone 
formation/resorption using HR-pQCT is the limited availability of vali
dation data (e.g., dynamic histomorphometry) for humans [53]. 
Assessing the precision in estimating mechanoregulation of local bone 
remodelling is critical for determining whether measured differences 
within or across patients are due to genuine changes or caused by noise 
and artefacts. 

This study aimed to develop bone mechanoregulation imaging 
markers and to determine their precision for detecting longitudinal 
changes in human subjects. In this context, precision describes the 
consistency of measurements obtained by a single team using the same 
procedure, equipment, and operating conditions, in a single location, 
over multiple iterations [25]. The first objective of this study was to 
adapt an existing image filtering protocol for detecting local bone for
mation and resorption sites to current imaging capabilities, and to 

evaluate the effect of motion artefacts on the accuracy and precision of 
the adapted filtering approach. The second objective of this study was to 
establish robust patient-specific markers that characterise strain-driven 
bone formation and bone resorption as well as their interplay (i.e., 
mechanoregulation). 

2. Methods 

2.1. Participants and image acquisition 

This study utilised participants from two cohorts, summarised in the 
following paragraphs, to address each study objective. The first is the 
same-day cohort, used to assess filtering parameters designed to remove 
false formation and resorption sites. The second cohort is referred to as 
the longitudinal cohort, used to determine the precision of mechanor
egulation over one year of bone remodelling. All participants gave 
written informed consent before participation, and local ethics com
mittees approved all studies. All scans were obtained at the distal radius 
using second-generation HR-pQCT (XtremeCT II, Scanco Medical AG, 
61 μm) [15]. For consistency across cohorts, scans were automatically 
graded for motion artefacts using a previously developed motion-scoring 
algorithm [26] on a five-point scale (1 = none, 2 = minor, 3 = moderate, 
4 = severe, and 5 = extreme), with manual verification. 

The same-day cohort consisted of 33 participants (17 males of mean 
age 46.2 ± 18.4 years; 16 females of mean age 41.3 ± 15.8 years) from a 
previous study [27]. Three same-day HR-pQCT scans of the distal radius 
were acquired at the University Department of Osteoporosis in Bern for 
all participants. Individuals were scanned by the same operator with two 
operators in total. After each scan, the carbon cast was removed, reap
plied, and the subject was repositioned. The scan region used herein 
began at the reference line placed at the dense articular surface formed 
with the scaphoid and lunate fossae of the radiocarpal joint and 
extended proximally 10.2 mm (168 slices) in length [28]. 

The longitudinal cohort consisted of 19 participants (9 males of mean 
age 43.9 ± 13.1 years; 10 females of mean age 59.1 ± 18.9 years) 
selected from an ongoing multi-centre longitudinal study investigating 
fracture healing [29], where longitudinal scans acquired on the 
contralateral (i.e. non-fractured distal radius) were used in the present 
study. Three scans were used per participant, including a baseline scan, 
a 1-month repeat scan performed within one month, and a third scan 
performed at a one-year follow-up. Scans were obtained from a previous 
study at the Innsbruck Medical University in Innsbruck, Austria [30], or 
newly acquired at the University Department of Osteoporosis in Bern, 
Switzerland. Participants were included from the more extensive lon
gitudinal study if they had attended all three visits and all scans had a 
motion score of 2 or lower (on the five-point scale), resulting in 19/132 
participants that met the inclusion criteria. In this cohort, HR-pQCT 
scans were acquired following the manufacturer's standard in vivo pro
tocol [31]. Briefly, a reference line was placed on the distal radial joint 
surface using anteroposterior scout views. The scan region (168 slices) 
was 10.2 mm extended, positioned at a fixed offset of 9.0 mm from the 
reference line. 

2.2. Image processing and registration 

Periosteal and endocortical contours were automatically identified 
in all images using the dual-threshold technique (cortical bone: 450 mg 
HA/cm3, trabecular bone: 320 mg HA/cm3) [32]. Contours were visu
ally inspected for notable deviations from the periosteal or endocortical 
surfaces and manually corrected where necessary [33]. HR-pQCT scans 
were registered using rigid-body registration based on Python (v3.8.5) 
and SimpleITK (v2.1.1.2) [34,35]. Specifically, Euler angles around the 
density-weighted centre of the image were optimised, maximising the 
voxel-wise correlation between grayscale density values within the 
periosteal contour to align the images. Powell optimisation with Brent 
line search, an initial step length of 1, and a sampling rate of 0.01 in 
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conjunction with a five-level pyramid registration framework (shrink 
factors: 12×, 8×, 4×, 2×, 1×) was used. Optimisations terminated after 
100 iterations or if the value or step tolerance of 10− 6 was reached. 
Grayscale images were transformed using linear interpolation, and a 
Gaussian filter was applied to reduce noise (sigma 1.2, support 1). Bi
nary segmentations of the bone and compartment masks (cortical and 
trabecular) were transformed using nearest-neighbour interpolation. In 
all cases, the earliest timepoint was used as the fixed reference image, 
and all follow-up images were transformed into the reference space. 

2.3. Objective 1: bone remodelling site identification and quantification of 
precision 

Image filtering parameters needed to identify true bone formation 
and resorption fractions were determined using the same-day cohort. Due 
to the short follow-up time (same-day scans), no measurable true bone 
remodelling is expected, and thus all detected remodelling events can be 
considered false remodelling sites. First, the common trabecular region 
across rescans was determined from the registered images to exclude 
voxels outside the common region. Segmented images were then 
superimposed to identify regions of false formation and resorption in the 
trabecular compartment. Volumes of the segmented bone present only 
in the earlier measurement were regarded as resorbed bone, whereas 
bone voxels present only in the latter measurement corresponded to 
formed bone [24]. For the same-day scans, all possible combinations of 
the three measurements were evaluated. To reduce the detection of false 
remodelling events caused by registration interpolation and partial- 
volume effects, the identified formation and resorption sites were 
further filtered using information from the grey-scale images to remove 
small remodelling clusters or sites with minimal density changes [17]. 
For this purpose, the threshold for the absolute difference in density 
between rescans of the formed and resorbed voxels was varied from 0 to 
300 mg HA/cm3 with a step size of 25 mg HA/cm3, and the threshold for 
cluster volume was varied from 0 to 48 voxels in steps of 4 voxels. The 
proportion of removed remodelling clusters was calculated at different 
filter combinations, and filtering settings within a tolerable 1 % noise 
level were selected to remove false remodelling sites. Finally, formation 
and resorption volumes were expressed as a fraction of the baseline 
trabecular mineralised bone volume (Tb.BV). 

Short-term precision of formation and resorption measurements 

were calculated as root-mean-squared averages of the standard devia
tion of repeated measurements (RMS-SD) [36] Individual precision er
rors were calculated for resorption (Tb.R) and formation (Tb.F) volume 
fractions derived from combinations of scan/rescan pairs. For example, 
for a patient with three scans (t1–3), the following comparisons (c1–3) 
between detected resorption fractions were made with c1: RMS-SD(Tb. 
Rt2,t3, Tb.Rt1,t3), c2: RMS-SD(Tb.Rt2,t3, Tb.Rt1,t2), and c3: RMS-SD(Tb.Rt1, 

t2, Tb.Rt1,t3) and grouped by the maximum motion score of all scans 
within the comparison. Differences in precision outcomes between 
grading scores were tested with an unpaired Mann-Whitney-Wilcoxon 
test with Holm–Bonferroni correction for multiple comparisons after 
confirming the non-normality of variables with a Shapiro-Wilk test. 
Least-significant change of bone Tb.F and Tb.R was calculated at a 95 % 
confidence level (where LSC = 2.77 * RMS-SD) [36] with the developed 
filtering approach and compared against no filtering steps applied (i.e. 
remodelling sites obtained from subtracted segmented images). 

2.4. Objective 2: bone mechanoregulation quantification over one year 

The precision of detecting remodelling sites and bone mechanor
egulation was evaluated in a longitudinal cohort using three scans: 
baseline, 1-month repeat, and 1-year follow-up (Fig. 1A). The evaluation 
was conducted between the baseline and 1-year scans, as well as be
tween the 1-month and 1-year scans, as it requires the presence of true 
bone formation and resorption sites. The formation and resorption sites 
occurring after a one one-year interval were identified using the opti
mised filtering approach determined in objective 1. A paired Wilcoxon 
signed-rank test was used to determine the presence of substantial bone 
resorption, formation, and net change between baseline and one year, 
after confirming the non-normality of variables with a Shapiro-Wilk 
test. The approach was performed again with the repeat scan (taken 
within one month of the baseline) in place of the baseline scan to test the 
agreeability of the approach (Fig. 1B). Bland-Altman plots were used to 
measure the limits of agreement between baseline and 1-month repeat 
scans when determining the resorption, formation, and net change 
fraction after one year. 

The local mechanical signal in the bone tissue of the baseline scan 
was calculated using micro-FE analysis (Fig. 1C). Finite element meshes 
were generated by converting all voxels to 8-node hexahedral elements 
and assigning a Young's modulus of 8.748 GPa and Poisson's ratio of 0.3 

Fig. 1. Study design for objective 2. (A) Baseline 
and repeat scans were acquired within one 
month, along with a one-year follow-up for each 
patient (n = 19) using HR-pQCT to measure bone 
mineral density (BMD) and microstructure. (B) 
Remodelling sites were identified from 
segmented images and filtered in the greyscale 
image based on changes in density between 
baseline and follow-up as well as 1-month repeat 
and follow-up. (C) Micro-FE analysis was per
formed on the baseline and 1-month repeat 
scans. (D) Mechanoregulation was assessed using 
quantitative markers. (E) The precision of 
mechanoregulation markers was assessed.   
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[37]. A standard uniaxial compression of up to 1 % apparent strain was 
applied. Linear micro-FE calculations were solved using ParOsol [38] at 
the ETH research computing cluster (Euler, ETH Zurich, Zurich, 
Switzerland) using 48 threads (Intel Xeon Gold 5118, 3.2 GHz, 96 GB). 
Voxel-wise strain energy density (SED) was derived as the local me
chanical signal [19,24]. 

Following the method presented by Schulte et al. [24], patient-wise 
conditional probability curves were computed to link the mechanical 
signal (baseline SED) at different strain levels to the remodelling events 
detected on the bone surface between baseline and the one-year follow- 
up (Fig. 1D). Briefly, SED was normalised using the 99th percentile and 
binned at 1 % intervals (nbins = 100). Conditional probability was 
calculated from strain frequency distributions to analyse the probability 
of bone remodelling events at various strain levels. The conditional 
probability curves were used to calculate the correct classification rate 
(CCR), a measure for estimating the proportion of remodelling events 
(resorption, quiescence, and formation) correctly relative to mechanical 
signal [39]. However, CCR only provides an overall marker of agree
ability, not an independent assessment of the extent to which formation 
and resorption events are load-driven. Thus, logistic regression was 
performed to independently ascertain the patient-specific association 
between mechanical signal (baseline SED) with voxel-wise bone for
mation and resorption. Odds ratios for bone resorption (ORR) formation 
(ORF) with 99 % confidence intervals (CI) were computed per one- 
percentage-point change in normalised mechanical signal (SED/SED
max) to quantify strain-driven bone formation and resorption in indi
vidual participants. The 99 % CIs were constructed using bootstrapping 
(k = 1000). A confidence interval of 99 % was used due to the large 
sample size when performing voxel-wise analysis. 

The mechanoregulation analysis was repeated using the repeat scan 
(taken within one month of the baseline) in place of the baseline scan to 

determine the precision of the approach. [45]. Bland-Altman plots, with 
99 % CI were used to measure the limits of agreement between baseline 
and 1-month repeat scans in estimating the conditional probability of 
resorption, quiescence and formation events for each strain bin (nbins =

100). One-year RMS-SD and least-significant change of ORR, ORF, and 
CCR were calculated using outcomes of the baseline-to-one-year and 
repeat-to-one-year pairs to assess the method's precision. 

3. Results 

3.1. Objective 1: bone remodelling sites identification and precision 

After identifying the location of remodelling sites from segmented 
images, then removing detected remodelling events with a density 
change lower than 225 mg HA/cm3 and clusters smaller than 12 voxels, 
99% of false remodelling sites observed in the same-day cohort were 
eliminated (Fig. 2A). The remaining 1 % of false remodelling sites were 
considered acceptable noise levels (supplemental Figure S1). Overall, 
filtering significantly improved (p < 0.01) absolute errors in the detec
tion of false formation and resorption sites across all motion scores 
(Fig. 2B and Table 1). When assessing the absolute errors relative to 
motion scores after filtering, no significant differences were found for 
scans with motion scores of one or two. However, when at least one scan 
in the scan-rescan pair had a motion score of three or more, absolute 
errors significantly increased (p < 0.01), despite implementing the 
optimised filtering protocol. Specifically, when the maximal motion 
score in scan-rescan pairs shifted from two to three, the detection of false 
resorption events increased from 6.0 % to 11.3 % and false formation 
events increased from 6.4 % to 11.9 %. Therefore, scans with motion 
scores one or two were selected for further processing in the longitudinal 
cohort. 

Fig. 2. (A) Filter strategy determined using three same-day rescans of participants (n = 33). The colour code indicates the percentage of filtered formation and 
resorption sites identified from binary segmentations and subsequent density change thresholds using different filter combinations. (B) Absolute errors were 
calculated assuming no true bone remodelling between scans. Boxplots show absolute errors with and without filtering for formation and resorption fractions at 
different motion scores. (C) Precision errors expressed as RMS-SD between individual measurements were grouped by maximum motion score within the comparison 
set. Boxplots show precision errors with and without filtering for formation and resorption fractions at different motion scores. Significant differences are indicated 
(*p < 0.05; **p < 0.01, ****p < 0.0001, Mann-Whitney-Wilcoxon test with Holm–Bonferroni correction). 

M. Walle et al.                                                                                                                                                                                                                                  

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en julio 19, 2023. 
Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



Bone 172 (2023) 116780

5

The precision error of formation and resorption events was un
changed (p = 1.0) by the added filtering protocol across all motion 
scores. However, the precision of bone formation and resorption events 
significantly improved with lower motion grading (p < 0.05, Fig. 2C and 
Table 1). Overall, the precision of detecting bone formation versus 
resorption events was comparable across image quality gradings (RMS- 
SD = 3.3 %, for all scans, and RMS-SD = 1.7 % for motion scores of two 
or less). Overall, these results confirm that motion artefacts play a 
considerable role in the method's precision, while image filtering 
significantly influences absolute errors of false remodelling events. 

3.2. Objective 2: precision of bone mechanoregulation analysis 

In the longitudinal cohort, removing remodelling events with a 
density change lower than 225 mg HA/cm3 and clusters smaller than 12 
voxels (as determined in objective 1) visually reduced the amount of 
detected formation and resorption sites relative to the unfiltered 
approach, and the filtering strategy showed good precision between 
baseline repeat measurements (Fig. 3). We found significant bone 
resorption of 5.3 % (95 % CI: 3.1 %–7.5 %, p < 0.05) and formation of 
5.2 % (95 % CI: 3.0 %–7.4 %, p < 0.05) after one year compared to 
resorption of 3.7 % (95 % CI: 2.4 %–5 %, p < 0.05) and formation of 3.1 
% (95 % CI: 1.7 %–4.5 %, p < 0.05) within one month, between baseline 
and the 1-month repeat scan (Fig. 4A). Bland-Altman plots showed no 
significant bias (p < 0.01) between baseline and repeated scans for 
deriving one-year bone formation and resorption volume fractions. The 
95 % limits of agreement identified one participant with high bone 
resorption (Tb.R > 6.6 %) and formation (Tb.F > 6.7 %) as an outlier 
(Fig. 4B). 

In terms of mechanoregulation outcomes over the one-year follow- 
up, we found that bone had the highest conditional probability to be 
formed in high-strain and resorbed in low-strain regions (Fig. 5A), and 
no bias (p < 0.01) was found between conditional probabilities 
computed when using the baseline versus 1-month repeat scan (Fig. 5B). 
No participants showed a dysregulated response (OR < 1.0 or CCR < 1/3) 
to mechanical stimuli. The range of participant-level ORR was between 
1.3 and 3.5, and ORF was between 1.3 and 2.9 (Fig. 5C). The overall 
population showed that the likelihood of bone resorption was 

significantly associated with decreasing strain, and bone formation was 
significantly associated with increasing strain, with an overall ORR of 
2.0 (99 % CI: 1.8–2.2) and ORF of 1.9 (99 % CI: 1.7–2.1). On average, 
38.3 % (99 % CI: 37.2–39.4) of strain-driven remodelling events were 
detected with CCR, ranging from 35.7 % to 42.5 %. In most cases, 
confidence intervals between one-year mechanoregulation markers 
estimated from baseline and 1-month repeat scans showed consistent 
participant-level overlap, demonstrating good precision at the partici
pant level. Visually, trending differences in ORR, ORF, and CCR between 
age and sex groups of participants were observed, yet no explicit com
parisons were made due to insufficient statistical power. Precision errors 
of ORR (RMS-SD = 0.2, RMS-CV = 10.5%, LSC = 0.6) were higher than 
ORF (RMS-SD = 0.1, RMS-CV = 6.3%, LSC = 0.3). CCR showed excellent 
precision (RMS-SD = 5.1 * 10− 3, RMS-CV = 1.3%, LSC = 14.0 * 10− 3). 
Overall, bone mechanoregulation markers acquired from the baseline 
and 1-month repeat scans show consistent results on a participant- 
specific level, demonstrating the method's precision. 

4. Discussion 

Mechanical signals are one of the most important determinants of 
bone health in humans [40], yet, quantifying the metabolic response of 
bone tissue to this stimulation has proven difficult. Here, we demon
strated that longitudinal HR-pQCT at 61 μm nominal resolution can 
detect local bone formation and resorption on the bone surface over the 
course of one year. Combined with micro-FE analysis, we found a sub
stantial temporospatial relationship between bone remodelling and 
local mechanical signals. We quantified the capacity of regional me
chanical stimulus variations to initiate bone remodelling events using 
participant-specific formation and resorption odds ratios. We showed 
that local strain variations affected remodelling differently across par
ticipants. Further, we demonstrated that the proportion of remodelling 
events that were correctly correlated to the mechanical signal varied 
across participants. Using repeat scans, we evaluated the precision of 
this method to ensure that bone formation and resorption detected 
among individuals were not solely related to noise and measurement 
errors. Finally, our study provided robust in vivo mechanoregulation 
markers characterising the effect of local mechanical stimuli on bone 
remodelling and quantified their precision. 

For a reliable evaluation of bone mechanoregulation, consistent 
detection of local bone formation and resorption sites is required. Using 
an independent same-day-repeat HR-pQCT cohort, we showed that 
filtering of remodelling sites based on density change and cluster volume 
can reduce false detections without adversely impacting the method's 
precision. The basis of the proposed filtering approach was first devel
oped for the first generation of HR-pQCT (XtremeCT, ScancoMedical, 82 
μm) [17]. Although the nominal resolution has increased from 82 μm to 
61 μm, we found consistent filtering parameters of 225 mg/cm3 mini
mum density change and 12 voxels minimum cluster size, which is 
equivalent to 5 voxels at 82 μm resolution, were effective for removing 
the majority (99 %) of false remodelling events. In contrast to the prior 
method the additional binary segmentation step used in this study likely 
removed already a majority of soft-tissue noise. Previous studies have 
shown that it is possible to retrospectively estimate specific second- 
generation HR-pQCT measurements from first-generation acquired im
ages using cross-calibration techniques [41]. Our findings suggest that 
this could also be viable for mechanoregulation measurements, allowing 
comparisons to published longitudinal data at 82 μm resolution; how
ever, future cross-calibration studies would be required to confirm this. 
Further, the LSC required to detect bone formation was comparable to 
the LSC required to detect resorption and did not change from the pre
vious scanner generation [17]. We found that LSC rapidly increased with 
increasing patient motion, roughly 2 % for high-quality (score 1) and 5 
% for good-quality (score 2) scans. Although the average volume 
replacement (turnover) of bone is approximately 10 % per year [42], it 
varies across different sites. It is estimated to be substantially lower at 

Table 1 
Precision errors for resorption (Tb.R) and formation (Tb.F) detections expressed 
as standard deviation of repeated measurements (RMS-SD) and least-significant 
change (LSC). Measurements were grouped progressively restricting inclusion 
criteria for patient motion. Maximum motion score indicates the highest motion 
score tolerated.  

Maximum 
motion 
score 

Degrees 
of 
freedom 

Abs. error (95 % 
CI) 

RMS-SD LSC 

Tb.F Tb.R Tb.F Tb.R Tb.F Tb.R  

≤4  58 9.2 % 
(6.9 
%– 
11.5 
%) 

9.8 % 
(7.2 
%– 
12.3 
%)  

3.2 %  3.3 %  9.0 %  9.2 %  

≤3  50 9.2 % 
(6.6 
%– 
11.8 
%) 

9.7 % 
(6.9 
%– 
12.6 
%)  

2.9 %  3.0 %  7.9 %  8.2 %  

≤2  26 6.1 % 
(4.2 
%– 
8.0 
%) 

6.4 % 
(4.5 
%– 
8.2 
%)  

1.7 %  1.7 %  4.6 %  4.7 %  

=1  10 4.5 % 
(1.1 
%– 
7.9 
%) 

4.8 % 
(1.6 
%– 
8.1 
%)  

0.9 %  0.7 %  2.4 %  1.8 %  
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yellow bone marrow sites, such as the distal radius, at roughly 2 % per 
year [43,44]. Our findings suggest that the proposed technique is a 
dependable in vivo method for measuring local bone turnover, as we 
observed similar increases in remodelling fractions over a year in our 
longitudinal cohort compared to previous estimates based on treatment 
response [43,44]. Although filtering can reduce false detections of for
mation and resorption events, our findings suggest future studies should 
only use low-motion HR-pQCT scans (motion ≤ 2), especially for short 
follow-ups or when investigating diseases with low bone turnover, such 
as diabetes mellitus. Differences observed in the current study compared 
to a previous study [17], recommending the inclusion of motion scores 
up to grade 3, may be due to operator variability of the manual motion 
scoring procedure [33]. To ensure inter-study comparability, we used a 
previously developed automatic motion grading system [26] to elimi
nate the subjectivity of motion scores. Studies may be able to use scans 
with moderate motion artefacts grade (motion grades 3) for more 
extended follow-up periods or when investigating bone diseases with 
more rapid changes, such as chronic kidney disease [45]. 

Our results indicate a consistent relationship between increasing 
strain and bone remodelling events, reflected in the odds of bone for
mation increasing by 1.9% and odds of bone resorption decreasing by 
2.0% per percent increase in SED. The proposed quantification of bone 
mechanoregulation using correct classification rates (a trinary classifi
cation system) and odds ratios for bone formation and resorption 

provides complementary information about the mechanoregulatory 
relationship between mechanical strains and bone remodelling events. 
While odds ratios measure the strength and direction of the association 
between local strains and bone remodelling, the correct classification 
rate measures the overall performance of strains in predicting the cor
rect remodelling event. Our findings suggest that the consistent rela
tionship observed in remodelling at the radius in an adult population is 
not entirely driven by mechanical factors, as evidenced by an average 
correct classification rate of 38.3%. These findings align with previous 
studies that have determined correct classification rates for both humans 
[20,21] and mice [39,56–58]. Non-mechanical bone remodelling could 
be influenced by a range of factors, such as calcium homeostasis, hor
monal regulation, and inflammatory processes. Further, ageing and 
disease can have additional negative effects on bone remodelling that is 
both mechanically and biologically driven, which may confound inter
pretation of the mechanoregulation metrics we have proposed. There
fore, it is recommended that mechanoregulation analysis is assessed 
alongside bone formation and resorption volume fractions. This will 
enable a more comprehensive understanding of the impact of ageing on 
bone remodelling. 

Understanding the mechanisms behind localised bone loss and 
turnover dynamics in response to strain patterns may have important 
implications for treating age-related or disease-induced bone loss [1]. 
For example, previous HR-pQCT studies have identified impaired bone 

Fig. 3. (A) Representative axial cross-sections (15 slices thick) of the human distal radius show bone remodelling over one year. Sites of bone formation (for) and 
resorption (res) were determined using three-dimensional image registration of baseline and 1-year follow-up measurements for scans (repeat 1) and rescans (repeat 
2). (B) Remaining formation and resorption sites are shown after filtering small remodelling clusters (<12 voxels) with a minimum change in density of ±225 HA 
mg/cm3, using the optimised filtering strategy from objective 1. (C) Corresponding micro finite element analysis (micro-FE) visually shows higher strain energy 
density in regions of formation and lower strain energy density in regions of resorbed bone. 

M. Walle et al.                                                                                                                                                                                                                                  

Descargado para Lucia Angulo (lu.maru26@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en julio 19, 2023. 
Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



Bone 172 (2023) 116780

7

microstructure in patients with diabetes mellitus [46]. In these patients, 
observed microstructural deficits [47] may be directly related to an 
impaired response to mechanical loading, as has been observed in dia
betic animal models [48]. Our proposed mechanoregulation method has 
the potential to bridge the gap between clinically observed bone 
phenotype and animal models and may help to develop mechanical 
intervention therapies that enhance bone health and lower fracture risk 
in diabetic patients. Through determination of the level of strain that 
constitutes bone growth and the level of strain that may be excessive and 
raise the risk of damage or failure, similar analysis methods could also be 
incorporated into personalised physiotherapy or exercise treatments. 
Further, interventions that improve mechanosensitivity, as measured 
using the techniques described herein, may provide novel treatments for 
these patients. In support of this, a previous study showed that bone 
mechanoregulation could be used to assess the effects of vitamin D and 
calcium supplementation in individuals [21]. Our findings provide the 
necessary precision for these and future studies to interpret observed 

changes in mechanoregulation within and across participant groups. 
A primary limitation of our study is that we focused exclusively on 

trabecular bone due to its high metabolic activity and anticipated 
frequent remodelling during the 1-year follow-up period. While inves
tigating cortical bone remodelling and mechanoregulation may be 
possible, the surface-based mechanoregulation method used in this 
study was specifically designed for trabecular bone [24]. Cortical bone 
remodelling involves both surface and internal haversian remodelling, 
which may not be fully resolved using the resolution of HR-pQCT over a 
1-year interval. Given these considerations, we did not extend the 
remodelling and mechanoregulation analysis to include cortical bone. 
Future research may introduce techniques to explore mechanor
egulation in cortical bone, such as the recently suggested methods for 
investigating contractions and expansions of cortical pores [54]. 
Further, the employed micro-FE model was linear in terms of material 
and geometry. These simplifications do not account for nonlinear 
behaviour or viscoelastic effects; however, only minor linear-elastic 

Fig. 4. (A) Bone resorption, formation and net change fraction with 95% confidence intervals (shaded area) over one year of bone remodelling assessed by lon
gitudinal HR-pQCT imaging. Significant increases in remodelled tissue fraction from baseline to one year are indicated (*p < 0.05; Wilcoxon signed-rank test). (B) 
Bland-Altman plots illustrating the mean offset (solid mid-line, grey) and 95 % confidence limits (dashed lines, grey) of agreement for one-year resorption, formation, 
and net-change fractions when the baseline versus repeat scans (within one month of baseline) were used. 
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deformations are anticipated during daily activities [50]. Further the use 
of only compressive loading may not accurately reflect day-to-day 
loading patterns. However, our prior study demonstrated only modestly 
higher correct classification rates when utilising computational load 
estimation algorithms that aims to more accurately estimate true day-to- 
day loading conditions. This can be attributed to the fact that 
compressive loading was identified as the dominant loading direction at 
the distal radius [20]. 

In terms of the approach for quantifying remodelling events, we 
utilised a cluster filtering strategy to eliminate image artefacts. Filtering 
small structural clusters may remove genuine biological changes below 
the specified threshold, however the step is widely employed to supress 
known image artefacts arising from noise, beam hardening, and inter
polation [17,18,55]. A consequence of the filtering method employed is 
that bone remodelling over a short follow-up interval is likely not 
detectable. This is evidenced by the detected remodelling fractions be
tween the baseline and 1-month repeat scans (approximately 3%) falling 
within the same range that is observed in the error rate measured with 
same-day repeat scans. Therefore, our analysis is particularly relevant 
when a reasonable amount of remodelling is expected, for example, due 
to higher metabolic activity or a longer follow-up time. 

Although our results show promising precision of our method for 
high-quality images, patient motion remains an issue for longitudinal 

HR-pQCT investigations. As a result, we had to exclude many partici
pants in the longitudinal cohort due to patient motion. This is consistent 
with other studies investigating bone mechanoregulation using HR- 
pQCT that included subsets of 9 out of 126 [19], 21 out of 102 [18] 
and 25 out of 106 participants [21]. Future advances in motion sup
pression, whether through computational or hardware approaches, will 
be necessary to move HR-pQCT-based bone remodelling methods closer 
to clinical implementation. Further, HR-pQCT is limited to the periph
eral skeletal sites. Therefore, direct assessment identification of reduced 
mechanoregulation at osteoporotic fracture sites with higher bone 
turnover rates, such as the hip or spine, is not yet possible. However, 
with the advent of new imaging technologies such as photon counting 
computed tomography [51] the application of mechanoregulation to 
other skeletal sites of interest could be possible in the future. 

The combination of time-lapsed bone remodelling with micro-finite 
element analysis provides a powerful tool for investigating skeletal 
adaptation to mechanical load. This work provides the necessary 
filtering protocol to identify the true bone formation and resorption sites 
using longitudinal HR-pQCT. Further, we propose patient-specific bone 
mechanoregulation imaging markers and report their precision to aid in 
designing future clinical studies investigating bone mechanoregulation 
in vivo. Bone mechanoregulation markers have the potential to help 
decipher the underlying causes of abnormal bone remodelling in many 

Fig. 5. (A) Conditional probability of bone resorption, quiescence, and formation throughout one year of bone remodelling (n = 19) with varying local strain energy 
density (SED) magnitudes. (B) Bland-Altman plots illustrate mean offset (solid mid-line, grey) and 95 % confidence limits (dashed lines, grey) of conditional 
probability agreement of a repeat assessment (<1 month) conducted on the same participant. (C) Respective odds ratios of bone resorption/formation with 
decreasing/increasing SED and correct classification rates quantify the mechanically-driven bone remodelling in participants. Vertical dashed lines indicate average 
measurement values, and the shaded area shows the 99 % confidence intervals for baseline scans (red) and 1-month repeat scans (black). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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osteodegenerative disorders and age-related bone loss. Future research 
should determine whether these markers can be utilised to identify pa
tients at risk for fracture and develop individualised mechanical treat
ment regimens. 
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