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A B S T R A C T   

Patients with transfemoral amputation (TFA) are up to six times more likely to develop hip osteoarthritis (OA) in 
either or both the intact and residual limb, which is primarily attributed to habitually altered joint loading due to 
compensatory movement patterns. However, joint loading patterns differ between limbs, which confounds the 
understanding of loading-induced OA etiology across limbs. It remains unknown if altered loading due to 
amputation results in bony shape changes at the hip, which is a known etiological factor in the development of 
hip OA. Retrospective computed tomography images were collected of the residual limb for 31 patients with 
unilateral TFA (13F/18M; age: 51.7 ± 9.9 y/o; time since amputation: 13.7 ± 12.4 years) and proximal femur for 
a control group of 29 patients (13F/16M; age: 42.0 ± 12.27 years) and used to create 3D geometries of the 
proximal femur. Femoral 3D geometric variation was quantified using statistical shape modeling (SSM), a 
computational tool which placed 2048 corresponding particles on each geometry. Independent modes of vari-
ation were created using principal component analysis. 2D radiographic measures of the proximal femur, 
including common measures such as α-angle, head neck offset, and neck shaft angle, were quantified on digitally 
reconstructed radiographs (DRRs). SSM results were then compared to 2D measures using Pearson correlation 
coefficients (r). Two-sample t-tests were used to determine if there were significant differences between the TFA 
and control group means of 2D radiographic measurements (p < 0.05). Patients with TFA had greater femoral 
head asphericity within the SSM, which was moderately correlated to head-neck offset (r = − 0.54) and α-angle 
(r = 0.63), as well as greater trochanteric torsion, which was strongly correlated to the novel radiographic 
measure of trochanteric torsion (r = − 0.78), compared to controls. For 2D measures, the neck-shaft angle was 
smaller in the TFA group compared to the control group (p = 0.01) while greater trochanter height was larger in 
the TFA group compared to the control group (p = 0.04). These results indicate altered loading from transfemoral 
prosthesis use changes proximal femur bony morphology, including femoral head asphericity and greater 
trochanter changes. Greater trochanter morphologic changes, though not a known factor to OA, affect moment 
arm and line of action of the primary hip abductors, the major muscles which contribute to joint loading and hip 
stability. Thus, chronic altered loading of the amputated limb hip, whether under- or overloading, results in bony 
changes to the proximal femur which may contribute to the etiological progression and development of OA.   

1. Introduction 

The number of Americans living with limb loss is expected to nearly 
double from approximately 2.2 million to 3.6 million by the year 2050 
due to an aging population and growing prevalence of dysvascular 
conditions [1]. Within this population, persons with transfemoral 

amputation (TFA) have lower levels of physical function and mobility 
compared to persons with transtibial amputation [2,3]. One contrib-
uting factor to lower physical function is the increased risk of secondary 
conditions, including low back pain, osteopenia, osteoporosis, and 
osteoarthritis (OA) [4]. Hip OA is especially prevalent in persons with 
TFA, compared to able-bodied individuals, as they are three- to six- fold 
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more likely to develop hip OA [4–7]. OA causes persistent pain that 
severely impedes mobility, daily activity, and overall quality of life 
leading to a 20 % higher age-adjusted mortality rate [8,9]. 

The three primary etiological factors of OA involve mechanical, 
biologic, and metabolic pathways that all contribute to cartilage 
degeneration [10]. Specifically, it is widely agreed that habitually 
increased joint loading is a primary contributor to OA development in 
the intact limb in persons with TFA [5,11–13]; however, prior studies 
disagree if joint loading decreases [11,14,15] or increases [16] in the 
amputated limb. Nonetheless, amputated limb hip OA has been esti-
mated to occur in upwards of 55 % of older patients with TFA [7]. 
Therefore, it is likely that there are other mechanical factors, including 
those induced from altered joint loading, that contribute to the etiology 
of OA but have not been as rigorously explored within this population. 

Chronic change in the mechanical stimulus applied to bone through 
altered loading can result in both bone mineral density and morpho-
logical changes [17], as seen after long-term space flight, prolonged 
bedrest, and in idiopathic torsional deformities [18–20]. Although prior 
evidence has established that the amputated limb has lower bone min-
eral density in patients with TFA [21], less is known about its 
morphology in this population. Changes in bony morphology are an 
important etiological factor in hip OA as they alters intra-articular me-
chanics [22]. It is well-documented that external loads (e.g., ground 
reaction forces) are different in the TFA population [11–16], yet the 
loading applied to the proximal femur is also dependent upon internal 
(e.g., muscle) forces. Specifically, muscle forces are one of the main 
contributors to hip joint loading [23] and the resulting strain in the 
femur [20,24]. Thus, any changes in muscle forces could potentially 
contribute to bony remodeling, and thus changes in morphology. Un-
fortunately, patients with TFA demonstrate substantial amputated limb 
hip muscle weakness, which is commonly attributed to limb disuse 
within the socket [25]. However, despite changes to both internal and 
external factors in patients with TFA which contribute to loading, it 
remains unknown how these changes in loading result in morphological 
changes of the proximal femur. 

Quantifying three-dimensional (3D) bony morphology is critical to 
improve the understanding of the etiological contribution of morpho-
logical changes to joint damage. Recent progress has been made toward 
the use of quantifying 3D shape using reconstructions generated from 
volumetric images (e.g., computed tomography (CT)), yet objective 
quantification of 3D morphologic variation remains difficult. Statistical 
shape modeling (SSM) has emerged as a powerful tool to objectively 
quantify complex morphology [26]. SSM has previously been utilized to 
quantify 3D bony geometric variation that contributes to OA patho-
mechanics in pre-arthritic OA populations, including patients with 
femoroacetabular impingement [27,28], hip dysplasia [29], Legg-Calvé- 
Perthes disease [30], and slipped capital femoral epiphysis [30], yet has 
not been used to determine if bony morphological abnormalities are 
prevalent in patients with TFA. 

Despite advancements in imaging technology, hip OA is commonly 
diagnosed based on discrete two-dimensional (2D) radiographic mea-
sures due to the convenience and cost-effectiveness of radiographs [31]. 
Joint space narrowing and presence of osteophytes are radiographic 
indicators of OA and occur after irreparable articular damage has 
occurred [9,32]. Therefore, 2D radiographic measures are not sensitive 
to early detection of osteoarthritic changes, when interventional thera-
pies may be most effective in symptom mitigation and prevention of 
further cartilage degeneration [9]. Three-dimensional bony shape 
changes have previously been shown to precede the later onset of 2D 
radiographic evidence of OA [33]. Thus, robust 3D quantification of the 
proximal femur bony morphology is necessary to identify OA risk. 

Therefore, the primary objective of this investigation was to deter-
mine if residual proximal femur morphology was different between 
patients with TFA and an able-bodied control group using SSM and 
volumetric image data. Our secondary objective was to then relate 3D 
shape variability to common 2D radiographic measurements relevant to 

hip OA for both groups to increase clinical interpretation of our findings. 
We hypothesized that both the mean shape and the modes of shape 
variation would differ between groups, indicating that the chronically 
altered loading caused by long-term prosthesis use causes changes in 
bony hip morphology. 

2. Materials and methods 

2.1. Data acquisition, 3D surface reconstruction, preprocessing 

With Institutional Review Board approval, volumetric CT images of 
the residual limb were retrospectively identified from 31 patients with 
unilateral TFA (13F/18M; age: 51.7 ± 9.9 y/o; time since amputation: 
13.7 ± 12.4 years). Patients with bilateral amputation or previous pel-
vic/hip surgery, fracture, or infection were excluded. A control group 
was created by retrospectively identifying CT images of 29 able-bodied 
patients who visited the emergency room in our institution (13F/16M; 
age: 42.0 ± 12.27 years). Inclusion criteria for control images included: 
CT scan including proximal femur, no total hip arthroplasty, and no 
lower-limb amputation. 

The proximal femur (residual for TFA and right for control) was 
segmented from the volumetric CT image data using a previously vali-
dated method with semi-automatic thresholding (Amira v5.4, Thermo 
Scientific, Waltham, MA) (Fig. 1) [29]. Three-dimensional proximal 
femur reconstructions were triangulated from the segmentation and 
slightly smoothed with built-in Amira tools to remove segmentation 
artifacts. All geometries were aligned to a neutrally aligned master 
femur using an iterative closest point algorithm and rigidly scaled to 
minimize root mean square distance between proximal femur surfaces. 
The 3D surface reconstructions were then cropped at the superior aspect 
of the lesser trochanter in order to minimize shape variation caused by 
femoral shaft length [28]. Cropped proximal femurs were then re- 
aligned and rigidly scaled to the cropped neutral master femur. 

2.2. Statistical shape models 

Statistical shape models (SSMs) were created by placing particles of 
corresponding positions across each geometry for both the TFA and 
control group (Fig. 1). Specifically, 2048 particles were placed on each 
proximal femur surface with a correspondence method that automati-
cally performs particle initialization and then utilizes hierarchical 
splitting and variational formulation of ensemble entropy to optimize 
correspondence particle position (ShapeWorks) (Fig. 1) [34]. Placement 
of correspondence particles was optimized on each surface using a 
gradient descent energy function to create a compact and accurate dis-
tribution of samples in shape space, as previously done in other pop-
ulations [28–30,35–37]. Three SSMs were created: 1) a combined SSM, 
2) one for the TFA group, and 3) one for the control group. The com-
bined SSM was used to determine if the mean shape was different per 
group and independent SSMs were used to determine if the prevalence of 
specific type of morphological variability differed between groups, as 
previously used [28,29]. 

2.3. Digitally reconstructed radiographs 

Digitally reconstructed radiographs (DRR) of the proximal femur 
were created using a ray-casting technique from CT image data to 
emulate a 2D radiograph, as previously described [38–40]. Three 
separate DRR views were created, two commonly used in clinical 
radiographic settings (anteroposterior and frog-leg lateral view) and a 
top-down axial projection. Specifically, the three DRR views created 
were: 1) a standing anteroposterior (AP) view, with 15◦ internal hip 
rotation, 2) a simulated superoinferior view, and 3) a frog-leg lateral 
view (35◦ hip flexion and 60◦ hip external rotation) [41]. From each 
view, 2D radiographic measurements were made by a board-certified 
musculoskeletal radiologist (DG) (Fig. 2). Measurements made on the 
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AP view included femoral neck length, greater trochanter width, neck- 
shaft angle, and greater trochanter height (Fig. 2a). On the axial view, 
greater trochanter offset, greater trochanter angle, lesser trochanter 
angle, and greater trochanter-lesser trochanter angle were measured 
(Fig. 2b). Head-neck offset and α-angle were measured using the frog-leg 
lateral view (Fig. 2c). Further descriptions of each measure are detailed 
within the Supplemental Material. 

2.4. Statistical analysis 

Principal component analysis (PCA) was used to reduce the dimen-
sionality of the SSM by identifying primary, independent modes of 
variation [42]. PCA determines uncorrelated modes of variation by 
determining orthonormal eigenvectors and then ranks them according 
to the amount of variance explained based on the magnitude of the 
eigenvalue, which is considered an independent “mode” of variation, 
detailed mathematically in [43,44]. PCA was performed on each SSM to 
create distinct primary, independent modes of variation between 
groups. Parallel analysis was then used to quantify the statistically sig-
nificant number of shape modes for each SSM. In parallel analysis, PCA 
modes are considered nonspurious if their eigenvalues are greater than 
those of a respective random data set with the same number of variables 
and samples [45]. 

A Hotelling T2 test with false discovery rate reduction was used to 
compare the mean shape between groups with a null hypothesis that 
corresponding particles would be sampled from the same distribution 
using the combined SSM. PCA loading values, a scale factor which de-
scribes how the individual shape varies from the mean shape within a 
specific shape mode [46], from the combined SSM were compared 
across groups using two-sample t-tests. 

Two-dimensional radiographic measurements were compared across 
groups using two-sample t-tests. Additionally, the relation between SSM 
modes of variation and radiographic measures was determined by 
correlating the PCA loading value from the distinct group SSMs to each 
radiographic measure using Pearson’s correlation coefficient (r). 

Absolute value of correlation coefficients were categorized as uncorre-
lated (r < 0.25), fairly correlated (0.25 ≤ |r| < 0.50), moderately 
correlated (0.5 ≤ |r| < 0.75), or highly correlated (0.75 ≤ |r| ≤ 1.0) and 
95 % confidence intervals were calculated [47]. Confidence intervals 
that did not cross zero were considered statistically significant [48]. The 
level of significance was set at 0.05 for all inferential statistics. 

3. Results 

3.1. Statistical shape model 

Significant morphological differences were found between the con-
trol and TFA mean shapes (Fig. 3). Differences occurred along the 
inferomedial portion of the femoral neck as well as the superomedial 
and anteromedial region of the femoral head, indicating greater femoral 
head asphericity within the TFA group (Fig. 3). 

Parallel analysis determined the first five modes (82.2 % total vari-
ance) were significant (i.e., non-spurious) for the TFA group while the 
first four modes (77.9 % total variance) were significant for the control 
group (Fig. 4). 

No significant differences were found between the PCA loading 
values between groups from the combined SSM. However, when 
assessed independently, differences emerged between groups that indi-
cate difference in prominence of shape variability type (i.e., order of 
mode) between groups. Mode 1 accounted for 32.69 % and 38.02 % of 
the variance for TFA and control group, respectively. For both groups, 
despite cropping and rigid scaling, mode 1 described size variability, 
most noticeably in the AP view (Fig. 5). Additionally, mode 1 described 
change in greater trochanteric shape and asphericity of the femoral 
head, yet the magnitude of variation was more pronounced in the TFA 
group (Fig. 5). Mode 2 accounted for 25.57 % and 22.33 % of the 
variance for TFA and control group, respectively. In mode 2, the TFA 
group had increased head-neck offset variation and increased variation 
of the greater trochanter width while the control group had increased 
variation in greater trochanteric height (Fig. 5). Mode 3 accounted for 

Fig. 1. Statistical shape modeling (SSM) workflow. CTs were used to create 3D proximal femur reconstructions and 2048 correspondence particles are placed on 
each surface. 
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Fig. 2. Digitally reconstructed radiographic views and measurements. Three radiographic views, a) anteroposterior, b) axial, and c) frog-leg lateral, were digitally 
reconstructed from CT and the 2D measures were made on corresponding views. 

Fig. 3. Mean shape differences. A) Mean proximal femur shape from the SSM for the TFA group (blue) imposed on the control group mean shape (red). B) The color 
map is given on the mean proximal femur shape of the control group and displays group-wise p-values for differences between the mean TFA and control shapes, with 
areas in blue indicating statistically different shapes (p < 0.05). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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13.16 % and 10.67 % of the variance for TFA and control respectively. 
For both groups, mode 3 described femoral neck shape (Fig. 5). Mode 4 
accounted for 6.12 % and 6.87 % for TFA and control respectively. In the 
TFA group, mode 4 described greater trochanteric torsion while in the 
control group, mode 4 described greater trochanter height (i.e., greater 
trochanteric superior offset) (Fig. 5). Mode 5 accounted for 4.69 % of the 
variance within the TFA group, which described variation in the greater 
trochanter as well as concavity of the femoral neck at the head-neck 
junction, and was not statistically significant for the control group 
(Fig. 5). Three-dimensional videos displaying shape variability for all 
non-spurious modes for both groups are included in the Supplemental 
Material. 

3.2. Radiographic measurements from DRR 

The neck-shaft angle was smaller in the TFA group (129.2 ± 5.2◦) 
compared to the control group (132.7 ± 4.0◦) (p = 0.006). The greater 
trochanter height was larger in the TFA group (7.8 ± 1.9 mm) compared 
to the control group (6.7 ± 2.1 mm) (p = 0.044). No other differences 
were found between groups in 2D measurements (Table 1). 

3.3. SSM and DRR correlation 

For control group, mode 1 was fairly correlated to the novel greater 
trochanter-lesser trochanter (GT-LT) angle (r = − 0.42, p = 0.02) 
(Table 2). For the TFA group, mode 2 was moderately correlated to both 
head-neck offset (r = − 0.54, p < 0.01) and α-angle (r = 0.63, p < 0.01) 
(Table 2). For the control group, mode 2 was fairly correlated to greater 
trochanter height (r = − 0.42, p = 0.02). For both groups, mode 3 was 
fairly correlated to femoral neck length for the TFA and control group (r 
= 0.40, p = 0.02 and r = 0.49, p < 0.01 respectively). For the control 
group, mode 3 was also moderately correlated to 2D measurements of 
greater trochanter width (r = 0.66, p < 0.01), and fairly correlated to 
both greater trochanter medial offset (r = 0.48, p < 0.01) and greater 
trochanter angle (r = − 0.42, p = 0.02). For the TFA group, mode 4 was 
highly correlated with a 2D measurement describing the greater 
trochanter torsion relative to the femoral neck axis in the TFA group (r 
= − 0.78, p < 0.01) (Fig. 4) while, for the control group, mode 4 was 
moderately correlated to greater trochanter height (r = − 0.62, p < 0.01) 
and fairly correlated to GT-LT angle (r = − 0.40, p = 0.03). Finally, mode 
5 was fairly correlated to the 2D measurement for head neck shaft angle 
in the TFA group (r = − 0.46, p < 0.01). 

4. Discussion 

The objective of this investigation was to determine how amputated 
limb proximal femur morphology in patients with TFA differed from 
able-bodied controls. Our results indicated that the amputated limb 
proximal femur in patients with TFA had greater variability in the shape 
of the femoral head and greater trochanter compared to controls. 
Moreover, when compared to an able-bodied control group, the mean 
morphology of the femurs was different. We attribute the differences in 
morphological variability in the TFA group to well-documented habitual 
asymmetric limb-loading patterns [12,14–16,25,49–51]. Furthermore, 
as radiographs remain a common tool used in clinical orthopedic set-
tings due to the ease and cost (healthcare and computational) [43], our 
second objective was to relate SSM results to common radiographic 
measurements to objectively translate findings into clinical context 
[44]. We found significant correlations between 3D shape variability 
and 2D radiographic measures associated with femoral head asphericity 
and greater trochanteric shape in the TFA group. These results highlight 
the importance of quantifying 3D shape variation to better the under-
standing of limb-dependent OA etiology in this at-risk population. 

Our results indicated that patients with TFA have greater variability 
in femoral head shape in the amputated limb compared to controls. 
Clinically, it is well established that changes in femoral head asphericity 
are an etiological factor for OA development as it can pathologically 
alter intra-articular mechanics [52], commonly observed in patients 
with femoroacetabular impingement [53]. Although there is no clear 
underlying mechanistic understanding as to why femoral head aspher-
icity occurs in the able-bodied population, we primarily attribute 
femoral head asphericity in the TFA group to chronically altered loading 
applied to the hip joint. As the force transmission is altered between the 
ground and residual limb within a traditional socket-suspended pros-
thesis [12,14–16,49–51], the load applied to residual femur is altered 
[54], and thus the load to the hip joint is altered [55]. This altered load 
transmission to the hip can be exacerbated by malalignment of the re-
sidual femur within the socket, most commonly abduction and external 
rotation of the residual femur, commonly observed in patients with TFA. 
This is caused by antagonistic muscle imbalance as the adductor 
musculature are altered during surgery while the abductors are pre-
served [56]. Over time, this malalignment will result in lower physio-
logical function of the abductors, loss of muscle force, and reduction in 
frontal plane hip joint moment, all of which will alter hip joint loading 
[57]. Furthermore, compensatory movement patterns commonly adop-
ted by patients with TFA to aid in stability and propulsion in the absence 
of the ankle and knee joints, such as compensated Trendelenburg and 
increased hip flexion [58–60], also contribute to altered loading within 
the hip joint. Collectively, these factors that all contribute to altered hip 
joint loading alter the mechanical stimulus on the femoral head, which 
causes adaptation in the bone microstructure and eventually macro-
structure (i.e., shape). 

Patients with TFA also demonstrated greater variability in greater 
trochanteric torsion compared to controls. This is of clinical relevance as 
it directly impacts paths of the primary hip abductors (e.g., gluteus 
medius, gluteus minimus) as the greater trochanter is the insertion site 
for these muscles. Because these muscles are primary contributors to hip 
joint loading [23], these results may suggest that geometric changes to 
the muscle path in addition to strength changes play a role in altered 
joint loading in this population. For example, it has previously been 
shown that changes to abductor muscle line of action and moment arm 
impacts hip joint loading [50]. Although the abductors are not directly 
affected by transfemoral amputation, prior evidence has shown that 
abductor muscle weakness is greater in the amputated limb in patients 
with TFA compared to the intact limb or controls [49,58]. Furthermore, 
abductor weakness has also been linked to the development of OA [61], 
as hip abductor weakness causes increased hip joint loading [62]. 
Therefore, because the abductors are critical for limb stability within the 
socket [58,63] and healthy joint loading [23], abductor strengthening 

Fig. 4. Resultant cumulative variance for all SSMs. The first nine modes ac-
count for 90.9 % of the variance within the control group, 91.0 % of the 
variance within the TFA group. The dotted line indicates 90 % VAF, commonly 
reported for SSMs [28,30]. 
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remains a primary focus within rehabilitation after limb amputation 
[64]. However, these results may suggest that abductor strengthening 
alone may not restore force production as there may be insurmountable 
mechanical disadvantages due to altered proximal femur morphology. 

The current results highlighted unique complex morphological 

differences in patients with TFA, which were not distinguishable from 
2D radiographic measurements alone. This was evidenced by lack of 
significant differences between groups across 2D radiographic measures 
despite several 3D shape differences between mean shapes. However, 
because 2D measures of proximal femur morphology remain the clinical 

Fig. 5. Significant shape modes for the TFA and control group. The color map femur displays distance from the shape mode to the mean shape for both control and 
TFA. Mode five shape variation is not included for the control group as it was spurious. Areas of darker red or blue indicate areas which have varied more from the 
means shape. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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standard and interpretation of 3D SSM results is relatively subjective, 
correlation of 3D shape modes to 2D radiographic measures is necessary 
to allow for more objective interpretation of 3D shape results in a clin-
ically translatable manner. 

This study possessed several limitations. First, due to the retrospec-
tive nature of the design, OA or race were not screened for, which may 
impact the proximal femur shape distribution [35,65–69]. Second, there 
are inevitable processing errors due to image segmentation and geom-
etry alignment. However, segmentations were smoothed to remove 
artifact and aligned via an automated algorithm to reduce root mean 
square error (relative RMSE <0.0001). Therefore, we interpret any er-
rors associated with processing to be negligible. Third, time since 
amputation was markedly variable within the TFA group. The inclusion 
of patients with more short-term prosthesis use would result in the in-
clusion of femurs with overall less cumulative altered loading compared 
to those with long-term prosthesis use. However, we expect that this 
would only serve to minimize the effect of transfemoral prosthesis use on 
proximal femur shape. Because we found differences in morphology 
between groups, we do not expect that time since amputation played a 
significant role on our results. Lastly, due to the novelty of this patient 
population, the sample size is relatively small; though the sample size is 
comparable to previous studies which have utilized SSM [28,29]. Future 
work will aim to expand the image library for patients with TFA. 

In summary, we found that the mean proximal femur shape and 
shape variation were different in patients with TFA compared to able- 
bodied controls. These differences indicate that altered loading on the 

Table 1 
Radiographic measurements made from digitally reconstructed radiographs. 
Mean ± 1 S.D. 2D radiographic measures of the proximal femur.  

View Measurement TFA Control p- 
value 

Anteroposterior Femoral neck length 50.3 ± 5.0 
mm 

48.8 ± 5.6 
mm 

0.26 

Greater trochanter 
width 

22.9 ± 3.3 
mm 

21.9 ± 2.9 
mm 

0.22 

Neck shaft angle 129.2 ±
5.2◦

132.7 ±
4.0◦

<0.01 

Greater trochanter 
height 

7.8 ± 1.9 
mm 

6.7 ± 2.1 
mm 

0.04 

Axial Greater trochanter 
width 

27.1 ± 4.5 
mm 

27.0 ± 3.9 
mm 

0.94 

Greater trochanter 
offset 

4.1 ± 1.7 
mm 

3.8 ± 1.5 
mm 

0.52 

Greater trochanter 
(GT) angle 

58.3 ±
3.6◦

58.4 ± 2.6◦ 0.96 

Lesser trochanter (LT) 
angle 

21.7 ±
6.8◦

21.1 ± 4.6◦ 0.67 

GT-LT angle 36.6 ±
6.8◦

37.3 ± 4.5◦ 0.64 

Frog-leg Head neck offset 6.8 ± 1.4 
mm 

7.1 ± 1.9 
mm 

0.57 

α-angle 55.0 ±
11.0◦

54.5 ± 7.3◦ 0.86  

Table 2 
Correlations between statistical shape model and digitally reconstructed radiographs. Pearson’s correlation coefficients between mode and 2D radiographic mea-
surement for control and TFA group including femoral neck (FN) length, head neck (HN) offset, and novel greater trochanter (GT) and lesser trochanter (LT) mea-
surements, with 95 % confidence intervals given below. Correlations given have p < 0.05 and are bolded, where superscript symbols indicate correlation (+fairly 
correlated (0.25 ≤ |r| < 0.50), #moderately correlated (0.5 ≤ |r| < 0.75), *highly correlated (0.75 ≤ |r| ≤ 1.0)). Mode five correlations were not included for the 
control group as it was spurious.   

Mode 1: 
GT variability/scaling 
General scaling 

Mode 2: 
Head asphericity 
GT scaling/width 

Mode 3: 
Neck length 
GT width 

Mode 4: 
GT torsion 
GT height 

Mode 5: 
GT offset 
Neck 
concavity 

View 2D 
Measure 

Control TFA Control TFA Control TFA Control TFA TFA 

AP FN Length − 0.18 
(− 0.52, 0.20) 

− 0.20 
(− 0.52, 
0.17) 

0.09 
(− 0.29, 0.44) 

0.16 
(− 0.20, 0.49) 

0.49þ

(0.15, 0.72) 
0.40þ

(0.06, 0.66) 
− 0.01 
(− 0.38, 0.36) 

− 0.29 
(− 0.58, 0.08) 

− 0.33 
(− 0.61, 0.03) 

GT Width 0.20 
(− 0.18, 053) 

0.03 
(− 0.33, 
0.38) 

− 0.03 
(− 0.39, 0.34) 

0.53# 

(0.21, 0.74) 
0.63# 

(0.35, 0.81) 
0.24 
(− 0.13, 
0.55) 

0.10 
(− 0.28, 0.45) 

0.37þ

(0.01, 0.64) 
− 0.35 
(− 0.63, 0.01) 

NS Angle 0.07 
(− 0.30, 0.43) 

0.11 
(− 0.25, 
0.45) 

0.31 
(− 0.06, 0.61) 

0.17 
(− 0.20, 0.49) 

− 0.04 
(− 0.40, 0.33) 

− 0.14 
(− 0.47, 
0.22) 

− 0.11 
(− 0.46, 0.27) 

0.15 
(− 0.22, 0.48) 

¡0.46þ

(− 0.70, 
− 0.13) 

GT Height 0.17 
(− 0.20, 0.51) 

0.26 
(− 0.11, 
0.56) 

¡0.42þ

(− 0.68, 
− 0.06) 

0.10 
(− 0.26, 0.44) 

− 0.08 
(− 0.43, 0.29) 

0.02 
(− 0.34, 
0.37) 

¡0.62# 

(− 0.81, 
− 0.33) 

0.45þ

(0.11, 0.69) 
0.11 
(− 0.26, 0.45) 

Axial GT Width 0.25 
(− 0.13, 0.56) 

0.21 
(− 0.16, 
0.52) 

− 0.04 
(− 0.40, 0.33) 

0.48þ

(0.16, 0.72) 
0.66# 

(0.39, 0.83) 
0.22 
(− 0.15, 
0.53) 

0.18 
(− 0.20, 0.51) 

0.43þ

(0.09, 0.68) 
¡0.43þ

(− 0.68, 
− 0.09) 

GT Offset 0.33 
(− 0.05, 0.62) 

0.32 
(− 0.03, 
0.61) 

0.04 
(− 0.33, 0.40) 

0.24 
(− 0.12, 0.55) 

0.48þ

(0.14, 0.72) 
0.02 
(− 0.33, 
0.38) 

0.02 
(− 0.35, 0.38) 

0.27 
(− 0.10, 0.57) 

¡0.58# 

(− 0.77, 
− 0.28) 

GT Angle − 0.24 
(− 0.56, 0.14) 

− 0.11 
(− 0.45, 
0.25) 

0.07 
(− 0.31, 0.42) 

− 0.15 
(− 0.48, 0.22) 

¡0.42þ

(− 0.68, 
− 0.06) 

0.00 
(− 0.36, 
0.35) 

− 0.18 
(− 0.51, 0.20) 

¡0.78* 
(− 0.89, 
− 0.58) 

0.11 
(− 0.25, 0.45) 

LT Angle 0.28 
(− 0.10, 0.59) 

0.16 
(− 0.20, 
0.49) 

− 0.10 
(− 0.45, 0.27) 

− 0.33 
(− 0.61, 0.03) 

0.07 
(− 0.30, 0.43) 

0.31 
(− 0.05, 
0.60) 

0.29 
(− 0.09, 0.59) 

− 0.21 
(− 0.53, 0.16) 

0.58# 

(0.29, − 0.28) 

GT-LT 
Angle 

¡0.43þ

(− 0.69, 
− 0.07) 

− 0.22 
(− 0.54, 
0.14) 

0.15 
(− 0.23, 0.49) 

0.25 
(− 0.11, 0.56) 

− 0.32 
(− 0.61, 0.06) 

− 0.32 
(− 0.60, 
0.04) 

¡0.40þ

(− 0.67, 
− 0.04) 

− 0.20 
(− 0.51, 0.17) 

¡0.53# 

(− 0.74, 
− 0.21) 

Frog- 
leg 

HN Offset − 0.24 
(− 0.56, 0.13) 

− 0.17 
(− 0.49, 
0.20) 

0.34 
(− 0.03, 0.63) 

¡0.54# 

(− 0.75, 
− 0.23) 

0.23 
(− 0.15, 0.55) 

0.00 
(− 0.35, 
0.36) 

− 0.19 
(− 0.52, 0.19) 

− 0.16 
(− 0.49, 0.20) 

0.14 
(− 0.23, 0.47) 

α-angle 0.32 
(− 0.05, 0.62) 

− 0.08 
(− 0.42, 
0.28) 

− 0.35 
(− 0.64, 0.02) 

0.63# 

(0.36, 0.80) 
− 0.10 
(− 0.45, 0.28) 

0.04 
(− 0.32, 
0.38) 

0.04 
(− 0.33, 0.40) 

− 0.24 
(− 0.55, 0.13) 

¡0.38þ

(− 0.65, 
− 0.03)  
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amputated limb causes bony morphologic variability of the hip joint, 
which is corroborated by previous studies demonstrating bony 
morphological changes due to altered loading [70–72]. These bony 
morphological changes, including asphericity of the femoral head, can 
contribute to the development and progression of OA. Thus, our findings 
indicate that this population would benefit from prostheses alternatives 
which improve load transmission between the prosthesis and residual 
limb (e.g., osseointegrated prostheses) [73]. 

5. Conclusion 

To our knowledge, this is the first study to demonstrate that long- 
term prosthesis use in patients with TFA changes the bony 
morphology of the hip joint. Better understanding of the effect of long- 
term prosthesis use on the mechanical and morphological environment 
of the hip may reveal factors contributing to OA development, thus 
improving future prosthetic design and targeted interventions. Future 
work will involve investigation of bilateral differences in proximal 
femur bony morphology and bilateral muscular differences (e.g., 
moment arms, volume, composition). 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bone.2023.116752. 
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