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A B S T R A C T

Rationale and Objectives: Accurate assessment of hip morphology is crucial for the diagnosis and management of
hip pathologies. Traditional manual measurements are prone to mistakes and inter- and intra-reader variability.
Artificial intelligence (AI) could mitigate such issues by providing accurate and reproducible measurements. The
aim of this study was to compare the performance of BoneMetrics (Gleamer, Paris, France) in measuring pelvic
and hip parameters on anteroposterior (AP) and false profile radiographs to expert manual measurements.
Materials and Methods: This retrospective study included AP and false profile pelvic radiographs collected from
private practices in France. Pelvic and hip measurements included the femoral neck shaft angle, lateral center
edge angle, acetabular roof angle, pelvic obliquity, and vertical center anterior angle. AI measurements were
compared to a ground truth established by two expert radiologists. Performance metrics included mean absolute
error (MAE), Bland-Altman analysis, and intraclass correlation coefficients (ICC).
Results: AI measurements were performed on AP views from 88 patients and on false profile views from 60
patients. They demonstrated high accuracy, with MAE values inferior to 0.5 mm for pelvic obliquity and inferior
to 4.2◦ for all pelvic angles on both views. ICC values indicated good to excellent agreement between AI mea-
surements and the ground truth (0.78–0.99). Notably, no significant differences were found in AI measurement
accuracy between patients with normal and abnormal acetabular coverage.
Conclusion: The application of AI in measuring pelvic and hip parameters on AP and false profile radiographs
demonstrates promising outcomes. The results reveal that these AI-powered measurements provide accurate
estimations and show strong agreement with expert manual measurements. Ultimately, the use of AI has the
potential to enhance the reproducibility of measurements as part of comprehensive hip assessments, thereby
improving diagnostic accuracy.

1. Introduction

The hip is a complex three-dimensional joint whose primary weight-
bearing and load distribution functions allow for the body’s stability and
mobility. Radiographic examination is the gold standard for assessing
the anatomical morphology of the joint which is required in both pre-
and post-operative monitoring of hip surgeries, as well as for diagnosis

of hip pathology [1]. Timely detection of structural hip disorders is of
paramount importance in the young adult population for effective pain
management and the formulation of adequate treatment strategies [2].
For example, conditions characterized by abnormal acetabular rim
loading, such as hip dysplasia and femoroacetabular impingement, can
precipitate chondrolabral damage and increase the risk of early osteo-
arthritis if left untreated [3–7].
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Conventional pelvic radiographs are the preferred imaging modality
for visualizing the relationship between the pelvis and the proximal
femur. This is primarily achieved using standing anteroposterior (AP)
views and Lequesne’s false profile views [1,8], hereafter referred to as
false profile radiographs. Multiple radiographic measurements have
been used as indicators of abnormal hip joint morphology. The most
frequently examined are the lateral center edge angle (LCEA) [9,10],
femoral neck shaft angle (NSA) [11], acetabular roof angle or Tönnis
angle [12,13], and pelvic obliquity [14] on AP radiographs. Recent
advancements highlight the importance of integrating measurements
from false profile pelvic views, such as the vertical center anterior angle
(VCA) [15], to achieve a more comprehensive evaluation of femoral
head coverage [16].

The accurate placement of key points is critical to obtain hip mea-
surements and to diagnose structural hip abnormalities in a reproducible
and standardized manner. However, manual measurements are prone to
error, as demonstrated by the substantial inter-reader variability re-
ported in the literature [17,18]. Reliability ranges from poor to mod-
erate with the highest correlation coefficients typically seen in
measurements of the LCEA and the lowest in measurements of the VCA.
Furthermore, measuring hip parameters is a time-consuming and labo-
rious task for clinicians, adding to the complexity of diagnosing hip
abnormalities [19].

Given the limitations associated with manual readings, artificial in-
telligence (AI) emerges as a robust alternative. The implementation of AI
in various aspects of pelvic and hip health has already demonstrated its
efficacy in diagnosing developmental dysplasia of the hip in children
[20], detecting hip fractures [21–23], and assessing hip osteoarthritis
[24]. Data on AI-powered measurements are still sparse, two commer-
cial AI software solutions have revealed promising results in automating
measurements on pelvic radiographs [19,25–27]. Moreover, the effec-
tiveness of AI in analyzing views other than the standard AP view re-
mains unexplored.

This study aimed to assess the performance of BoneMetrics, a CE-
certified commercial AI solution (Gleamer, Paris, France), in
measuring pelvic and hip parameters on AP and false profile views on a
real-world consecutive dataset. The primary objectives were to compare
the precision of AI-powered measurements with a ground truth estab-
lished by two senior musculoskeletal radiologists and to evaluate inter-
and intra-reader variability. The secondary objectives of this study were
three-fold: (1) to evaluate the AI’s performance on AP views and,
notably, on false profile views, which have never been investigated in
prior research; (2) to analyze measurement variability across different
degrees of acetabular coverage; and (3) to broaden the scope of evalu-
ation for BoneMetrics (Gleamer, Paris) to include additional body parts,
specifically the pelvic and hip regions.

2. Materials and methods

2.1. Study design

The present study evaluated the performance of AI-driven automated
pelvic and hipmeasurements against a reference standard established by
two expert radiologists, referred to as the ground truth. Acquisition of
consecutive patient data was conducted retrospectively from three
participating institutions. Each institution informed patients about the
use of their anonymized data for research purposes and provided explicit
instructions on how to decline participation.

2.2. Study population

Consecutive pelvic radiographs acquired between January 2015 and
February 2018 were obtained from three private practices in France. A
custom-built natural language processing (NLP) algorithm was used to
search radiologists’ reports within these databases for AP and false
profile views acquired to measure pelvic and hip parameters. The NLP

was designed to detect specific textual patterns related to measurements
on weight-bearing pelvic radiographs using tailored regular expressions
related to pelvic and hip measurements (e.g., “measurement(s)”, “angle
(s)”, “degree(s)”, “lequesne”, “false profile”). Data on patient sex and age
were extracted from the DICOM tags. Inclusion criteria were AP and
false profile pelvic radiographs involving patients over the age of 10
years old. Radiographs were excluded based on the following predefined
criteria: image not adhering to quality standards, incorrect views, non-
weight-bearing patient, measurements visible on the image, and rejec-
tion by the AI algorithm. In addition, any images showing hip prostheses
were discarded as the AI software does not generate measurements
under such conditions.

2.3. Radiologists’ manual measurements

To establish the ground truth, a two-phase process was employed.
Initially, an expert musculoskeletal radiologist with 35 years of experi-
ence (JDL) reviewed the radiographs, excluding those that did not meet
the predefined criteria, and placed the key points on the accepted im-
ages. In the second phase, these radiographs were independently an-
notated by another musculoskeletal radiologist with 7 years of
experience (AT). The ground truth was defined as the mean of their
measurements, in line with similar studies [28–30]. Annotation was
performed on Kili, a dedicated web-based platform equipped with tools
to facilitate precise labeling such as zoom, pan, contrast adjustment, and
a circle drawer. The labeling task involved positioning key points on
each radiograph, which were subsequently used to compute the pelvic
and hip parameters. Specifically, on AP pelvic radiographs, the anno-
tators identified the center of the femoral head, the center of the femoral
neck, the center of the femoral proximal diaphysis, the center of the
femoral distal diaphysis, the top of the acetabular roof, the lateral edge
of the acetabular roof, and the medial edge of the acetabular roof
(Fig. A.1). On false profile views, key points were placed at the center of
the femoral head and at the anterior-most aspect of the acetabulum. To
assess intra-reader reliability, one of the two annotators who established
the ground truth re-annotated random subsamples of 28 AP and 29 false
profile pelvic radiographs after a 1-month washout period. Furthermore,
inter-reader reliability was evaluated by having two other radiologists
with 13 and 12 years of experience label these subsamples (NER, LL).

2.4. Anatomic definitions of pelvic and hip parameters

Measurements of interest on AP pelvic radiographs were the femoral
NSA or caput-collum-diaphyseal angle, the LCEA, the acetabular roof
angle, and the pelvic obliquity (Fig. A.1) [19,25]. For all measurements
but pelvic obliquity, the measurements were taken on the left and right
sides independently. Hip deformities such as coxa vara and coxa valga
were defined as a femoral NSA < 120◦ and a femoral NSA > 140◦,
respectively. On AP pelvic radiographs, normal coverage was defined as
a LCEA between 21◦ and 33◦, overcoverage as a LCEA > 33◦, and
undercoverage as a LCEA < 21◦ [26]. On false profile pelvic radio-
graphs, normal coverage was defined as having a VCA between 0◦ and
10◦, overcoverage as a VCA> 10◦ and undercoverage as a VCA< 0◦ [1].

2.5. AI software

Automated analyses were performed by the AI-powered software
BoneMetrics (version 2.3.1, Gleamer, Paris, France). BoneMetrics is a
CE-certified image processing tool that automates musculoskeletal
measurements on conventional radiographs and EOS images. The al-
gorithm was trained on over 5,000 images collected from more than 20
medical centers across Europe. The images were annotated by ten
radiographers and radiologists who were distinct from the readers
involved in the present study. To ensure the quality of the training data,
an expert musculoskeletal radiologist with 14 years of experience
reviewed all manual annotations.
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BoneMetrics relies on multiple convolutional neural networks and
leverages diverse architectures such as a top-down model implemented
with detectron2, a lightweight HRNet (litehrnet), and a bottom-up
approach. The AI first executes a key point detection task, wherein it
identifies anatomical landmarks as points of interest and assigns a
confidence score ranging from 0 to 100 to each detected point. It then
uses the points that exceed a predefined threshold of 50 to compute
angles and lengths according to established clinical measurement pro-
tocols. Key points scoring below this threshold are discarded, preventing
any comparison between the AI and the ground truth for the corre-
sponding measurement.

2.6. Statistical analyses

The sample size for this study was determined based on calculations
from a similar study [27]. The authors computed the sample sizes
required to evaluate automated measurements against manual expert
measurements of the pelvis and the hip, using Bland-Altman analyses. At
a significance level of 5 % and a power of 80 %, they established the
required sample size to be 176 individual hips.

Left and right hips were considered independently for all analyses
except for pelvic obliquity which yields a unique value per patient. Root
mean square error (RMSE) and mean absolute error (MAE) were
computed for each pelvic or hip parameter to assess the performance of
the AI software. Bootstrapped 95 % confidence intervals (n = 1000
samples) were calculated, and patient resampling was applied to all
parameters but pelvic obliquity in order to account for data de-
pendencies. Dependencies within the dataset relate to left and right
measurements from a single radiograph being considered indepen-
dently. The MAE was also computed according to age, sex, and the de-
gree of acetabular coverage. Differences between patients over and
under 60 years old, male and female patients, and normal and abnormal
acetabular coverage were assessed using the Mann-Whitney U test for
pelvic obliquity and linear mixed models with patient as a random
intercept for all other parameters. Bonferroni correction for multiple
comparisons was applied, setting statistical significance at p = 0.01 (=
0.05 / 5 measurements).

Bland-Altman analyses were conducted to assess the agreement be-
tween the AI algorithm and the ground truth. While the conventional
Bland-Altman method was employed for pelvic obliquity, a mixed ef-
fects approach was applied to all other parameters to account for data
dependencies [31]. A mixed effects regression model was therefore
implemented to calculate limits of agreement, and it modeled patient as
a random intercept and side of the measurement (left, right) as a fixed
effect. To further explore the performance of the AI software in com-
parison with the ground truth, intraclass correlation coefficients (ICC)
between the two were computed based on a two-way mixed effects
model with absolute agreement for multiple raters. The ICC values
contrasting the AI with the ground truth were compared statistically to
the ICC between the two radiologists who established the ground truth
with a z-test using Fisher’s Z transformation.

To address the question of inter-reader reliability, there were the two
expert radiologists who established the ground truth and two other in-
dependent radiologists who annotated a subsample of the dataset. ICC
values between all four readers were calculated based on two-way
random effects models with absolute agreement for multiple raters.
Moreover, the MAE of each of the two independent radiologists was
computed for each pelvic and hip parameter. It was compared to the
MAE of the AI using Mann-Whitney U tests. Bonferroni correction for
multiple comparisons was applied, setting statistical significance at p =

0.01 (= 0.05 / 5 measurements). The intra-reader reliability was
calculated on a subset of radiographs using a two-way mixed effects
model with absolute agreement for a single rater [32]. ICC values were
interpreted as follows: poor reliability, ICC < 0.5; moderate reliability,
0.5≤ ICC< 0.75; good reliability, 0.75≤ ICC< 0.9; excellent reliability,
ICC ≥ 0.9 [32]. Statistical analyses were conducted using R (v4.3.2) in

RStudio (v2023.09.1 + 494) with the “irr”, “nlme”, “boot”, and “psych”
packages. This study received approval from the Institutional Review
Board (ethics approval number CRM-2209–306).

3. Results

3.1. Dataset description

Overall, 88 AP pelvic radiographs (176 individual hips) from 88
patients and 80 false profile pelvic radiographs (88 individual hips) from
another 60 patients were included in the final analysis (Table 1). The
discrepancy between the number of hips and the number of false profile
views can be explained by the combination of both left and right false
profile views into single images for 8 patients. Following the first phase
of establishing the ground truth, 21 AP pelvic radiographs (18.4 %) and
27 false profile pelvic radiographs (24.8 %) were excluded. In total, 10
radiographs (4.5 %) were excluded due to visible measurements, 11
(4.9 %) due to poor quality, 25 (11.2 %) due to a wrong pelvic view, 1
(0.4 %) due to the presence of a prosthesis and 1 (0.4 %) due to the
patient being non-weight-bearing (Fig. 1). A further 5 AP (2.2 %) and
two false profile (0.9 %) pelvic radiographs were discarded as the AI
algorithm didn’t yield any measurement. The absence of measurements
from the AI was due to the presence of hip implants, incorrect view
acquisition, or poor image quality.

Patient data were sourced from three centers, with 44 patients from
Center 1 (29.7 %), 54 from Center 2 (36.5 %), and 50 from Center 3
(33.8 %). Additionally, the radiographs were obtained from 9 different
manufacturers. In the final dataset, there were 60 women (68.2 %) and
28 men (31.8 %) with AP pelvic radiographs, and their mean age was
59.0 years (± 17 years). Likewise, there were 50 women and 30 men
with false profile pelvic radiographs, and their mean age was 63.9 years
(± 14.3 years). Ages ranged from 14 to 90 years. The pelvic radiographs
were acquired for various clinical indications, including pain, trauma,
post-operative follow-up and routine monitoring (Table 1).

Hips with different degrees of acetabular coverage were included.
Among both AP and false profile pelvic radiographs, there were 10
images of patients with acetabular undercoverage (6.0 %), 94 images of

Table 1
Demographic and clinical characteristics of patients.

Anteroposterior pelvic
radiographs

False profile pelvic
radiographs

Sample size (n) 88 80
Unique patients (n) 88 60
Patient age
Mean ± SD (y) 61.9 ± 16.0 63.9 ± 14.3
Range (y) [14.0 – 90.0] [30.0 – 90.0]
Sex
Women (%) 60 (68.2 %) 50 (62.5 %)
Men (%) 28 (31.8 %) 30 (37.5 %)
Hip alignment
Femoral NSA < 120◦

(%)
6 (6.8 %) 

Femoral NSA [120◦ −

130◦[ (%)
54 (61.4 %) 

Femoral NSA [130◦ −

140◦[ (%)
27 (30.7 %) 

Femoral NSA ≥ 140◦

(%)
1 (1.1 %) 

Acetabular coverage
Under coverage (%) 3 (3.4 %) 7 (8.75 %)
Normal coverage (%) 36 (40.9 %) 58 (72.5 %)
Over coverage (%) 49 (55.7 %) 15 (18.75 %)
Clinical indication
Pain (%) 29 (33.0 %) 33 (55.0 %)
Trauma (%) 17 (19.3 %) 15 (25.0 %)
Post-operative (%) 3 (3.4 %) 0 (0.0 %)
Routine monitoring
(%)

4 (4.5 %) 0 (0.0 %)

Other (%) 35 (39.8 %) 12 (20.0 %)
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patients with normal coverage (56.0 %) and 64 images of patients with
overcoverage (38.0 %). The majority of radiographs were from patients
who did not exhibit hip deformities (95.8 %). There was, however, some
variability, with 54 patients exhibiting femoral NSA values between
120◦ and 130◦ and 27 patients displaying values between 130◦ and 140◦.
Six patients could be classified as having coxa vara (6.8 %) and one as
having coxa valga (1.1 %).

3.2. AI software measurement performance

In total, 32 measurements were missing and thus not considered in
the analyses. Specifically, 7 hips lacked measurements for the femoral
NSA (3.9 %), 6 hips for the LCEA (3.4 %), 10 hips for the acetabular roof
angle (5.6 %), and 10 hips for pelvic obliquity (5.6 %). Measurements
for the VCA on false profile pelvic radiographs were successfully ob-
tained for all 88 hips (Table A.1). Missing measurements were primarily
due to the presence of a hip prosthesis, as the AI does not generate re-
sults in such instances. In a few cases, the absence of pixel spacing in-
formation in the DICOM tags prevented the algorithm from processing
pelvic obliquity.

First, the RMSE and MAE values for each pelvic and hip parameter
were examined (Table 2). Notably, the acetabular roof angle on AP

pelvic radiographs demonstrated the lowest errors with a RMSE of 2.40◦

(95 % CI [2.16, 2.62]) and a MAE of 1.79◦ (95 % CI [1.60, 1.97]).
Discrepancies between the AI software and the ground truth were also
minimal for pelvic obliquity with a RMSE of 0.57 mm (95 % CI [0.46,
0.64]) and a MAE of 0.42 mm (95 % CI [0.36, 0.49]). In contrast, the
largest discrepancies were noted for the VCA on false profile pelvic ra-
diographs with a RMSE of 5.61◦ (95 % CI [4.60, 6.40]) and a MAE of
4.16◦ (95 % CI [3.60, 4.73]).

Second, Bland-Altman analyses were conducted, and results are
summarized in Fig. 2. To further evaluate the deviation of the AI

Fig. 1. Flowchart outlining the step-by-step process used to constitute the final dataset.

Table 2
Performance assessment of the AI algorithm on pelvic radiographs.

Angles and lengths N RMSE [95 % CI] MAE [95 % CI]

Anteroposterior radiographs
Femoral NSA (◦) 169 3.58 [3.17, 3.92] 2.86 [2.61, 3.11]
LCEA (◦) 170 3.24 [2.88, 3.52] 2.58 [2.34, 2.81]
Acetabular roof angle (◦) 166 2.40 [2.16, 2.62] 1.79 [1.60, 1.97]
Pelvic obliquity (mm) 78 0.57 [0.46, 0.64] 0.42 [0.36, 0.49]
False profile radiographs
VCA (◦) 88 5.61 [4.60, 6.40] 4.16 [3.60, 4.73]
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measurements from the ground truth, the ICC was assessed for all pelvic
and hip parameters (Table 3). The agreement was found to be good for
the femoral NSA (0.81, 95 % CI [0.75, 0.86]) and VCA (0.78, 95 % CI
[0.69, 0.85]) and excellent for the LCEA (0.92, 95 % CI [0.89, 0.94]),
acetabular roof angle (0.93, 95 % CI [0.91, 0.95]), and pelvic obliquity
(0.99, 95 % CI [0.99, >0.99]). The agreement between the AI and the
ground truth and the agreement between the two radiologists who
established the ground truth were statistically equivalent for the femoral

NSA (p = 0.72), the pelvic obliquity (p = 0.074) and the VCA (p = 0.67).
The agreement between the AI and the ground truth was significantly
higher than the agreement between the two radiologists for the LCEA (p
< 0.001) and the acetabular roof angle (p < 0.001).

3.3. AI performance across age, sex, and various hip morphologies

The MAE between AI and ground truth measurements was first

Fig. 2. Comparison of AI predictions and ground truth measurements using Bland-Altman plots. The latter are displayed for the femoral neck shaft angle (A), the
lateral center edge angle (B), the acetabular roof angle (C) and the pelvic obliquity (D) on anteroposterior views, and the vertical center edge angle (E) measured on
false profile views. The red line highlights perfect agreement between the AI and the ground truth. The area shaded in red indicates the 95 % confidence interval, that
is centered around the black dotted mean difference line. The black dotted lines at the boundaries of the plots mark the upper and lower limits of agreement along
with their 95 % confidence intervals in light green.
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compared across age and sex. There were no statistically significant
differences between male and female patients for the NSA (p = 0.40),
LCEA (p = 0.97), acetabular roof angle (p = 0.19), pelvic obliquity (p =

0.51), and VCA (p = 0.12). In addition, there were no statistically

significant differences between patients over and under 60 years old for
the NSA (p = 0.49), LCEA (p = 0.38), acetabular roof angle (p = 0.43),
pelvic obliquity (p = 0.21), and VCA (p = 0.053). The MAE was then
compared for patients with abnormal (over- or under-coverage) versus

Table 3
Results of the agreement analyses.

Lengths and angles ICC between AI and ground truth [95 % CI] ICC between expert radiologists [95 % CI] Statistical difference

Anteroposterior radiographs
Femoral NSA 0.81 [0.75, 0.86] 0.80 [0.73, 0.85] p = 0.72
LCEA 0.92 [0.89, 0.94] 0.73 [0.38, 0.86] p < 0.001*
Acetabular roof angle 0.93 [0.91, 0.95] 0.80 [0.50, 0.90] p < 0.001*
Pelvic obliquity 0.99 [0.99, >0.99] >0.99 [0.99, >0.99] p = 0.074
False profile radiographs
VCA 0.78 [0.69, 0.85] 0.76 [0.65, 0.83] p = 0.67

 Intra-reader reliability [95 % CI] ICC between all four radiologists [95 %CI]

Anteroposterior radiographs
Femoral NSA 0.86 [0.78, 0.92] 0.68 [0.51, 0.79]
LCEA 0.89 [0.82, 0.93] 0.62 [0.41, 0.75]
Acetabular roof angle 0.95 [0.91, 0.97] 0.63 [0.48, 0.75]
Pelvic obliquity >0.99 [0.99, >0.99] >0.99 [0.99, >0.99]
False profile radiographs
VCA 0.96 [0.92, 0.98] 0.75 [0.56, 0.87]

Table 4
Performance of the AI algorithm across hip morphologies.

Lengths and angles MAE [95 % CI] Statistical test

Abnormal coverage Normal coverage

Anteroposterior radiographs
Femoral NSA (◦) 2.78 [2.40, 3.13] 2.99 [2.58, 3.38] F(1, 86) = 1.02, p = 0.32
LCEA (◦) 2.86 [2.49, 3.18] 2.16 [1.80, 2.49] F(1, 86) = 0.63, p = 0.43
Acetabular roof angle (◦) 1.89 [1.62, 2.15] 1.64 [1.38, 1.90] F(1, 85) = 0.59, p = 0.44
Pelvic obliquity (mm) 0.39 [0.33, 0.45] 0.47 [0.33, 0.60] W = 707, p = 0.83
False profile radiographs
VCA (◦) 4.94 [3.79, 6.08] 3.81 [3.17, 4.49] F(1, 27) = 1.10, p = 0.30

Fig. 3. Examples of measurements on anteroposterior and false profile radiographs performed by the AI algorithm. (A) Full output of the AI analysis on the
anteroposterior (AP) radiographic view of a 78-year-old man. (B) A 53-year-old man with a femoral neck shaft angle (NSA) < 120◦, indicative of coxa vara. (C) A 71-
year-old man showing a pelvic obliquity > 10 mm, indicative of leg length discrepancy. (D) False profile radiograph of a 70-year-old woman with AI measurement of
the vertical center edge angle (VCA).
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normal acetabular coverage (Table 4). There were no statistically sig-
nificant differences between the two groups for the NSA (p = 0.64),
LCEA (p = 0.039), acetabular roof angle (p = 0.34) and pelvic obliquity
(p = 0.83) on AP pelvic radiographs. Similarly, no statistically signifi-
cant difference was found for the VCA measurement (p = 0.18) on false
profile pelvic radiographs. Fig. 3 provides illustrative examples of ra-
diographs analyzed by the AI in normal and pathological contexts.

3.4. Intra- and inter-reader analyses

Additional analyses were conducted to assess both intra- and inter-
reader reliability (Table 3) using a subset of the dataset. The intra-
reader reliability for one of the radiologists who established the
ground truth was found to be good for the NSA with an ICC of 0.86 and
for the LCEA with an ICC of 0.89. Excellent reliability was observed for
the acetabular roof angle (ICC = 0.95), pelvic obliquity (ICC > 0.99),
and VCA (ICC = 0.96). Inter-reader agreement, assessed among the four
radiologists (two who established the ground truth and two independent
radiologists), was moderate for the NSA (ICC= 0.68), LCEA (ICC= 0.62)
and acetabular roof angle (ICC = 0.63). However, the agreement was
found to be good for the VCA (ICC = 0.75) on false profile pelvic ra-
diographs and excellent for pelvic obliquity (ICC > 0.99) on AP pelvic
radiographs. Finally, the performance of the two independent radiolo-
gists was compared to that of the AI. The results demonstrated that both
radiologists either matched the MAE of the AI or exhibited significantly
higher MAE values (Table A.2). Specifically, the first radiologist’s MAE
for the acetabular roof angle was significantly higher than that of the AI
(p = 0.009). Likewise, the second radiologist recorded significantly
greater MAE values for the femoral NSA (p < 0.001) and the LCEA (p <

0.001).

4. Discussion

The present study evaluated the performance of AI-based measure-
ments for multiple pelvic and hip parameters on AP and false profile
pelvic radiographs, comparing them to a ground truth established by
two senior musculoskeletal radiologists. The AI algorithm demonstrated
high accuracy with MAE values inferior to 0.6 mm for pelvic obliquity
and ranging from 1.79◦ to 4.16◦ for angles. Notably, the AI - ground
truth reliability values for the femoral NSA (ICC= 0.81), pelvic obliquity
(ICC > 0.99), LCEA (ICC = 0.92), acetabular roof angle (ICC = 0.93),
and VCA (ICC = 0.78) were either statistically equivalent to or higher
than the reliability between the two musculoskeletal radiologists.

The present study highlighted the robustness of AI-based pelvic and
hip measurements in comparison to prior studies on automated mea-
surements. While previous research reported a range of ICC values from
moderate to excellent [19], our findings showed more consistently high
agreement between the AI and the ground truth. Second, the AI - ground
truth agreement was greater than the agreement between radiologists
who established the ground truth. This finding aligns with previous re-
ports on the poor reproducibility of manual measurements, likely due to
variability in clinician expertise. Indeed, a review of the literature
revealed that ICC values ranged from 0.58 to 0.94 for pelvic obliquity
compared to > 0.99 in the present study [19,33–35], from 0.54 to 0.72
for the femoral NSA compared to 0.81 [19,35,36], from 0.73 to 0.93 for
the LCEA compared to 0.92 [19,28,35–37], and from 0.45 to 0.89 for the
acetabular roof angle compared to 0.93 [19,28,35–37]. This study
highlights how an AI algorithm could facilitate the implementation of
standardized workflows that mitigate differences in clinician expertise.

This study presents notable strengths. First, it reveals the consistent
reliability of AI measurements on radiographs across a diverse patient
population. This includes patients with various types of hip morphology,
such as those exhibiting acetabular over and undercoverage. These
findings stand in marked contrast with a prior study that indicated
poorer AI - clinician agreement in cases of acetabular overcoverage [26].
In clinical practice, comprehensive evaluation of the hip often involves

multiple radiographic views [38]. To our knowledge, this is the first
study to test how AI would behave in the assessment of an angle on false
profile views. We show good agreement between the AI-powered mea-
surement of the VCA and the ground truth, strengthening the potential
of AI to extend to all radiographic views of the pelvis and thus fill critical
gaps in current clinical practice. Indeed, the VCA on false profile views
can prove useful in detecting osteoarthritic changes [8].

While AI-based measurements of the pelvis and hip offer numerous
advantages, it is essential to acknowledge the limitations of this study.
First, the study design was retrospective, and the sample size comprised
a limited number of radiographs. Second, the AI algorithm was not able
to process images with prostheses, a limitation that may affect the cli-
nicians’ workflow. Moreover, this version of the algorithm did not
correct for pelvic tilt and rotation, although they have been documented
to influence radiographic parameters of the hip [39]. Finally, it should
be noted that the study focused on a single AI solution, which could limit
the broader generalizability of the findings.

In conclusion, this study demonstrates that AI offers a promising
alternative to traditional manual measurements on AP and false profile
pelvic radiographs. By providing highly accurate and more standardized
measurements of the pelvic obliquity, femoral NSA, LCEA, acetabular
roof angle, and VCA, AI stands to be a significant contributor in the
diagnosis of structural disorders of the hip. Further studies that examine
the integration of such algorithms into clinical workflows are essential
to precisely estimate their impact on patient care and outcomes as well
as on clinician efficiency and workload.
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