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ARTICLE INFO ABSTRACT

Keywords: Objective: Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging

Brain metastasis due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic ac-

Glioblastoma curacy through a machine learning model based on MRI radiomics data.

;zif;léclseammg Methods: This retrospective study included 235 patients with confirmed solitary BM and 273 patients with GBM.

Prediction model Patients were randomly assigned to the training (n = 356) or the validation (n = 152) cohort. Conventional brain
MRI sequences including T1-weighted imaging (T1WI), contrast-enhanced T1WI, and T2-weighted imaging
(T2WI) were acquired. Brain tumors were delineated on all three sequences and segmented. Features were
selected from demographic, clinical, and radiomic data. An integrated ensemble machine learning model, i.e.,
the elastic regression-SVM-SVM model (ERSS) and a multivariable logistic regression (LR) model combining
demographic, clinical, and radiomic data were built for predictive modeling. Model efficiency was evaluated
using discrimination, calibration, and decision curve analyses. Additionally, external validation was performed
using an independent cohort consisting of 47 patients with GBM and 43 patients with isolated BM to assess the
ERSS model generalizability.
Results: The ERSS model demonstrated more optimal classification performance (AUC: 0.9548, 95% CI:
0.9337-0.9734 in training cohort; AUC: 0.9716, 95% CI: 0.9485-0.9895 in validation cohort) as compared to the
LR model according to the receiver operating characteristic (ROC) curve and decision curve for the internal
cohort. The external validation cohort had less optimal but still robust performance (AUC: 0.7174, 95% CI:
0.6172-0.8024). The ERSS model with integration of multiple classifiers, including elastic net, random forest and
support vector machine, produced robust predictive performance and outperformed the LR method.
Conclusion: The results suggested that the integrated machine learning model, i.e., the ERSS model, had the
potential for efficient and accurate preoperative differentiation of BM from GBM, which may improve clinical
decision-making and outcomes of patients with brain tumors.

Abbreviations: ACC, accuracy; AUC, area under the curve; BM, brain metastasis; CE_T1WI, contrast-enhanced T1-weighted imaging; GBM, glioblastoma; DICOM,
Digital Imaging and Communications in Medicine; DSC, dynamic susceptibility contrast; DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; ERSS,
elastic regression — SVM - SVM; ICC, intra-class correlation coefficient; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; MRI, magnetic
resonance imaging; PACS, Picture Archiving and Communication System; ROC, receiver operating characteristic; ROI, region of interest; SEN, sensitivity; SPE,
specificity; SVM, support vector machine; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging.
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1. Introduction

Brain metastasis (BM) is the most common type of brain tumors in
adults and represents one of the most prevalent neurological pre-
sentations in patients with cancer [1]. The incidence of BM is increasing,
attributed to increased overall cancer survival, enhanced treatment,
effective screening techniques, and an aging population [2,3]. The
incidence and survival rates for BM are intricately linked to the primary
tumor type, emphasizing the critical role of early identification of the
primary tumor site in formulating tailored clinical strategies to optimize
the prognosis [4]. On the other hand, glioblastoma (GBM; World Health
Organization grade IV glioma) is the most common and aggressive pri-
mary brain tumor in adults [5-7]. BM and GBM have different etiologies
and are treated differently. Currently, the standard treatment for BM is
stereotactic radiotherapy after evaluation, with the sensitivity of the
primary tumor influencing the choice of targeted agents. In contrast, the
most effective treatment for GBM is surgery. Therefore, preoperative
differential diagnosis of BM and GBM is important to guide therapeutic
decisions [8,9]. Definitive pathology remains the gold standard for
tumor diagnosis [10,11], but it is not always feasible to get tissue
diagnosis, especially for brain tumors.

Brain magnetic resonance imaging (MRI) is the most commonly used
imaging modality for both BM and GBM [12]. When multiple brain le-
sions are present, conventional brain MRI in conjunction with the pa-
tient’s clinical history improves the diagnostic accuracy for both BM and
GBM. However, for solitary BM or GBM, overlapping imaging features
such as intra-tumoral necrosis and peritumoral edema [13,14],
complicate diagnosis. Advanced quantitative brain MRI techniques,
such as diffusion-weighted imaging (DWI), diffusion tensor imaging
(DTI), dynamic susceptibility contrast (DSC), and other perfusion scans,
have been useful in the differential diagnosis [9,14-16]. However, there
are issues associated with these advanced neuroimaging techniques such
as increased scanning time, additional cost, guarded diagnostic efficacy
and limited resource in community hospitals, which has hindered their
clinical application.

Machine learning algorithm-based strategies using radiomics have
great potential for improving a non-invasive diagnosis of brain tumors
[17-19]. Radiomics can extract a large number of high-level quantita-
tive features from medically acquired images to obtain high-dimensional
information about tumor heterogeneity beyond the limitations of the
human eye [20]. Radiomics has shown significant potential for diag-
nosis, prognosis, and treatment response with significantly improved
performance, and may play a key role in assessing the tumor before,
during, and after treatment [21]. Machine learning models can combine
a large number of variables from different data types into a single model
to maximize the efficacy of predictive modeling. Machine learning
techniques have been used for the identification, classification, and
diagnosis of various types of brain tumors including primary brain tu-
mors and BM [19,22-24]. Prior studies have mined conventional MRI
sequences for radiomic texture analysis to differentiate between BM and
GBM [9,25,26]. However, several issues in the prior studies such as the
availability of selected features, machine learning algorithms, and the
number of samples for predictive modeling render the models less
optimal, which needs to be addressed[27,28]. In addition, there is a
clinical necessity to accurately diagnosis BM and GBM given their dif-
ferences in treatment and prognosis. Combining multiple conventional
MRI sequences with clinical features may add clinical relevance to
machine learning and improve model performance.

In this study, we combined radiomic features obtained from con-
ventional brain MRI sequences including the T1-weighted imaging
(T1WI), the contrast-enhanced T1-weighted imaging (CE_T1WI), and
the T2-weighted imaging (T2WI), and used these features along with
clinical laboratory data to classify BM and GBM. We used an integrated
ensemble machine learning model, i.e., the elastic regression-SVM-SVM
model (ERSS) and a multivariable logistic regression model (LR model)
for predictive modeling. We hypothesized that the radiomic predictive
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models could be used to differentiate between BM and GBM and the
ERSS model would outperform the LR model.

2. Methods
2.1. Patient information

All patients with brain tumors who underwent preoperative brain
MRI scans in our hospital from September 2012 to September 2021 were
evaluated for eligibility for this retrospective study. Inclusion criteria
were as follows: (I) patients with a confirmed diagnosis of solitary BM or
GBM based on surgical pathology specimens; (II) patients who had not
undergone any cancer treatments such as chemotherapy, radiotherapy,
or brain surgery before the brain MRI scans; (III) patients with preop-
erative brain MRI scans acquired within 14 days of brain surgery; (IV)
patients without multifocal brain lesions (e.g., multicentric/multifocal
GBM, multiple brain metastases). The study cohort and selection criteria
are presented in Fig. 1. The blood samples for the laboratory data were
collected within a 15-day interval of the brain MRI scans. We included
only cases with solitary BM because the presence of multifocal brain
lesions increased the possibility of BM, which may skew the models. On
the other hand, solitary BM was more likely to share similar imaging
features with GBM, presenting as a diagnostic dilemma in clinical
practice. The solitary BM tends to be more challenging for diagnosis
than multiple BM, which can be studied using radiomics and machine
learning.

We performed external validation using an independent cohort of
patients from another institution (Second Xiangya Hospital of Central
South University, P.R. China), and this cohort consisted of 47 patients
with GBM and 43 patients with isolated BM. Patients in the independent
external cohort underwent preoperative MRI scans of the brain and met
the study inclusion criteria. The external cohort allowed us to test the
model on an unseen dataset, providing an assessment of the model
performance outside of the training environment.

This study was performed with the approval from the institutional
review board and the Medical Ethics Committee in our hospital (IRB No:
201709995). This study was conducted according to the ethical re-
quirements of the Helsinki Declaration of 1964. The written informed
consent was waived due to the retrospective nature of this study.

2.2. Reassessment of neuropathological findings

For each patient, all neuropathological slides for both BM and GBM
were independently reassessed by two neuropathologists (GG and HY)
who had 11 and 30 years of experience in neuropathology, respectively.
Both neuropathologists were blinded to patient information, including
radiological and clinical-pathological data. In cases of discrepancy,
consensus was reached through discussion between the two study
neuropathologists.

2.3. Brain MRI data analysis

All patients underwent brain MRI scan on one of the two scanners, a
3 T MRI scanner (Discovery MR750w, GE Healthcare) or a 1.5 T MRI
scanner (MAGNETOM Avanto, Siemens Healthineers, Erlangen, Ger-
many). In this study, we focused on conventional MRI sequences
including T1WI, CE_T1WI, and T2WI. The MRI sequences were acquired
in 2D. TIWI and CE_T1WI were acquired with a repetition time (TR) of
~ 1600 ms and an echo time (TE) of ~ 15 ms, with an in-plane reso-
lution of 320 x 192 pixels and a slice thickness of 5.0 mm. T2WI used a
TR of ~ 8000 ms, a TE of ~ 105 ms, a resolution of 320 x 224 pixels, and
a slice thickness of 5.0 mm.

Brain MRI images were retrieved from our institution’s Picture
Archiving and Communication System (PACS, Carestream, Canada), and
all images were stored in the Digital Imaging and Communications in
Medicine (DICOM) file format. For the independent external cohort, the
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brain MRI images were obtained from the PACS (Carestream, Canada) of
the other institution (Second Xiangya Hospital of Central South Uni-
versity, P. R. China). Each patient’s MRI images were independently
reviewed by two neuroradiologists (Reader 1 [FZ] and Reader 2 [CC],
with 15 and 25 years of experience in neuroimaging, respectively). They
were blinded to patient information, including radiological and clinical-
pathological data. The discrepancies in diagnosis were discussed in a
group setting with an additional senior neuroradiologist (ZH, with over
35 years of experience in neuroimaging). Reader 1 and Reader 2
recorded conventional brain MRI imaging features, including tumor size
measurements such as transverse dimension (mm), anteroposterior
dimension (mm), and craniocaudal dimension (mm).

For each brain tumor, the two neuroradiologists (Reader 1 and 2)
used ITK-SNAP 3.8.0 software (https://www.itksnap.org/) to delineate
the tumor regions of interest (ROIs) layer by layer on CE_T1WI axial,
sagittal, and coronal slices, as well as T2WI and T1WI sequences. The
entire tumor was segmented using the ROI approach which included
both enhancing and non-enhancing components, such as hemorrhage,
necrosis, and cystic degeneration within the tumor. The peritumoral
edema was not segmented. The study used the z-score normalization
method with the AK software (GE Healthcare, AnalysisKit, Version
3.2.0) for normalization of images and radiomic feature extraction[29].
Multiple quantitative texture features were captured from grayscale
histogram, gradient, run-length matrix, co-occurrence matrix, autore-
gressive model, and wavelet transform analysis. To ensure the repeat-
ability of radiomic features, we calculated the inter-class correlation
coefficient (ICC) between the two neuroradiologists and retained fea-
tures with an ICC greater than 0.75.

2.4. Predictive modeling and model performance

Two types of predictive models were developed for this study. One

atients who were pathologically diagnosed as brain

metastasis (BM) (n=423) or glioblastoma GBM (n=471)

confirmed by surgical pathology and underwent
preoperative brain MRI scan from September 2012 to
September 2021

4
508 included in the final analysis
+ GBM group (Group 0): n=273

* BM group (Group 1): n=235

Y y

Excluded
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model was established using the ERSS ensemble machine learning
approach similar to the models developed by our team in our previous
studies [30-34], while the other model used the traditional multivari-
able LR method.

Briefly, for the ERSS algorithm, we performed model construction
and evaluation with the pandas package (version: 2.1.1), scikit-learn
package (version: 1.3.1), and numpy package (version: 1.26.0) in Py-
thon 3.11.1. Multiple features from radiomic analysis, demographic
information and laboratory data were included in the machine learning
analysis. The model was developed in the training cohort and was tested
in the validation cohort for the internal data set. The efficiency of each
model was assessed for both the training and validation cohorts by
calculating receiver operating characteristic (ROC) curves. A calibration
curve (Hosmer-Lemeshow H test) was used to evaluate the model per-
formance. The clinical utility of the model in the validation cohort was
assessed using decision curve analysis. Fig. 2 presents the workflow for
tumor segmentation, radiomic feature extraction, feature selection and
model performance.

During data analysis, each patient was randomly assigned to either
the training cohort or the validation cohort in a 7:3 ratio. During the
model development process, we employed the Elastic Net (EN) method
for feature selection, which was conducted solely on the training cohort
to prevent any data leakage and to ensure an unbiased assessment of
model performance on the validation cohort. Each patient’s features
were combined linearly and weighted by their respective coefficients to
produce an EN-score. Based on these selected features, we developed a
classification model using the Random Forest (RF) method, which
generated an RF-score. Following this, we constructed a new combined
classification model using a Support Vector Machine (SVM) approach.
This model integrated the EN-score and RF-score, alongside two addi-
tional SVM scores derived from demographic and laboratory test fea-
tures. The final ERSS model was then built using the SVM algorithm,

iPatients who received cancer treatment such as
—rchemotherapy, radiation or brain surgery priorto !

‘Patients who did not undergo brain MRI scan
ibefore surgery (BM, n=22; GBM, n=93) :

Pauents who had multiple brain lesions (BM, n=98;:
:GBM, n=28) :

—>

‘Patients with a history of stroke or intracranial :
iinfection (BM, n=21; GBM, n=23) '

Training cohort (n=356)
* Group 0, n=198
* Group 1, n=158

* Group 0, n=75
* Group 1, n=77

Validation cohort (n=152)

Fig. 1. Flow chart presenting the recruitment process for the study cohort. (Abbreviations: MRI, magnetic resonance imaging; GBM, glioblastoma; BM,

brain metastasis).
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Combined Model

them together on a two-dimensional plane using SVM yielded better
results compared to regressing each score individually. Ultimately, the
regressed scores were binarized for further prediction.

producing three types of SVM scores from the steps. These scores, rep-
resenting different data types, served as weak classifiers. Since each SVM
score was derived from independently regressed variables, regressing

Table 1

Demographic information and laboratory characteristics of the study cohort.
Characteristic Total (n = 508) BM (n = 235) GBM (n = 273) p-value Training Cohort Validation Cohort p-value

(n = 356) (n=152)

Demographics
Gender, n (%) 0.131 0.697
Male 314(61.8 %) 137(58.3 %) 177(64.8 %) 222(62.4 %) 92(60.5 %)
Female 194(38.2 %) 98(41.7 %) 96(35.2 %) 134(37.6 %) 60(39.5 %)
Age (y) 52(44-61) 55(48-62) 49(38-58) *<0.001 52(44-61) 53(43-61) 0.841
KPS 80(70-100) 70(60-80) 100(80-100) *<0.001 80(70-100) 80(60-100) 0.177
Routine blood parameters
RBC (10'%/L) 4.41(3.82-5.00)mean 4.32(3.72-4.93)mean 4.48(3.91-5.04)mean *0.003 4.42(3.82-5.02)mean 4.38(3.82-4.94) mean 0.546
HGB (g/L) 133(121-145) 131(121-142) 134(122-146) *0.027 134(121-144) 132(123-145) 0.729
WBC (10°/L) 7.5(5.7-9.7) 7.0(5.4-9.0) 7.8(6.0-10.6) *<0.001 7.6(5.7-9.5) 7.5(5.6-10.2) 0.890
Neu(10°/L) 5.10(3.33-7.10) 4.60(3.10-6.80) 5.30(3.70-8.10) *0.001 5.10(3.40-6.98) 4.90(3.20-8.10) 0.818
Lym(10°/L) 1.5(1.1-2.0) 1.5(1.0-2.0) 1.6(1.1-2.0) 0.164 1.5(1.0-2.0) 1.5(1.1-1.9) 0.935
Mono(10°/L) 0.5(0.3-0.7) 0.5(0.3-0.7) 0.5(0.4-0.7) 0.129 0.5(0.4-0.7) 0.5(0.3-0.7) 0.411
Eos(10°/L) 0.1(0.0-0.2) 0.1(0.0-0.2) 0.1(0.0-0.1) *0.023 0.1(0.0-0.2) 0.1(0.0-0.2) 0.346
PLT (10°/L) 203.0(162.2-252.0) 196.0(159.0-252.0) 207.0(163.5-253.0) 0.263 200.5(159.0-248.5) 207.5(168.3-255.80 0.214
RDW (%) 13.1(12.5-13.9) 13.3(12.6-14.2) 13.0(12.4-13.7) *0.002 13.2(12.5-13.9) 13.1(12.4-13.9) 0.306
PCT (ng/mL) 0.20(0.17-0.26) 0.20(0.14-0.21) 0.20(0.20-0.29) *<0.001 0.20(0.16-0.25) 0.20(0.19-0.27) 0.144
MPV (fL) 9.71(8.60-11.00) 9.35(8.40-10.70) 9.9(8.7-11.1) *0.004 9.7(8.6-11.0) 9.8(8.6-10.9) 0.836
Blood biochemical indexes
ALT (U/L) 18.55(13.00-18.55) 19.10(13.30-28.00) 17.80(12.70-29.05) 0.48 18.20(13.0-28.1) 18.90(12.90-28.25) 0.696
AST (U/L) 19.40(16.23-24.20) 20.70(16.90-24.90) 18.70(15.30-23.40) *0.003 19.40(16.40-24.20) 19.40(16.10-24.28) 0.979
Albumin (g/L) 41.0(38.3-44.0) 40.3(38.0-42.7) 41.9(38.9-44.6) *<0.001 41.0(38.3-43.8) 41.0(38.1-44.1) 0.965
Globulin (g/L) 26.5(23.9-29.0) 27.1(24.4-29.8) 25.7(23.5-28.5) *0.001 26.5(23.9-28.9) 26.5(24.0-29.2) 0.780
BUN (mmol/L) 5.090(4.033-6.235) 5.050(3.750-6.370) 5.100(4.170-6.075) 0.499 5.075(4.040-6.300) 5.095(3.985-6.085) 0.936
Scr (pmol/L) 79.0(69.9-89.0) 77.6(69.0-87.0) 81.0(70.5-91.0) *0.023 79.0(70.0-90.0) 80.0(69.0-88.0) 0.904
Blood coagulation parameters
PT (s) 12.70(12.20-13.30) 12.60(12.20-13.30) 12.80(12.20-13.40) 0.078 12.70(12.20-13.30) 12.80(12.20-13.30) 0.749
APTT (s) 31.60(28.60-34.28) 31.90(28.70-34.50) 31.10(28.50-34.00) 0.155 31.50(28.60-34.10) 31.80(28.83-34.48) 0.436
INR 0.99(0.95-1.04) 0.98(0.94-1.04) 0.99(0.95-1.04) 0.086 0.99(0.95-1.04) 0.99(0.95-1.04) 0.869

Note: Data are presented as n (%) or # mean (mean-SD to mean + SD)mean > OF presented as median (IQR). * indicates a p-value < 0.05.

Abbreviations: BM, brain metastasis; GBM, glioblastoma; KPS, Karnofsky performance status; RBC, red blood cell; HGB, hemoglobin; WBC, white blood cells; Neu,
Neutrophils; Lym, lymphocytes; Mono, monocytes; Eos, Eosinophils; PLT, platelets; RDW, red cell distribution width; PCT, Platelet specific volume; MPV, mean platelet
volume; ALT, alanine transaminase; AST, aspartate transaminase; BUN, blood urea nitrogen; Scr, serum creatinine; PT, prothrombin time; APTT, activated partial
thromboplastin time; INR, international normalized ratio.
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Models were subsequently built using the training cohort and tested
on the validation cohort. The ERSS model was externally validated on
the independent external cohort from the Second Xiangya Hospital of
Central South University, P. R. China. The discriminative performance of
the model on the independent dataset was assessed by calculating the
ROC curve.

2.5. Statistical analysis

The data analysis was performed using SPSS Statistics for Windows,
version 22.0 (IBM Corp., Armonk, NY, USA). The Shapiro-Wilk test was
used to assess the distribution of data. Continuous, normally distributed
data were presented as mean (standard deviation [SD]) and were
assessed using Student’s t-test, while continuous, non-normally distrib-
uted data were expressed as median (inter-quartile range [IQR]) and
were analyzed using the Mann-Whitney U test. Categorical variables
were compared using Pearson’s chi-square test or Fisher’s exact test. A
p-value < 0.05 was considered statistically significant. To ensure high
quality radiomic research, a dedicated checklist using the Transparent
Reporting of a multivariable prediction model for Individual Prognosis
Or Diagnosis (TRIPOD) criteria for radiomics research was added to the
Supplementary Material [35-37].

3. Results
3.1. Patient information

This study retrospectively enrolled 235 patients with solitary BM and
273 patients with GBM. Detailed information on the patient recruitment
process is presented in Fig. 1, and a summary of the demographic and
clinical characteristics of the study subjects is presented in Table 1. For
radiological analysis, each patient was randomly assigned to either the
training cohort (n = 356) or the validation cohort (n = 152) in a 7:3 ratio
(Fig. 1).

There were no significant differences between the training cohort
and the validation cohort regarding the demographic data and the lab-
oratory data (all p > 0.05). However, there were significant differences
between the patients with BM and the patients with GBM in age and
Karnofsky performance status (KPS) (p < 0.001), and in blood param-
eters such as red blood cells (RBC) (p = 0.003) and hemoglobin (HGB)
(p = 0.027).

3.2. Model construction, performance and application

We used the elastic net (EN) method to select a set of features for

Table 2
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building a predictive model leveraging demographic information, clin-
ical values, and radiomic data. The selected features from the EN
method included one demographic feature (gender), 24 radiomic fea-
tures from analyzing the conventional radiological images such as
wavelet-HLH_glrlm_ShortRunLowGrayLevelEmphasis, and 16 clinical
laboratory features such as alanine transaminase (ALT). For model
building, we used demographic data and clinical laboratory data
together as clinical data to construct the machine learning model. Scores
(weak classifiers) obtained by fitting the clinical and imaging data were
utilized to construct the ERSS model (strong classifier) using the support
vector machine (SVM) method. Table 2 shows the integrated machine
learning model combining clinical and imaging data having superior
overall performance compared to the other three models that used a
single data source (clinical data, T1 imaging data, or T2 imaging data).

The ROC curves of the models in the training and validation cohorts
(Fig. 3 A&B) showed the classification performance and discriminative
ability of the models. The AUC for the ERSS model was 0.9548 (95 % CI:
0.9337-0.9734) for the training cohort, and was 0.9716 (95 % CL:
0.9485-0.9895) for the validation cohort.

The ROC curves (Fig. 3 A&B) and the decision curves (Fig. 4) showed
the accuracy of the ERSS model being higher than that of the LR model
for both the training and validation cohorts, enabling improved differ-
entiation between the BM and GBM groups. The calibration curves
demonstrated good consistency between predictions and observations
(Fig. 3 C&D). The decision curves for the predictive models (Fig. 4)
indicated that the ERSS model had greater clinical benefit than the LR
model.

The ROC curves of the ERSS model in the independent external
cohort showed reasonable classification performance and discriminative
ability of the model (Fig. 5). For the independent external cohort, the
ERSS model had an AUC of 0.7174 (95 % CI: 0.6172-0.8024), an ac-
curacy of 0.6932 (95 % CI: 0.6136-0.7727), sensitivity of 0.6957 (95 %
CI: 0.5789-0.8085), and specificity of 0.6905 (95 % CI: 0.5714-0.8049).

4. Discussion

In this study, we established an integrated ERSS machine learning
model combining the radiomic features, clinical laboratory data and
demographic information to distinguish patients with BM from patients
with GBM. This study showed that the ERSS model may potentially assist
in the preoperative diagnosis of BM and GBM.

The study results indicated that incorporating radiomic features from
routine MRI sequences such as TIWI, CE_T1WI and T2WI into the model
construction enhanced the robustness of the predictive model in the
validation cohort with an AUC reaching 0.9548. For instance, a prior

Performance data for the machine learning model using different data source and external validation.

Training cohort

Validation cohort

Clinical

T2

Metrics Clinical T2

AUC 0.93, 95 %CI (0.90-0.95) 0.85, 95 %CI (0.81-0.88)

Accuracy 0.88, 95 %CI (0.85-0.90) 0.77, 95 %CI (0.73-0.81)

Sensitivity 0.84, 95 %CI (0.79-0.88) 0.86, 95 %CI (0.82-0.90)

Specificity 0.93, 95 %CI (0.90-0.96) 0.66, 95 %CI (0.60-0.72)
Training cohort

Metrics T1 Combine

AUC 0.80, 95 %CI (0.75-0.83) 0.95, 95 %CI (0.93-0.97)

Accuracy 0.76, 95 %CI (0.72-0.80) 0.88, 95 %CI (0.85-0.90)

Sensitivity 0.87, 95 %CI (0.83-0.91) 0.84, 95 %CI (0.79-0.88)

Specificity 0.62, 95 %CI (0.56-0.68) 0.93, 95 %CI (0.90-0.96)

External Validation

Metric Value

AUC 0.72, 95 %CI (0.62-0.80)

Accuracy 0.69, 95 %CI (0.61-0.77)

Sensitivity 0.70, 95 %CI (0.58-0.81)

Specificity 0.69, 95 %CI (0.57-0.80)

Validation cohort

0.92, 95 %CI (0.88-0.96)
0.89, 95 %CI (0.85-0.93)
0.83, 95 %CI (0.75-0.89)
0.95, 95 %CI (0.90-0.99)

T1

0.76, 95 %CI (0.69-0.83)
0.69, 95 %CI (0.63-0.76)
0.83, 95 %CI (0.75-0.90)
0.56, 95 %CI (0.47-0.65)

0.82, 95 %CI (0.76-0.88)
0.77, 95 %CI (0.71-0.82)
0.85, 95 %CI (0.79-0.92)
0.69, 95 %CI (0.60-0.78)

Combine

0.97, 95 %CI (0.95-0.99)
0.89, 95 %CI (0.85-0.93)
0.83, 95 %CI (0.75-0.89)
0.95, 95 %CI (0.90-0.99)
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Fig. 3. Receiver operating characteristic (ROC) and calibration curves for the ERSS (Elastic Regression-SVM-SVM) model and the multivariable logistic regression
(LR) model in the training cohort (A and C, respectively) and the validation cohort (B and D, respectively).

study constructed classifiers based on the contrast-enhanced sequence
using an LR algorithm, resulting in a lower AUC of 0.80 in the validation
cohort [38]. Various MRI sequences contribute to the multimodal im-
aging of brain tumors. Combining information from multiple MRI se-
quences effectively supplements information across different
dimensions such as structural information and for different types of le-
sions, thereby enhancing the classification performance of the radiomic
model [9,39]. Taking T2WI images as an example, T2WI provides
relevant features related to heterogeneous vascularization and may
reflect information about edema [40]. Research indicates that observing
the peritumoral region improves the accuracy of discriminating brain
tumors, encompassing vasogenic edema and cellular infiltration [41].
BM shows almost no histological infiltration and is primarily surrounded
by edema beyond the enhanced edge on brain MRIL. In GBM, the
enhanced edge may also have corresponding abnormal FLAIR signal due
to infiltrating tumor cells with vasogenic edema [42-44]. In addition,
features extracted from T2WI images provide detailed information
about peritumoral edema, which is critical for diagnosis of brain tumor.
Nevertheless, extracting features from multiple MRI sequences is a time-
consuming process and demands greater computation in the feature
selection process. In clinical practice, clinicians often rely on the infor-
mation directly from multiple MRI sequences to assist in clinical deci-
sion making. Therefore, it is reasonable to assess the conventional MRI
sequences in our study for their usefulness in model development.

Our study integrated the radiomic features with clinical variables,
which should have enabled the model to more accurately encompass the
overall condition of patients, thus with more optimal classification
performance. Artzi and colleagues extracted radiomic features from
CE_T1WI sequences and incorporated them with clinical and imaging

features. They constructed an SVM classifier with an AUC of 0.96, sup-
porting the notion of combination of features improving model perfor-
mance [45]. The ERSS model in this study incorporated multiple clinical
features, including white blood cell count, platelet count, international
normalized ratio (INR), activated partial thromboplastin time (APTT),
and other indicators commonly used to assess inflammation processes
and coagulation function, contributing to early disease diagnosis [46].
The methods for obtaining these parameters were straightforward, cost-
effective, and commonly acquired in preoperative clinical settings.
Studies indicate that a diagnostic model constructed using eight pre-
operative blood test indicators, such as Platelet specific volume (PCT),
INR, and Thrombin Time (TT), could differentiate between BM and GBM
with accuracies of 88.2 % and 76.1 %, respectively [47].

Our study showed the model combining clinical and imaging data
having more robust performance compared to the models using a single
data source being either imaging data or clinical data. However, the
model performance did not significantly improve when comparing the
combined model to the clinical model, which we believe may reflect the
inherent complexities involved in integrating radiomic features with
clinical data. Radiomic features were generated with extensive compu-
tational analysis, encompassing texture features, wavelet and histo-
grams of the tumors, which were not directly related to the easily
understood clinical features. The predictive capabilities of radiomic
features may be limited given the heterogeneity of these features.
Nevertheless, radiomics and clinical variables should be complimentary
and their combined use in prediction model should increase the model
performance. More research is needed to enhance the generalizability
and robustness of the prediction models across different patient pop-
ulations and imaging protocols.
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Our study indicated that the predictive performance of the ensemble
machine learning model, i.e., the ERSS model, surpassed that of the LR
model in the preoperative differentiation of BM and GBM. The ERSS
model constructed from multiple weakly supervised models by inte-
grating classifiers, and forming a strong supervised model using SVM
classifiers. Throughout the model construction process, each classifier
had distinct advantages and limitations [48-50]. Early studies have
suggested that SVM exhibited optimal diagnostic efficiency for BM and
GBM when constructing a single classifier model [51-53]. For instance,
Qian and colleagues achieved a predictive performance using SVM al-
gorithms for feature extraction from several imaging sequences from
brain MRI scan, applying the SVM algorithm with least absolute
shrinkage and selection operator (LASSO) feature selection and reaching
an AUC of 0.90 [54]. The ERSS model developed for this study with an
AUC of 0.95 had a similar high performance as the previously published
study [54].

The strength of the ensemble machine learning model such as the
ERSS model was in its ability to effectively integrate multiple weak
classifiers, partially overcoming overfitting issues in machine learning
[55]. Additionally, ensemble machine learning enhanced model
robustness [56] and mitigated the impact of data noise. It addressed
challenges with machine learning like class imbalance and dimension-
ality [57]. It is noteworthy that our study with an innovative classifi-
cation algorithm and a reasonable sample size should lead to better
generalizability as compared to previous research [58,59].

The external validation results showed reasonable performance of
the ERSS model on unknown data, generally in line with literature [60].
However, the performance of our external validation cohort was lower
as compared to the internal validation cohort, which may be related to
factors such as heterogeneity of data sources [61], differences in imag-
ing devices, and insufficient sample size of the validation cohort. Our
study showed the necessity to validate prediction models in external
cohorts and to overcome the limitations of radiomic prediction models.
It is prudent to make these models more robust and more generalizable
to various tumors in different institutions. Future studies should aim to
further validate and enhance the clinical applicability of these models
through multicenter collaborations and the use of larger, more diverse
external datasets.

This study, however, had a few limitations. First, the clinic-
demographic information and brain tumor data might be relatively
homogeneous in this single center study. Also, the retrospective nature
of this study may not fully represent the overall population, leading to
case selection bias. To further improve the reliability and applicability of
our findings, prospective multi-center studies will be necessary. The
generalizability of our machine learning model was limited by the lack
of cross-validation. This study was constrained by the inherent
complexity of machine learning models and for their inherent lack of
interpretability, which made it difficult to apply traditional computer
methods to fully understand the model performance. In addition, the
study results could not be easily interpreted nor explained relative to
their clinical significance. Further research is needed to explore the
interpretability of machine learning based on a large cohort data in the
future.

5. Conclusion

In summary, we developed a robust ensemble machine learning
model for preoperative differentiation of BM from GBM. Leveraging
clinical brain MRI images alongside clinicodemographic data and
radiomic features, this model showed the potential in preoperative
diagnosis of BM and GBM, which should assist in clinical decision-
making for personalized care of patients with a primary or a metasta-
tic brain tumor.
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