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KEY POINTS

� Genomic medicine offers the potential to identify the molecular underpinnings of a pa-
tient’s breast cancer guiding targeted therapeutic options.

� In early-stage breast cancer, histopathology and tumor biomarker information, supported
by multigene assays, for women with ER-positive disease, are fundamental in guiding
treatment.

� Genomics in breast pathology is utilized for risk stratification, tumor classification, predic-
tive/prognostic testing, identification of actionable targets, and monitoring for disease
progression or treatment resistance.
INTRODUCTION

The era of genomic medicine provides an opportunity for pathologists to offer greater
detail about the molecular underpinnings of a patient’s cancer and thereby more tar-
geted therapeutic options. For patients with breast cancer, the principal application at
this time is in the advanced stage or metastatic setting. In early-stage breast cancer,
routine histopathology along with breast tumor biomarker information (estrogen re-
ceptor [ER], progesterone receptor [PR], and human epidermal growth factor receptor
2 [HER2]), supported by multigene assays, for women with ER-positive breast can-
cers, remain fundamental in guiding treatment decisions.
In this review article, the role of genomics in breast cancer pathology, as it pertains

to risk management, classification of special tumor types, predictive and prognostic
testing, identification of actionable therapeutic targets, and monitoring for disease
progression or development of treatment resistance is discussed.
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GERMLINE TESTING

About 5% to 10% of breast cancers are hereditary, with BRCA1 and BRCA2 germline
mutations accounting for most such cases.1 Other breast cancer susceptibility genes
include PALB2, CHEK2, ATM, CDH1, PTEN, TP53, and STK11, these being associ-
ated with lower lifetime risks for breast cancer than BRCA1 and BRCA2.
The advent of multigene panel testing has enabled comprehensive detection of

pathologic mutations, which can inform risk-reducing strategies, such as enhanced
screening, prophylactic surgery, and chemoprevention. In addition, with the emer-
gence of new treatment options, such as polyadenosine diphosphate-ribose polymer-
ase (PARP) inhibitors, BRCA germline testing is not only a strategy for surveillance and
prevention but also has become a predictive marker for PARP inhibitor treatment.2–6

Furthermore, as next-generation sequencing technology is increasingly used in germ-
line analysis, detection of germline variants beyond BRCA1/2 is readily accomplished.
Studies have shown pathogenic or likely pathogenic germline variants in 17% of pa-
tients with advanced cancer, including therapeutically actionable germline alterations
in 8% of patients.7,8 Thus, in patients with advanced cancer, germline sequencing
analysis could have a complementary role to tumor sequencing analysis for therapy
selection.

TUMOR CLASSIFICATION

In patients with newly diagnosed breast carcinoma, accurate categorization of tu-
mor type, grade, and biomarker status, along with tumor size, the presence or
absence of lymphovascular invasion, and axillary lymph node metastases, guide
management. Most breast carcinomas are invasive carcinomas of no special
type (NST, also known as invasive ductal carcinoma). Approximately 10% to
15% of breast carcinomas are invasive lobular carcinomas, with the remaining
5% together comprising the special histologic subtypes, such as tubular,
mucinous, invasive cribriform, and invasive micropapillary carcinomas, among
others. Almost 70% of breast carcinomas are ER positive; 15% to 20% demon-
strate HER2 overexpression/amplification and 10% are ER, PR, and HER2 negative
(triple negative). Genomic testing is not necessary for the diagnosis and manage-
ment of these more frequently occurring carcinomas, and molecular subtyping
with assays such as the PAM50 to provide the intrinsic tumor subtype (luminal A
or B, HER2 enriched, or basal) are not indicated in routine clinical practice. Broadly
speaking, ER-positive, HER2-negative tumors, or luminal-like carcinomas, have a
more indolent clinical course than HER2-positive or triple-negative carcinomas
(which overlap with basal-like).
As will be discussed in a later section, multigene assays, in conjunction with

clinical and pathologic features, are used to guide the need for adjuvant chemo-
therapy in women with early-stage ER-positive breast cancer; patients with
HER2-positive disease or triple-negative carcinomas (NST) receive adjuvant or
neoadjuvant chemotherapy regimens. There are, however, some special subtypes
of ER-, PR-, and HER2-negative breast cancers that have a more indolent clinical
course, and for those patients, chemotherapy is not indicated. It is this small sub-
set of triple-negative tumors for which genomic assays may be helpful to ensure
accurate tumor classification so as to avoid overtreatment with chemotherapy.
Increasingly, antibodies are being made available to some of the fusion proteins
resulting from gene rearrangements present in various cancers auguring in the
advent of molecular immunohistochemistry as a more readily accessible and
affordable diagnostic tool.9
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Fig. 1. Adenoid cystic carcinoma. In this conventional adenoid cystic carcinoma, the tumor is
readily recognized by its cribriform growth pattern, the presence of a mixed population of
epithelial and myoepithelial cells, and the deposition of basement membrane material in
“pseudolumens.”
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ADENOID CYSTIC CARCINOMA

Adenoid cystic carcinoma is an uncommon breast cancer type comprising less than
1% of all breast carcinomas. In most cases, the histologic pattern of this tumor is
readily recognizable, being composed of both epithelial and myoepithelial cells
arrayed in a cribriform or trabecular pattern with the production of basement mem-
brane material contained within pseudolumens created by the myoepithelial cells
(Fig. 1). In addition to these morphologically characteristic patterns, there is a solid,
basaloid variant that bears greater resemblance to conventional high-grade triple-
negative breast cancer and that may be difficult to distinguish on microscopic exam-
ination alone (Fig. 2).10–14

The molecular alteration characteristic of adenoid cystic carcinoma is translocation
and fusion ofMYB orMYBL1with eitherNFIB or other gene partners.15,16 The resulting
gene fusion can be identified through cytogenetic analysis using a dual break-apart
probe to MYB or through sequencing analysis. An immunohistochemical assay using
an MYB antibody is also available, but although sensitive, this is less specific (see
Fig. 2).17,18

Although most adenoid cystic carcinomas are considered low grade and have an
indolent clinical course, the solid basaloid variant often demonstrates high nuclear
grade and may have zones of necrosis prompting concern for more aggressive
behavior.12,14 There are insufficient data on the outcome of this particular variant of
adenoid cystic carcinoma to inform a specific management recommendation, but
Fig. 2. Solid basaloid variant of adenoid cystic carcinoma. (A) This variant of adenoid cystic
carcinoma can be more challenging to recognize, given the solid growth pattern, the often
higher grade nuclei and the relative absence of obvious basement membrane material (he-
matoxylin and eosin stain). (B) MYB immunostain. Nuclear expression of MYB can be helpful
in supporting the diagnosis.
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Fig. 3. Secretory carcinoma. (A) Secretory carcinoma can be a mimic for other types of breast
carcinoma. Here the tumor displays a microcystic or cribriform type growth pattern, with
luminal secretions. The tumor cells are relatively bland. (B) pan-TRK immunostain. Nuclear
positivity is supportive of the diagnosis of secretory carcinoma.
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accurate diagnostic categorization will help build knowledge on the prognosis of this
tumor for future treatment decisions.
SECRETORY CARCINOMA

Secretory carcinoma is another uncommon triple-negative (or low ER-positive) tumor
subtype with indolent behavior. It has a particular predisposition for occurring in chil-
dren, although a broad age range of individuals may be affected. There are character-
istic morphologic features that should raise the pathologic differential diagnostic
consideration of secretory carcinoma, such as cells with finely vacuolated cytoplasm,
the presence of secretions in the ductular lumens, and bland tumor cell nuclei (Fig. 3);
however, the architectural growth pattern can vary considerably (circumscribed, solid,
microcystic, infiltrative) and the occasional presence of a central scar or sclerotic area
can confound. Again, in adult women, the diagnosis of a triple negative breast cancer
without the qualifier of this special histologic subtype may result in overtreatment.
An ETV6::NTRK3 gene fusion characterizes secretory carcinoma.19 As with the

MYB::NFIB gene fusion in adenoid cystic carcinoma, this gene fusion can be identified
through cytogenetic analysis with a dual break-apart probe to ETV6 or NTRK3. A pan-
TRK immunohistochemical antibody is available and can be used to screen for this tu-
mor subtype (see Fig. 3).20,21 This, in conjunction with confirmation of the
ETV6::NTRK3 gene fusion either with in situ hybridization or sequencing analysis,
can be used to support diagnosis and treatment decisions.
Most patients with secretory carcinoma are managed with surgical excision alone.

Rare cases of recurrence and late metastases have been reported.22 Such patients
have been demonstrated to benefit from treatment with pan-TRK inhibitors23 empha-
sizing the potential role for molecular analysis in therapeutic decision-making.
Fig. 4. Tall-cell carcinoma with reversed polarity. (A) The characteristic features of this tu-
mor: solid papillary tumor cell nests, with cells of low-grade cytology and reversed polarity.
(B) If needed, an IDH2 R172 immunostain can confirm the diagnosis.
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TALL-CELL CARCINOMA WITH REVERSED POLARITY

Tall-cell carcinoma with reversed polarity is a relatively recently described entity char-
acterized by an IDH2mutation (w80% of cases) and PIK3CA or PIK3R1mutations (up
to 60% of cases).24 These tumors most commonly occur in postmenopausal women
and have an indolent clinical course, with lymph node metastases only rarely
described. Microscopically, the tumor is composed of solid, papillary tumor cell nests
of tall cells with reversed polarity (ie, the nucleus is located at the apical rather than the
basal aspect of the cell), conferring a striking morphologic appearance (Fig. 4). The
nuclei are low grade. The tumor is usually ER, PR, and HER2 negative; occasionally
low ER positivity is reported.
With greater recognition of this tumor entity, the special histologic subtype should

be provided so as to prevent the patient being treated as having a triple-negative
breast cancer, NST. Mutation profiling may be used to identify the IDH2 R172mutation
pathognomonic of this tumor. There is also an IDH2 R172 antibody that can be used
for the immunohistochemical evaluation of this tumor (see Fig. 4).25

The limited data available suggest this tumor may be managed with surgical exci-
sion alone.
ADENOMYOEPITHELIOMA/MALIGNANT ADENOMYOEPITHELIOMA

Adenomyoepithelioma is a rare benign epithelial-myoepithelial tumor. Exceptionally,
malignant transformation may occur. New data suggest that ER-negative adenomyoe-
pitheliomas are more likely to harborHRASmutations, and it is these tumors that seem
to have the greatest propensity for malignant transformation.26,27 This observation
suggests the possibility of using mutation profiling to identify which patients may be
at risk for the development of carcinoma in this setting, thereby dictating a more strin-
gent follow-up protocol. As with MYB and IDH2 R172, there is an antibody to NRAS
Q61R that also recognizes HRAS Q61R and KRAS Q61R; however, experience with
its use as a diagnostic or prognostic tool is limited at this time.28

ER-positive adenomyoepitheliomas are more likely to demonstrate PIK3CA muta-
tions and do not seem to have the same risk as their ER-negative counterparts, albeit
with limited data.26
PROGNOSTIC AND PREDICTIVE TESTING

For early-stage ER-positive/HER2-negative invasive breast carcinoma, the decision
whether to give adjuvant chemotherapy hinges on the risk of distant recurrence.
Several multigene assays have been developed to estimate this risk, including the
21-gene recurrence score assay (Oncotype Dx),29 the 70-gene signature (MammaP-
rint),30 the 50-gene assay (PAM50, Prosigna),31 the 12-gene assay (EndoPredict),32

and the Breast Cancer Index (BCI).33 All assays are prognostic, providing an esti-
mate of the risk of distant relapse. The 21-gene assay is both prognostic and predic-
tive of chemotherapy benefit. These assays have been endorsed by the National
Comprehensive Cancer Network (NCCN),34 the American Society of Clinical
Oncology (ASCO),35–38 and St Gallen39–41 guidelines for adjuvant treatment deci-
sions in patients with early-stage, hormone receptor–positive breast cancer. The
21-gene assay is included in the prognostic staging in the AJCC Cancer Staging
8th Edition.42 Of these multigene assays, the 21-gene recurrence score assay and
the 70-gene signature assay are supported by level I clinical evidence, discussed
later in detail.
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21-Gene Recurrence Score Assay (Oncotype Dx)

The 21-gene recurrence score assay is a reverse transcriptase polymerase chain re-
action (RT-PCR)-based test. The gene panel includes 16 cancer-related genes and 5
reference genes.29 Derived recurrence scores range from 0 to 100, a higher score indi-
cating a greater risk of recurrence. In the original publication, the cutoff points to clas-
sify low-, intermediate-, and high-risk groups were recurrence scores of less than 18,
18 to 30, and greater than or equal to 31, respectively.29 These scores were later modi-
fied to recurrence scores of 0 to 10, 11 to 25, and greater than 25 in the prospective
clinical trials.43–45 The Trial Assigning Individualized Options for Treatment (TAILORx),
a prospective randomized trial, found no benefit to chemotherapy in patients with
early-stage ER-positive, HER2-negative, node-negative breast cancer with recur-
rence scores between 0 and 25, with the exception of young patients (�50 yrs) with
recurrence scores of 16 to 25 who were shown to derive some benefit from chemo-
therapy.43,44 The RxPONDER (Rx for Positive Node, Endocrine Responsive Breast
Cancer) trial further validated the utility of the 21-gene recurrence score in patients
with node-positive disease, demonstrating that postmenopausal patients with ER-
positive, HER2-negative breast cancer with 1 to 3 positive lymph nodes and recur-
rence scores between 0 and 25 could be treated with endocrine therapy alone.45 In
contrast, premenopausal patients with 1 to 3 positive lymph nodes derived significant
benefit from chemotherapy even in the setting of low recurrence scores.45 The 21-
gene recurrence score assay has had significant impact on adjuvant chemotherapy
decisions (see separate article in this issue of the Clinics).
A significant association was also observed between the 21-gene recurrence score

and the risk of locoregional recurrence (LRR) in both node-negative and node-positive
patients.46–48 The potential application of the 21-gene recurrence score for locore-
gional therapy decision-making in patients with early-stage ER-positive, HER2-
negative breast cancer is under active investigation.

70-Gene Signature Assay (MammaPrint)

The 70-gene signature assay is a DNA microarray–based assay.49 Multivariate analysis
showed it to be an independent factor in predicting disease outcome in both patients
with node-negative and those with node-positive breast cancer in a retrospective
cohort.30 Its clinical utility was validated in a prospective randomized phase 3 trial,
the Microarray in Node-Negative and 1 to 3 Positive Lymph Node Disease May Avoid
Chemotherapy (EORTC 10041/BIG 3-04 MINDACT).50 The study assessed both the
genomic risk (using the 70-gene signature) and the clinical risk (using a modified version
of Adjuvant! Online). Patients with discordant clinical and genomic risks (low clinical risk/
high genomic risk or high clinical risk/low genomic risk) were randomized to chemo-
therapy or no chemotherapy. It was found that patients with high clinical risk and low
genomic risk had similar 5-year distant recurrence-free survival with or without adjuvant
chemotherapy.50 In patients with low clinical risk, genomic testing provided no added
value as there was no significant benefit from the use of adjuvant chemotherapy regard-
less of genomic risk.50 Thus, the 70-gene signature is of greatest value among patients
with high clinical risk in whom its use led to a 46% reduction in the administration of
adjuvant chemotherapy.50

The Integration of Genomic and Clinical Information in Prognostic Estimates

As described earlier for the MINDACT trial, genomic testing is best used in combina-
tion with clinicopathologic factors.50 In fact, secondary analyses of the TAILORx trial
found that incorporation of clinical risk stratification based on tumor size and
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histologic grade added prognostic information to the 21-gene recurrence score.51 A
new tool, RSClin, which integrates the 21-gene recurrence score and selected
clinical-pathological features (tumor grade, tumor size, and age), has been shown to
provide more accurate prognostic information than recurrence score or clinicopatho-
logic factors alone.52

Favorable Histologic Subtypes

Several special histologic subtypes of invasive breast cancer such as tubular carci-
noma, cribriform carcinoma, pure mucinous carcinoma, encapsulated papillary carci-
noma, and solid papillary carcinoma are associated with favorable prognoses. There
are no data addressing whether multigene assays provide additional prognostic and
predictive information in patients with these favorable histologic subtypes. Retrospec-
tive analysis of such cases has demonstrated the 21-gene recurrence scores to be
lower than those of conventional invasive ductal carcinomas, high-risk recurrence
scores being less frequently identified, in line with their favorable histology.53,54 A
high-risk recurrence score in any of these special histologic subtypes should prompt
a careful pathologic review to confirm the diagnosis and identify tissue factors in the
tumor sample that may have influenced the results.

Multigene Assays and Biomarker Assessment

ER, PR, and HER2 are among the 16 cancer-related genes assessed in the 21-gene
assay. The 70-gene signature assay and PAM50 report gene expression–based
"intrinsic" subtypes (luminal A, luminal B, HER2-enriched, and basal-like). However,
these assays are not recommended as primary screening tests for biomarker assess-
ment due to the lack of clinical validation supporting their utility in identifying patients
for endocrine or HER2-targeted therapy. Validated immunohistochemistry (IHC) and/
or in situ hybridization (ISH) remain the recommended standard tests for ER, PR, and
HER2 in breast cancer according to ASCO/CAP guidelines.55,56 Although a high
concordance between standard IHC/ISH and the 21-gene RT-PCR assay for ER
and PR status was observed,57–60 a substantial false-negative rate for HER2 status
by RT-PCR has been reported.59–61 This discordance likely reflects a dilutional effect
from contaminating nonneoplastic tissue such as normal breast epithelium, stroma,
and tumor infiltrating lymphocytes, an inherent disadvantage of mRNA-based assays
compared with IHC/ISH on intact tissue sections.

KI67

Although not genomic in nature, Ki67 assessment is briefly discussed here as a matter
of interest.
Ki67 is a marker of cell proliferation. The Ki67 labeling index as assessed by immu-

nohistochemistry is an established prognostic and predictive marker in early-stage
breast cancer.62 However, its clinical utility is limited due to the lack of interobserver
and interlaboratory reproducibility and the lack of a standardized cutoff. A Ki67 index
cutoff point of 14% was selected to distinguish between luminal A and luminal B
breast cancer intrinsic subtype based on analysis of a cohort of breast cancers clas-
sified by PAM50.63 The 14% cutoff was adopted by the 2011 St Gallen International
Breast Cancer Consensus Guideline64; however, this was changed to 20% in the
2013 Guideline.65 The 2021 St Gallen Consensus Conference endorsed the recent In-
ternational Ki67 in Breast Cancer Working Group (IKWG) recommendation using Ki67
less than or equal to 5% (very low) or Ki67 greater than or equal to 30% (very high) to
estimate prognosis and guide chemotherapy,66 but more than one-third of the panel
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voted “Ki67 threshold not known”41, highlighting the lack of consensus that compli-
cates use of Ki67 to guide therapy.
The IKWG recommendations set forth preanalytic requirements and a standardized

visual scoring method to ensure uniform performance and interpretation of immuno-
histochemistry for Ki67.66 Ki67 assessment is recommended only for hormone
receptor–positive, HER2-negative early-stage breast cancer with Ki67 cutoffs of
less than or equal to 5% or greater than or equal to 30%, as noted above. Even
with careful attention to preanalytic issues and standardized scoring methods, there
is still substantial interobserver/interlaboratory variability when Ki67 is in the greater
than 5% and less than 30% range, limiting clinical applicability.
Recently, Ki67 assessment has been used to select patients for abemaciclib ther-

apy. The Food and Drug Administration (FDA) approved abemaciclib, a CDK4/6
inhibitor, combined with endocrine therapy for hormone receptor-positive, HER2-
negative, node-positive, high-risk early breast cancer with Ki67 greater than or equal
to 20%. The approval was based on the MonarchE trial67 but limited to a subset of pa-
tients with high recurrence risk and Ki67 greater than or equal to 20%. The FDA also
approved the Ki-67 IHC MIB-1 pharmDx (Dako Omnis) assay as a companion diag-
nostic test for this indication. Updated analysis of the MonarchE study found Ki67
to be prognostic but not predictive.68 Abemaciclib benefit was observed regardless
of Ki67 status. The ASCO-updated recommendations broadened the application to
patients with either 4 or more positive axillary lymph nodes or 1 to 3 positive axillary
lymph nodes and either grade 3 disease, tumor size greater than or equal to 5 cm,
or Ki67 greater then or equal to 20%, in keeping with the MonarchE trial design.67

For the aforementioned reasons, there is wide variation in utilization of Ki67 testing
in breast cancer among pathology laboratories. Automated scoring by digital image
analysis is still investigational but holds the promise of improving agreement and
throughput, which is reported to take an average of 9 minutes/case using the IKWG
recommended manual scoring method.

TUMOR-INFILTRATING LYMPHOCYTES

The prognostic and predictive value of tumor-infiltrating lymphocytes (TILs) is well
established. An increased level of TILs is an independent predictor of response to neo-
adjuvant chemotherapy in all breast cancer subtypes.69,70 In triple-negative breast
cancer, high-level TILs are associated with better prognosis.71,72 The presence of
TILs is also associated with response to immunotherapy with programmed cell death
ligand 1 (PD1/PD-L1) inhibitors. The percentage of stromal TILs is scored as the area
of tumor stroma occupied by mononuclear inflammatory cells over total intratumoral
stromal area, according to the recommendations by the International TILs Working
Group.73 The percentage of stromal TILs is a continuous variable, ranging from 0%
to 100%. Every 10% increment in stromal TILs corresponds to an improved
outcome.69,72 Different studies used different cutoffs of stromal TILs in data analysis.
Early studies used cutoffs of 60% or 50% TILs to define lymphocyte-predominant
breast cancer.69,71 Proposed TILs cutoffs of 30%, 20%, 10%, and even 5% have
also been used.74 There are currently no recommendations for a clinically relevant
threshold and, therefore, scoring TILs is not implemented in daily practice outside
of research or clinical trial settings.

TREATMENT DECISIONS

As noted in the introduction, genomic testing of breast cancers to identify actionable
targets, with the exception of the few special histologic subtypes discussed earlier,
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currently applies to the advanced stage or metastatic settings. Sequencing assays us-
ing tumor tissue are required to identify mutations, such as ESR1, PIK3CA, and AKT1.
However, early detection evaluating circulating tumor cells may eliminate the need for
a biopsy of the metastatic site (see later section and separate article in this issue of the
Clinics).
Knowledge bases such as OncoKB that annotate somatic mutations for clinical sig-

nificance offer the promise of personalized treatment options based on the cancer
genome.75
IMMUNE CHECKPOINT INHIBITORS AND PD-L1 TESTING

Evaluation of the tumor for susceptibility to immune checkpoint inhibitors, such as
pembrolizumab, is often requested in patients with advanced or metastatic triple-
negative breast cancer. It is important to know that the drugs are approved for use
in patients with tumors demonstrated to express PD-L1 using the appropriate FDA-
approved companion diagnostic assay (Table 1). Each drug requires a different assay;
each assay a specific vendor platform and antibody; and each antibody a different
scoring system and different thresholds of positivity. Needless to say, this presents
considerable challenges even for larger pathology laboratories in academic medical
centers, as validation across platforms is not straightforward, and the relative infre-
quency of test interpretation makes maintaining proficiency and reproducibility diffi-
cult.76,77 In spite of these hurdles, pathologists are committed to providing the
information needed to care for patients with breast cancer, either with an in-house
test option or by sending a tissue block to a reference laboratory. It is incumbent on
both pathologists and oncologists to understand which test is indicated and to
know what assay to order. That said, pembrolizumab was recently approved for
high-risk early-stage triple-negative breast cancer in combination with chemotherapy
as neoadjuvant treatment regardless of PD-L1 expression.78

Additional indicators of susceptibility to immune checkpoint inhibitors include tumor
mutational burden, microsatellite instability, and mismatch repair defects. Most breast
cancers have a low mutational burden, and microsatellite instability and mismatch
repair defects are uncommon.79 However, any opportunity to provide treatment
benefit in patients with metastatic disease is invariably sought in the appropriate clin-
ical setting. Tumor mutational burden information is provided with sequencing assays
along with any specific somatic and/or genomic alterations present.
Table 1
Food and Drug Administration–approved companion diagnostic assays for programmed cell
death ligand 1 in breast cancer

SP142a 22C3 pharmDx

Immunotherapy Atezolizumab Pembrolizumab

Platform Ventana BenchMark DAKO

Scoring methods Immune cells (IC) Combined positive score (CPS)

Positivity definition IC � 1% CPS�10

Clinical trial IMpassion 130 KEYNOTE-355

Breast cancer subtype Locally advanced or
metastatic TNBC

Locally advanced or metastatic TNBC

Chemotherapy Nab-paclitaxel Taxane or gemcitabine-carboplatin

Abbreviation: TNBC, triple-negative breast cancer.
a Indication since withdrawn.
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ESR1 MUTATIONS

The development of endocrine therapy resistance secondary to somatic alterations
such as ESR1 mutations in women with ER-positive metastatic breast cancer is a
treatment challenge, particularly among those treated with aromatase inhibitors in
this setting80,81; this seems to be less of an issue in primary ER-positive breast can-
cers, but emerging evidence suggests the presence of ESR1 mutations in women
with early-stage disease is associated with poorer disease-free and overall survival.82

Despite being an establishedmechanism of endocrine resistance, ESR1mutations are
not used as a biomarker to guide endocrine therapy, as current practice is to switch to
fulvestrant after disease progression on aromatase inhibitors regardless of ESR1 mu-
tation status. The ASCO guideline does not recommend routine testing for ESR1 mu-
tations for hormonal receptor-positive, HER2-negative metastatic breast cancer.83

HER2 OVEREXPRESSION, AMPLIFICATION, AND MUTATION

HER2 overexpression and/or amplification is determined at the time of primary diag-
nosis, with approximately 15% to 20% of breast cancers being classified as HER2
“positive” and eligible for HER2-targeted therapies. Until recently, women with tumors
lacking HER2 overexpression or amplification were ineligible for these therapeutic
agents. However, emerging data demonstrating improved outcomes with the antibody
drug conjugate trastuzumab deruxtecan (T-DXd) for patients with HER2 IHC 11 and
HER2 21, fluorescence in situ hybridization nonamplified tumors have prompted
reevaluation of how HER2 IHC-negative tumors are categorized, that is, the need
for stricter attention to the separation of 0 and 11 cases, as there are now treatment
implications for this group.84,85

Further opportunities for HER2-targeted therapy in patients without demonstrated
HER2 overexpression or amplification have been identified among patients with tu-
mors harboring HER2 mutations.33 Activating HER2 mutations occur at a frequency
of 2% to 3% overall in primary breast cancers with a particular preponderance seen
in invasive lobular carcinomas (w8%). The pan-HER inhibitor neratinib has been
shown to provide a clinical benefit rate of 31% in a pretreated population of patients
with metastatic breast cancer.33,86

PIK3CA MUTATIONS FOR PI3K INHIBITOR TREATMENT

In the advanced stage or metastatic setting, identification of patients whose tumors
harbor PIK3CA mutations offers the opportunity for treatment with the PIK3CA inhib-
itor, alpelisib, in combination with fulvestrant for hormonal receptor–positive/HER2-
negative advanced breast cancer in postmenopausal women, or in male patients.87

PIK3CA mutations are identified in up to 45% of patients with ER1, HER2-negative
advanced breast cancer88 and therefore offer a large potential pool of patients who
may benefit from this therapy. Furthermore, trials exploring efficacy of alpelisib in pa-
tients with PIK3CA-mutated HER21 breast cancer are ongoing.89

CIRCULATING TUMOR DNA

Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA present in the blood-
stream. The sampling and analysis of ctDNA, also known as “liquid biopsy,” offers a
minimally invasive approach to genomic profiling and disease monitoring. The FDA
approved the liquid biopsy next-generation sequencing (NGS)-based FoundationOne
Liquid CDx test as a companion diagnostic device for specific indications, including
the identification of PIK3CA mutations in breast cancer for treatment with alpelisib.87
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The plasmaMATCH trial, a prospective trial evaluating the sensitivity of ctDNA to
identify actionable mutations in advanced breast cancer, found that the agreement
for mutation identification between ctDNA digital PCR and targeted sequencing using
tissue biopsies was 96% to 99%.90 Analytical validation of MSK-ACCESS (Memorial
Sloan Kettering—Analysis of Circulating cfDNA to Examine Somatic Status), an insti-
tutional NGS platform for detection of somatic alterations in 129 genes in cell-free
DNA, demonstrated 92% de novo sensitivity and 99% specificity.91 Liquid biopsy
does not replace tissue biopsy, given the importance of histology diagnosis, but
potentially provides a valid alternative sampling strategy, especially when the meta-
static site is not amendable for biopsy or a tissue sample obtained is not suitable
for molecular analysis.
Multiple studies have demonstrated the potential utility of ctDNA in prognostication

and in monitoring treatment response and disease progression in advanced breast
cancer.92–101 However, data are limited to retrospective analyses of prospective trials.
In patients with early-stage breast cancer treated with neoadjuvant therapy, detection
of ctDNA was associated with poor response and disease recurrence.102,103 In a pro-
spective multicenter study, detection of ctDNA was associated with relapse in early-
stage breast cancer after ostensibly curative therapy, with ctDNA being detected at a
median lead time of 10.7 months before clinical relapse.104 There are no data to
demonstrate that clinical intervention following early detection of molecular residual
disease translates into improved patient outcome, limiting practical utility at this
time. As such, current ASCO and NCCN guidelines do not recommend the use of
ctDNA to guide adjuvant therapy in early-stage breast cancer or disease assessment
and monitoring in the metastatic setting.38
THE UTILITY OF GENOMIC ANALYSIS IN RESOLVING DIAGNOSTIC DILEMMAS

In addition to identifying actionable somatic mutations and predisposing germline var-
iants, genomic analysis can assist in diagnosis when definitive tumor classification
cannot be accomplished based on histology and immunohistochemistry. A common
clinical dilemma is the determination of primary tumor site in patients presenting
with metastatic disease. For patients with a prior history of carcinoma, comparative
genomic analysis of paired primary and metastatic tumor samples can determine
whether a clonal relationship exists. Genomic comparison can also distinguish local
recurrences from new primary carcinomas in patients with prior breast cancer.
More challenging are situations in which the patient’s history is noncontributory or a
primary tumor sample is unavailable for comparison. Certain genomic alterations or
combined patterns of mutation are associated with specific tumor types and help to
predict tumor origin: examples include APC loss-of-function mutations in colorectal
cancers, TMPRSS2::ERG fusions in prostate cancers, an ultraviolet-associated muta-
tional signature of C > T substitutions in cutaneous melanomas, and the co-
occurrence of TP53 and CTNNB1 mutations in endometrial cancer.105 Breast
carcinomas, except for certain special histologic subtypes, do not have unique
genomic alterations. However, the absence of certain common mutations may be
informative. For example, EGRF or KRAS mutations favor a carcinoma of pulmonary
over mammary origin. Penson and colleagues reported a machine learning approach
to the prediction of tumor type using genomic data.105 The correct tumor type was
predicted for 73.8% of 7791 patients in the training set and 74.1% of 11,644 patients
in an independent cohort.105 The performance was highest in tumor types with distinc-
tive molecular profiles, such as uveal melanoma, glioma, and colorectal cancer,
whereas lowest in esophagogastric, ovarian, and head and neck cancers due to
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molecular heterogeneity among these tumors and the lack of distinguishing genomic
alterations.105 The algorithm identified carcinomas of mammary type with sensitivity
and specificity values of 0.876 and 0.761, respectively, in 1181 patients with breast
cancer included in the study cohort.105

SUMMARY

It is nowwell recognized that breast cancer is a heterogeneous disease. Optimal treat-
ment is dictated by tumor biology and a multidisciplinary approach. Advances in ge-
nomics have further improved our understanding of breast cancer biology, with robust
genomic assays becoming more easily accessible and being increasingly used in daily
practice to assist in diagnosis, classification, risk stratification, and the detection of
relevant germline mutations and actionable targets. For early-stage breast cancer,
treatment is mainly informed by conventional clinicopathologic factors and bio-
markers (ER, PR, HER2) using immunohistochemistry and/or in situ hybridization. Sys-
temic therapy is largely driven by histology and receptor subtype. For early-stage
hormonal receptor–positive, HER2-negative breast cancer, the use of multigene as-
says is well established for risk stratification and treatment escalation/deescalation.
For advanced breast cancer, transcriptomic, genomic, epigenomic, and proteomic
landscapes may inform personalized treatment options. The translation of such data
into individualized treatment plans conferring survival benefits is the challenge ahead.
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