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Purpose of review

Over the last years, extensive research has been done on neutrophils and their contribution in chronic
rhinosinusitis (CRS), and made it clear that they are more than just a bystander in this disease. In this
article, we will review all recent publications on this topic and look to what the future hold regarding
therapeutics targeting the neutrophilic inflammation in CRS.

Recent findings

Evidence is growing that the presence of neutrophils are associated with a worse disease outcome in
certain CRS patient groups. They are highly activated in type 2 inflammations and exhibit damaging
properties through their proteases, contributing to the chronicity of the disease. Several recent studies
identified useful biomarkers and targets for future therapeutics.

Summary

The findings we review in this manuscript are of utmost importance in unraveling the complexity of CRS
and provide us with the necessary knowledge for future clinical practices.
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Chronic rhinosinusitis (CRS) is an increasing health
problem affecting up to 15% of the population in
western countries. The complexity of underlying
inflammatory patterns complicates the understand-
ing of major pathways suitable for personalized
medicine approaches and causes less or nonrespon-
siveness to current treatments in a substantial group
of the patients. CRS patients are phenotypically
classified as CRS with nasal polyps (CRSwNP) and
CRS without nasal polyps (CRSsNP) [1,2]. Neutro-
philic responses have long predominantly been
associated with type 1–type 3 CRSsNP, while type
2 CRSwNP was considered a predominant eosino-
philic disease [3–9]. However, recent endotype-
focused studies have challenged this polarized
image, showing a more versatile cytologic picture
in both CRSsNP and CRSwNP patients [10

&&

,11]. In
CRSsNP, about 50% of the patients present a type 2
response with eosinophils significantly increased
and activated, while the neutrophilic inflammation
is not different compared with the nontype 2 coun-
terpart [11]. As the type 2 CRSsNP patients have
worse clinical outcomes by means of recurrence,
comorbid asthma and reduced smell/taste, neutro-
phils cannot be associated with a more severe
clinical outcome in CRSsNP. Interestingly, more
and more studies over the last decade report the
existence of a mixed eosinophilic–neutrophilic
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and a worse clinical outcome in about 26–36% of
CRSwNP patients [4,10

&&

,12–17].
NEUTROPHIL INFILTRATION AND
SURVIVAL IN CHRONIC RHINOSINUSITIS

It is generally accepted that IL-17 is the driving force
of neutrophilia in CRSwNP through stimulation of
both neutrophilic infiltration and survival [18]. In
addition, IL-17 causes the upregulation of CXCR-1
and CXCR-2, and the release of IL-6, IL-8 and G-CSF,
further stimulating neutrophil infiltration [19,20].
IL-17 is, therefore, often used as a marker for tissue
neutrophilia in CRS. iNKT17 (type 17 invariant
natural killer cells) cells were significantly increased
in Asian neutrophilic nasal polyps, and its differ-
entiation from native iNKT cells was stimulated in
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KEY POINTS

� Neutrophils are present and activated in severe type 2
CRSwNP, where they interact with eosinophilic
inflammation, establishing a mixed inflammation.

� Neutrophils can contribute to the CRS pathophysiology
via increased proteolytic activity of elastase and
cathephin G, or via NETosis.

� The presence of a neutrophilic inflammation in CRS is
often associated with a worse disease outcome,
glucocorticosteroid resistance and recurrence
after surgery.

� Current therapies targeting the neutrophilic activation
have been tested in other airway diseases and look
promising to use in CRS as well.
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neutrophilic homogenates, suggesting a role for
iNKT17 cells in the feedback mechanism of local
neutrophilic inflammation in Asian CRSwNP [21].
However, the most severe Caucasian patient group
shows a predominant type 2 inflammation with a
vast neutrophilic inflammation but low IL-17 levels,
not linking type 17 to neutrophilia and disease
severity [4,10

&&

,22]. Interestingly, recent in-vitro
studies point to a potential role for Charcot–Leyden
crystals (CLCs) to the neutrophilic infiltration in
severe type 2 CRSwNP as CLC-stimulated nasal pol-
yps released significantly higher concentrations of
neutrophil attractant proteins (TNFa, IL-6 and IL-8)
and an increased neutrophilic migration was
observed towards CLC-stimulated epithelial cells
of CRSwNP patients [17].

It has been demonstrated that the neutrophil
lifespan increased through inhibition of cell apop-
tosis at sites of inflammation [23,24]. We recently
showed deceased apoptosis of neutrophils in
CRSsNP environment compared with CRSwNP
and controls [10

&&

]. In Asian patients, both numbers
of neutrophils and rates of apoptosis correlated with
G-CSF in nasal polyps and suppressed apoptosis
could be reversed by anti-G-CSF treatment [25].
These observations were recently confirmed in Cau-
casian patients with low-type 2 CRSwNP [26

&

]. It has
been shown that co-stimulation of neutrophils with
GM-CSF, TNF-a and IL-4 leads to the generation of
long-living populations of neutrophils; and the con-
centration of all these mediators have been reported
to be increased in CRS mucosa [27,28].
NEUTROPHILIC ACTIVATION AND IMPACT
ON CHRONIC RHINOSINUSITIS

Although mature neutrophils are dominant in the
blood of CRSwNPpatients, a significant shift towards
1528-4050 Copyright © 2022 Wolters Kluwer Health, Inc. All rights rese
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activated neutrophils (CD16high, CD62Ldim) is
observed in the tissue of CRSwNP, suggesting that
neutrophils get activated once they enter the
CRSwNPmicroenvironment [10

&&

,29–31].Theseacti-
vated neutrophils showed higher proteolytic activity
via cathepsin G and elastase in severe type 2 CRSwNP
[10

&&

]. These mediators enhance secretion and acti-
vation of IL-1 family cytokines as IL-1b, IL-33 and IL-
36g in an extremely efficient manner [32]. IL-1b and
IL-33 are also key players in the induction of type 2
responses as they function as chemoattractant for
Th2 cells and stimulate the production of type 2
cytokines in eosinophilic nasal polyps [33–35].
In CRS, IL-36g promotes the secretion of IL-8 and
IL-17 from tissue neutrophils, reinforcing a positive
feedback loop and their own recruitment [12]. In
addition, neutrophilic serine proteases have a direct
negative effecton thenasal epithelial barrier integrity
and elastase can initiate goblet cell metaplasia
and increased mucus production [36–38]. Several
recent studies on elastase-inducedmucus production
revealed involvement of the TRAF6/autophagy regu-
latory axis, TNFa-converting enzyme-epidermal
growth factor receptor signaling (TACE-EGFR)
pathway and miR-146a [39–41]. Substrates for neu-
trophilic proteases are elastin, collagen and fibronec-
tin, which aremajor components of the extracellular
matrix, and their degradation could be linked to
tissue remodeling in CRS [42]. (Fig. 1)

The phagocytic function of neutrophils and
superoxide anion production is significantly more
impairedincystic fibrosis (CF)patientswithCRSwNP,
compared with patients with CRSsNP [43]. Another
mechanism to clear invaders is the formationofNETs
(neutrophil extracellular traps). Those NETs can be
formed via different processes (viable NET formation
or NETosis), but are generally nicotinamide adenine
dinucleotide phosphate (NADPH)-dependent and
consists of neutrophil DNA associated with granule
proteins [44,45]. The expression of NADPH-oxidase
subunit p67phox was found to be expressed in eosi-
nophils and neutrophils but not in macrophages in
CRSwNP tissue [46]. However, studies about the pres-
ence ofNETs in the tissue are contradicting, although
NETs are observed in secretions of exacerbated eosi-
nophilic CRSwNP patients [44,47,48]. It was recently
found that – in addition tomultiplemicroorganisms
– CLCs evoke NETosis in vitro [17,44]. Therefore, it is
likely that CLC deposition in tissue and secretions
might contribute to NETosis in CRS patients. The
pathway of NET formation and outcome is highly
dependent on the individual micro-organism iden-
tity, pathogen size and additional stimuli [44,49,50].
Moreover, S. aureus – present in 67% of CRSwNP
patients – hasbeenfoundtodegradeNETstopromote
its own survival [51].
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FIGURE 1. Contribution of neutrophilic inflammation to the pathophysiology of chronic rhinosinusitis. CLCs possibly overrule
IL-17 in the recruitment of neutrophils in type 2 CRS, while G-CSF may regulate neutrophilic migration in nontype 2 CRS.
Increased neutrophilic activation and proteolytic activity of elastase and cathepsin G cause increased mucus production, tissue
remodeling via degradation of collagen, fibronectin and elastin; and release of type 2 promoting cytokines through epithelial
cell damage. The type 2 immune response subsequently activates eosinophils and establishes a positive feedback loop
between eosinophils and neutrophils in severe type 2 CRSwNP. CLCs, Charcot --Leyden crystals; CRS, chronic rhinosinusitis;
G-CSF, granulocyte colony-stimulating factors; iNKT17, type 17 invariant natural killer cells.
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The roleofNETson theCRSdisorder is still poorly
understood. However, it is clear that NETs display
a dual role in homeostasis by protecting the host
from infectious diseases via killing bacteria, while
they are also likely causing pathologic alternations
[44]. It was recently shown that dsDNA released
duringNETosismay directly contribute to the patho-
genesis, by inducing a type-2 immune response [52].
In secretions of eosinophilic CRSwNP patients, NETs
– in addition to EETs (eosinophil extracellular traps)
and CLCs – were found to increase the mucus vis-
cosity, leading to plug formation, hampering muco-
ciliary clearance and eventually airway damage [53].
Elevated production of NETs was also found to be
associated with disease severity in cystic fibrosis and
chronic obstructive pulmonary disease (COPD)
patients; and NETs could have pro-inflammatory
effects on macrophages or stimulate tissue remodel-
ing of the extracellular matrix via degradation of
elastin, collagen and fibronectin byneutrophilic pro-
teases [42,44,50,54]. Interestingly, it has been shown
16 www.co-allergy.com
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thatNETsaggregate (aggNETs)underhighneutrophil
densities, and that cytokines and chemokines
trapped in these aggNETs are degraded via serine
proteases. These findings suggest that aggNETs pro-
mote the resolution of neutrophilic inflammation
and could prevent exacerbation of chronic inflam-
mations [55]. However, if this is truly the case in CRS
remains to be investigated.
NEUTROPHILIC HETEROGENEITY IN
CHRONIC RHINOSINUSITIS

Increasing evidence over the past decade has demon-
strated an unexpected phenotypic heterogeneity
and functional versatilitywithin theneutrophil pop-
ulation. Multiple neutrophil subsets based on their
pro-inflammatory function (N1 vs. N2), increased
survival, maturation state and potential to phagocy-
tize and to form NETs were recently described
in inflammatory diseases [27,29,38,56–59]. Under-
standing the heterogeneity of neutrophils in CRS
Volume 23 � Number 1 � February 2023
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couldhelpinunderstandingtheircontributionacross
endotypes. So far, subsetting of neutrophils in CRS
lead to the identification of IL-9-producing neutro-
phils and an activated subset of CD16high CD62Ldim

neutrophils [10
&&

,29,60]. Also in CRSwNP, neutro-
phils were found to be a major source of oncostatin
M. In addition, its role in neutrophil polarization,
oncostatin M is also able to impair the epithelial
barrier in CRSwNP patients, implying an additional
roleforneutrophils in impairingbarrier function[61].
A majority of those cells also expressed arginase 1,
suggestive of a N2 phenotype. IL-33 treatment of
neutrophils resulted in a polarization of the neutro-
phil and also to the elective production of type 2
cytokines, including IL-4, IL-5, IL-9 and IL-13 [62].
Inasthma,a subsetofCXCR4highneutrophils – prone
to go into NETosis, and IL-5Ra-expressing neutro-
phils have been described [63,64]. However, no evi-
dence for IL-5Ra expression has been found in the
tissue of CRS so far.
NEUTROPHILIC CONTRIBUTION TO
CHRONIC RHINOSINUSITIS SEVERITY

Multiple studies reported that the presence of neu-
trophils in subepithelial regions of nasal polyps is
associated with refractory CRS [65–69,70

&

]. Markers
of severe or moderate neutrophilic inflammation
were associated with elevated levels of IL-8 and high
proportions of difficult to treat CRS [71]. Recent
studies proposed the delta neutrophil index (DNI)
asauseful earlypredictor fordeterminingtheneed for
surgical intervention in patients with CRS [72].
Increased concentrations of neutrophil-derived
MMP-9hadanegative impacton thepatient’s quality
of life and increased the time of healing and regen-
eration of tissues after endoscopic sinus surgery [73].
Moreover, theconcentrationsofneutrophilicelastase
correlated significantly with CRS-MRI scores [74]. In
CRSsNP, therewas a significant relationship between
neutrophilia and improvement in sleep latency and
sleepefficacyafter surgery, although this relationship
mightbecircumstantial [75]. InAsia,difficult-to-treat
CRS had higher glutathione disulfide levels, which
correlatedpositivelywith IL-8 in the tissue [76].How-
ever, other studies showed that only increased eosi-
nophilic infiltration and levels of IL-5, andnot IL-8 or
neutrophilic infiltration correlated with long-term
recurrent CRSwNP [77]. Recurrence in CRSwNP
patients correlate with the ratio ECP/myeloid perox-
idase (MPO) in nasal polyp tissue and peripheral
eosinophil/neutrophil ratio, more likely to be attrib-
uted toexcessive levelsofECPasdecisive factor in this
balance [78,79]. Other studies find no association
between SNOT-22 scores with neither mucosal eosi-
nophilia nor neutrophilia [80].
1528-4050 Copyright © 2022 Wolters Kluwer Health, Inc. All rights rese
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BIOMARKERS FOR NEUTROPHILIC
CHRONIC RHINOSINUSITIS

As it is becoming clear that neutrophilsmight have a
true impact on CRS inflammation, recent studies
tried to identify neutrophil biomarkers that could
ease potential future therapeutics. A recent study
evaluated trace elements and mineral status in asso-
ciation with mucociliary status and found that
increased Se in the hair was associated with the
number of neutrophils in nasal mucosa biopsies
[81

&

]. Increased levels of calprotectin in nasal secre-
tions were associated with increased neutrophil
presence in CRSwNP. Interestingly both concentra-
tions of calprotectin and numbers of neutrophils
were higher in patients who previously underwent
at least three times functional endoscopic sinus
surgery (FESS) [82]. Hypoxia-inducible factor 1a is
also associated with neutrophilic inflammation in
CRSwNP [83]. Another Asian study, however,
showed that the clinical characteristics, blood cel-
lular and biological markers could not effectively
distinguish between eosinophilic or neutrophilic
responses in CRSwNP [84]. Artificial intelligence
for cellular endotyping of nasal polyps via whole-
slide imaging was proposed as a promising techni-
que to possibly evaluate patients’ cellular endotype
[85].
TREATMENT STRATEGIES FOR
NEUTROPHILS IN CHRONIC
RHINOSINUSITIS

Glucocorticosteroids do target type 2 inflammatory
responses better than nontype 2 responses; how-
ever, glucocorticosteroid (GCS) resistance has been
observed even in patients with type 2 CRSwNP
[15,86]. Despite improvements of patients’ symp-
toms upon treatment with GCS, neutrophil-nega-
tive polyps had significantly greater reductions in
bilateral polyp scores, nasal congestion scores and
total symptom scores, compared with neutrophil-
positive patients [15]. In addition, the use of topical
steroids did not affect the neutrophil activation
state in CRSwNP, reflected by the unaltered expres-
sion of CD16, CD62L, CD11b or ICAM-1, and did
not influence NET formation [29,47,87,88]. GCS
were even reported to prevent apoptosis of neutro-
phils and to promote neutrophilic inflammation
[89,90].

The appearance of neutrophils might thus affect
the treatment outcome of CRS patients and might
be troublesome in specific CRS endotypes. More
thorough studies are necessary to identify immuno-
pathological patterns associated with neutrophilic
inflammation and to unravel the driving factors of
neutrophilia in CRS. These studies could provide a
rved. www.co-allergy.com 17
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Table 1. Summary of therapeutics against neutrophilic

inflammation in chronic rhinosinusitis

Therapeutics

Effects on
neutrophilic
inflammation

Positive/
promising
in clinic

Glucocorticosteroids No effect on activation
and NETosis

No

Prevent apoptosis

Macrolides Reduce IL-8 and
ICAM expression

Yes

Induce apoptosis

Doxycycline Impairs migration Yes

Induces apoptosis

Reduces MPO levels

17,18-EpETE Inhibits production of
IL-6, IL-8

N/A

PF-1355 Inhibitor of MPO No

AZD9668 Neutrophil elastase
inhibitor

Yes

Nebulized heparin Inhibits elastase,
cathepsin G

Yes

Blocks P-selectin and
L-selectin

Antigal-10 Dissolution of CLCs Yes

CLCs, Charcot--Leyden crystals; NET, neutrophil extracellular traps.

Rhinitis, sinusitis and upper airway disease
crucial notion of potential interesting targets to
interfere with the chronic neutrophilic inflamma-
tion in CRS. On the basis of current knowledge, a
different therapeutical approach will be required to
target neutrophils in CRSwNP compared with
CRSsNP; and it will be more relevant to focus on
CRSwNP. Because of its relationship with severe
eosinophilic type 2 immune response is this patient
group, it might be interesting to not focus on target-
ing the neutrophilic inflammation alone but rather
consider targeting both the eosinophilic and neu-
trophilic inflammation as a whole [91]. Considering
the neutrophilic inflammation on its own, it might
be more relevant to focus on inhibiting neutrophil
activation rather than reducing numbers of tissue
neutrophils itself via inhibiting production, apop-
tosis or chemotaxis, as we did not observe decreased
apoptosis or increased migration of neutrophils in
nasal polyps. Neutrophil-specific therapeutics
might be more relevant to use as add-on therapies
in addition to the current biologicals against the
eosinophilic type 2 inflammation in nasal polypo-
sis. (Table 1).

There are conflicting data concerning the effi-
cacy of macrolides in CRS. Macrolides are capable of
reducing the expression of IL-8 and ICAM, and
decreasing the bacterial load and biofilm formation
and could, as such, diminish initial neutrophil
recruitment in response to bacterial infection [92].
In addition, they induce neutrophil apoptosis, and
long-term treatment with clarithromycin was
shown to decrease IL-8 levels in Chinese CRSsNP
patients, implying to interfere with recruitment
[93]. Another antibiotic, doxycycline can impair
neutrophil migration, induce apoptosis and modu-
late the oxidative burst of neutrophils [94,95]. In a
randomized double-blind, placebo-controlled, mul-
ticenter trial on CRSwNP patients, doxycycline
showed a moderate effect on nasal polyp score
and symptoms for 12weeks and significantly
reduced levels of MPO, ECP and MMP-9 in nasal
secretions [96]. Another study found that doxycy-
cline had a beneficial role especially in patients
without asthma, NERD or high levels of serum IgE
before treatment [97]. Further considerations for
dosing, duration of treatment and important side
effects of macrolides and doxycycline have recently
been reviewed by Lees et al. [98].

As we found that the neutrophilic inflammation
in severe type 2 CRSwNP was independent of IL-17,
therapeutics blocking the IL-17 pathway would
most likely not be relevant in this patient group.
Even in asthma, where IL-17 is known to play a role,
clinical studies on IL-17-neutralizing antibodies did
not prove to be effective or were terminated early.
Also clinical trials with anti-TNFa in asthmatics
18 www.co-allergy.com
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were not convincing [99]. However, as we found
the regulation of neutrophils in CRS to be different
than in asthma, it might be interesting to perform
clinical trials to antagonize IL-6, IL-8 or G-CSF on
CRS patients, if these mediators are showed to be
important. 17,18-Epoxyeicosatetraenoic (17,18-
EpETE) inhibits TNFa-induced production of IL-6,
IL-8 and mucin, and is, therefore, proposed as
potential therapeutic approach for mucus hyperse-
cretion and neutrophilic inflammation in nasal
mucosa [100]. Treatment with intranasal recombi-
nant IFNg reduced neutrophilic activation in
CRSwNP [101]. Of course, because of heterogeneity
among CRS patients, it is likely that mediator-spe-
cific therapies will only be valuable for a subgroup of
patients. Targeting neutrophilic activation locally
instead of systemically could also reduce the risk
of neutropenia.

Blocking the damaging capacity of neutrophils
in CRS can be achieved by targeting its granule
enzymes MPO or the serine proteases elastase and
cathepsin G. PF-1355, a selective inhibitor of MPO
was efficient in attenuating tissue injury in alveolitis
[102,103]. A 4-week phase II trial with a neutrophil
elastase inhibitor (AZD9668) showed clinical
improvements in patients with bronchiectasis
Volume 23 � Number 1 � February 2023
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[104]. Heparin inhibits neutrophilic elastase, cath-
epsin-G, blocks P-selectin and L-selectin; nebulized
heparin treatment improved the outcome for
patients with COPD and asthma [105]. Both MPO
and elastase are also crucial mediators in NET for-
mation, so these therapies may interfere with neu-
trophilic inflammation on several levels. NADPH
oxidase, PAD 4 and Gasdermin D are also identified
as crucial mediators in NET-formation, but their
therapeutic utility has not been tested so far [103].

A study in mice could prevent CLC-evoked neu-
trophil infiltration by gal10-antibody treatment,
causing the dissolution of CLCs [106]. Although this
is an interesting approach, appropriate studies are
needed to test this hypothesis in CRSwNP patients.
In addition, it is unclear if and how neutrophilia
contributes to clinical disease, and how it is affected
by treatment targeting specific type 2mediators, like
anti-IL5(Ra) and anti-IL4/IL13R.
CONCLUSION

Evidence is increasing that neutrophils are more
than a bystander in CRS inflammation. We here
summarized their possible involvement in the
chronicity of the disease and reviewed their associ-
ation with disease severity. As publications on neu-
trophils in CRS are increasing in both Asian and
Western countries, we also discussed the therapeutic
options to target neutrophilic inflammation in CRS.
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